PION: simulating bow shocks and circumstellar nebulae

Mackey, Jonathan and Green, Samuel and Moutzouri, Maria and Haworth, Thomas J. and Kavanagh, Robert D. and Zargaryan, Davit and Celeste, Maggie (2021) PION: simulating bow shocks and circumstellar nebulae. Monthly Notices of the Royal Astronomical Society, 504. p. 983. ISSN 1365-2966

Share :
Mastodon Twitter Facebook Email

[thumbnail of https://doi.org/10.1093/mnras/stab781] Text (https://doi.org/10.1093/mnras/stab781)
Mackey_2021_MNRAS_504_983_PIONv2.pdf - Published Version

Download (9MB)
Official URL: https://doi.org/10.1093/mnras/stab781

Abstract

Expanding nebulae are produced by mass-loss from stars, especially during late stages of evolution. Multidimensional simulation of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star, ideally with adaptive time-steps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics (R-MHD) code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized, slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf-Rayet star into the slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and analytic theory. Finally, the wind-wind collision from a binary star system is modelled with 3D MHD, and the results compared with previous 2D hydrodynamic calculations. A PYTHON library is provided for reading and plotting simulation snapshots, and the generation of synthetic infrared emission maps using TORUS is also demonstrated. It is shown that state-of-the-art 3D MHD simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and user documentation is made available for the community under a BSD3 licence.

Item Type: Article
Divisions: School of Cosmics Physics > Astronomy and Astrophysics
Date Deposited: 28 Apr 2021 10:12
Last Modified: 14 Dec 2022 15:20
URI: https://dair.dias.ie/id/eprint/1124

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year