Evolution of the Alfvén Mach number associated with a coronal mass ejection shock

Maguire, Ciara and Carley, Eoin and McCauley, Joesph and Gallagher, Peter (2020) Evolution of the Alfvén Mach number associated with a coronal mass ejection shock. Astronomy & Astrophysics, 633 (A56). ISSN 0004-6361

Share :
Mastodon Twitter Facebook Email

[thumbnail of aa36449-19_ciaramaguire.pdf] Text
aa36449-19_ciaramaguire.pdf

Download (8MB)
Official URL: https://www.aanda.org/articles/aa/abs/2020/01/aa36...

Abstract

The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number (MA), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II bandsplitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme
ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock MA yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when MA was in the range 1.4–2.4 at a heliocentric distance of ∼1.6 R⊙. The emission ceased when the CME nose reached ∼2.4 R⊙, despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.

Item Type: Article
Uncontrolled Keywords: Sun: coronal mass ejections (CMEs) – Sun: radio radiation – shock waves – acceleration of particles
Divisions: School of Cosmics Physics
School of Cosmics Physics > Astronomy and Astrophysics
Date Deposited: 31 Jan 2020 10:39
Last Modified: 20 Dec 2022 09:02
URI: https://dair.dias.ie/id/eprint/1079

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year