Rosten, Oliver J. (2007) Sensitivity of Nonrenormalizable Trajectories to the Bare Scale. Journal of Physics A: Mathematical and Theoretical, 41 (7). 075406. ISSN 17518113

Text
DIASSTP0717.pdf Download (303kB)  Preview 
Abstract
Working in scalar field theory, we consider RG trajectories which correspond to nonrenormalizable theories, in the Wilsonian sense. An interesting question to ask of such trajectories is, given some fixed starting point in parameter space, how the effective action at the effective scale, Λ, changes as the bare scale (and hence the duration of the flow down to Λ) is changed. When the effective action satisfies Polchinski’s version of the Exact Renormalization Group equation, we prove, directly from the path integral, that the dependence of the effective action on the bare scale, keeping the interaction part of the bare action fixed, is given by an equation of the same form as the Polchinski equation but with a kernel of the opposite sign. We then investigate whether similar equations exist for various generalizations of the Polchinski equation. Using nonperturbative, diagrammatic arguments we find that an action can always be constructed which satisfies the Polchinskilike equation under variation of the bare scale. For the family of flow equations in which the field is renormalized, but the blocking functional is the simplest allowed, this action is essentially identified with the effective action at Λ = 0. This does not seem to hold for more elaborate generalizations.
Item Type:  Article 

Divisions:  School of Theoretical Physics > Preprints 
Date Deposited:  05 Oct 2017 19:23 
Last Modified:  16 Jul 2018 10:08 
URI:  http://dair.dias.ie/id/eprint/208 
Actions (login required)
View Item 
Downloads
Downloads per month over past year