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1. Introduction

A remarkable new insight into the dynamics of supersymmetric quantum field theories
was the discovery by Seiberg in the 1990’s of dualities analogous to those in soluble two
dimensional integrable models [, for a textbook discussion see [B]. For a N' = 1 gauge
theory with gauge group G and a suitable number Ny of chiral matter ‘quark’ fields,
belonging the fundamental representation of G and transforming under a flavour symmetry
group F', there is a duality between the initial ‘electric’ theory and an associated ‘magnetic’
theory with a dual gauge group G but the same flavour symmetry F. In the dual magnetic
theory, besides the appropriate ‘quark’ fields, the matter fields also include chiral ‘mesons’
to match with the corresponding electric theory. Both electric and magnetic theories
are asymptotically free but they have a common IR fixed point realising a non-trivial
interacting N/ = 1 superconformal theory. As usual in dual theories the strong coupling
regime of the electric theory corresponds to the weak coupling regime of the magnetic one,
and vice-versa. In the canonical example G = SU(N.) and F = SU(Ny) x SU(Ny) x
U(l)p x U(1)g and with 3N; < N, < 3N; then G = SU(N; — N.). Each conjectured
duality is justified by many non-trivial consistency checks. The original Seiberg dualities
have also been extended to different gauge groups [J| and theories with further fields
BB showing the existence of a plethora of superconformal IR fixed points in N’ = 1
supersymmetric field theories linked by RG flows after introducing mass terms or other
relevant perturbations.

More recently the detailed operator content of four dimensional superconformal gauge
theories has been intensively investigated. A critical issue is to distinguish between pro-
tected operators satisfying a BPS condition and whose scale dimensions A saturate an
associated unitarity bound and those operators which are not so constrained with a scale
dimension determined by the detailed dynamics. In A/ = 4 theories the former belong to
short or semi-short supermultiplets while the latter form long multiplets with A depending
on g the coupling so that they may disappear from the spectrum in the strong coupling
limit. Since semi-short multiplets may combine to form long multiplets which gain anoma-
lous dimensions in perturbation theory the counting of protected operators, satisfying BPS
constraints, is a not an immediately straightforward issue. In [[] Kinney et al formulated
an index for general N superconformal theories such that contributions from any combina-
tions of multiplets forming a long multiplet cancel and hence only protected operators are
relevant. The index is then a topological invariant under smooth deformations preserving
superconformality and was calculated in [[] to give the same results for N' = 4 theories
both at weak coupling and also at strong coupling through the AdS/CFT correspondence,
see also [f]. The index in various sectors may also be obtained [[] by considering suitable
limits of partition functions for counting gauge singlet operators where the relevant char-
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acters involve the supertrace, or equivalently contain a factor (—1)%', and the limit ensures
no long multiplet contribution. These results were applied also in [[] to discuss N = 4
theories with an SU (V) gauge group in the large N limit.

For N/ = 1 theories the basic contributions to the index are expressible as SU(2,1)
characters. For such theories Romelsberger [L0,L1] also constructed an index which is
essentially equivalent to that of [[]] in this case. Romelsberger further gave a prescription
for determining the index at the non trivial IR fixed points related by Seiberg duality and
then showed that there was a very non-trivial matching of the two independent electric
and magnetic expressions for the index by considering a series expansion up to a certain
order in particular cases. In general to calculate the index it is necessary to identify a
supercharge Q, with associated adjointﬂ OT, such that

{Qofy=21, @Q’=0, (1.1)

so that H has a positive semi-definite spectrum. The index is then formed by the supertrace
for states belonging to the kernel of H and so belonging to the cohomology of Q, Q. The
generators commuting with @, Q% in N’ = 1 theories are then

MSP+ 16PR P _

MB: « 27 o , P6:P+, 1.2
oo (M ) (Ps) (12
which satisfy the Lie algebra for SU(2,1), [M AP, McP] = 6cBPM 4P — 6P MP. In (T2)
My = (Mg*)* contains the generators Js, Ji for the SU(2) subgroup acting on chiral

spinors while
R=R+2J3+cH, (1.3)

with R the generator for U(1)g. The index may then be defined by
I(t,2) = tremn ((—1)FtR2?73) (1.4)
although this may be extended by further variables related to additional symmetries.

In the prescription of Romelsberger [[L1] for N’ = 1 superconformal theories the index
is first determined on ‘single particle states’ giving

2t2 —t(z + 1)
(1 —tz)(1 —tax—1)

+ Z " XRpi(M)XRe,i(9) = 27" Xy i (W)X Re.i(9)
: (I—tz)(1 —ta ) ’

i(t,x,h,g) = Xadj.(9)

(1.5)

I The adjoint here is defined, for a space of states formed by local field operators ¢ acting
on |0), by a scalar product determined by the two point functions for ¢. It differs from the usual
conjugation so that, for any operator O, OT = U *O'U for UT = U, [[. Thus for the dilation
operator H™ = H although H' = —H.



which depends also on the symmetry group elements g € G, h € F. In ([[.F) the first
term represents the contribution for gauge fields belonging to the adjoint representation
of G and the sum corresponds to chiral matter fields ¢; transforming under gauge group
representations Rg ;, a flavour symmetry representations Rp ;, with Xz, i(h), Xrs.i(g) the
appropriate characters. The terms proportional to ¢t and tz_”' result from a chiral scalar
with R-charge r; and the fermion descendant, with 7 = , of the conjugate anti-chiral
partner with R-charge —r;. In order to determine the index for all gauge singlet operators,
as relevant for confining theories, this is then inserted into the ‘plethystic’ exponential [[2]

I(t,, h) = /Gdu(g) exp (i % i(t",x",h”,g")) , (1.6)

giving

for du(g) the G invariant measure. A unitary superconformal representation would require
in ([A) r; > 2 with 7; = £ corresponding to a free field. In confining theories for chiral
scalars belonging to non trivial representations of the gauge group this may be relaxed
although it is necessary here that r; +r; > % it Rg,; X Rg,; contains the identity repre-
sentation and there is a corresponding composite gauge singlet ¢; - ¢;, unless this operator
is coupled to a dynamical field in the superpotential and so is constrained by equations
of motion. In general we assume here unitary positive energy representations of SU(2,1)
requiring therefore 0 < r; < 1.

The interpretation of I as a superconformal index requires that the result for ([.q)
should have an expansion of the form

t7 x2j+1(2)
I(t,z,h) E h 1.

Z, o nQ:]RF tx)(l—tx—l) XRF( )7 ( 7)
yIUF

where x2;j41 are SU(2) characters, and with n, ; g, integer coefficients which determine
the spectrum of protected operators in the N’ = 1 superconformal theory. Contributions
to the sum in ([[.7]) for different supermultiplets are found in appendix A. Long multiplets
are absent but contributions are present for chiral operators when ¢ = r, the R-charge,
with sign (—1)% but there may also be contributions for other protected operators when
q =2+ 27+ r and for sign —(—1)%/+27,

Despite generating formulae for the index which are in impressive agreement for dual
superconformal theories the status of the results for the N/ = 1 superconformal index
given by ([.J) and ([[.6)) is nevertheless not immediately clear, even for theories with no
superpotential. Unlike the discussion in [[] for the N/ = 4 case there is no continuous link
between the free case and the strong coupling limit, which is relevant for an IR fixed point,
while preserving superconformal symmetry so that the index is well defined. The index
formula in the asymptotically free limit gives different results since then r; = % for all ¢;.
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Nevertheless we explore the consequences of the formulae for the index given by ([.3)
and ([.§) in a significant number of examples and verify in many cases that the same result
is obtained for both the electric and magnetic theories linked by Seiberg duality and its
extensions, and hence develop the tests in [L1] further. In general this requires non trivial
identities for the group integrals in ([[.f]) for G and its dual G which are then equivalent
to identities for ¢-hypergeometric elliptic integrals. In some cases the magnetic theory is
such that the dual gauge group G is trivial. The expression for the magnetic index then
requires no group integration so that showing the index identity requires the evaluation of
the integral defining the index in the electric theory.

A particular example arises for N, = 2, Ny = 3, which is perhaps the simplest non
trivial case. The electric theory defines a contour integral in one variable while the magnetic
theory provides an explicit evaluation. However, verifying this is very non trivial, a special
case is related to a result found by Nassrallah and Rahman for an extension of the usual
beta integral [[J]. A generalisation of the Nassrallah-Rahman theorem by Spiridonov [I{],
involving elliptic gamma functions, is shown here to be directly equivalent to the required
N, =2, Ny = 3 superconformal index identity. This provides an important clue as to the
appropriate mathematical context for showing how the electric and magnetic indices are
equal in more general cases. Identities obtained by Rains [[J] linking multi-dimensional
g-hypergeometric integrals, which reduce to the results of Spiridonov in special cases, are
sufficient to prove compatibility of the formulae for indices obtained by applying ([[.§) and
(L.G) with Seiberg duality in a wide range of cases.

The applicability of these results depends crucially on the detailed form of ([.§) and
(LG). For the chiral matter fields a general term in ([-5) has the form

trz —t*"2! y —pa/y !
. _ _ b g—trl oy =15 (18
7'S<p7q7y) (1 _ t.fl))(l _ tlIJ_l) (1 —p)(l — q) , D z, q T y Y Z, ( )

and then in ([L.4)

k+1

o] 1 . o 1— y—lpj+1q
F(y;p,q)zeXp(Zﬁzs(p "y )): 11 R (1.9)
J,k>0

n=1

where I'(y; p, q) is an elliptic Gamma function and we assume p, q real and 0 < p,q < 1.
Furthermore for the gauge field part of ([.F) we may define

' 2 —t@tat)  p ¢ . 1-pg
ZV<p’q)_(1—7533)(1—7533—1)_ —p 1-¢ O-pl-a
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and then apply

1
T A0 - I (zup Tz Lpg L1

exp <§: %iv(p”, q”)) = (p;p) (4:9),

where the theta function and (p;p) are infinite products defined by
0(zp) = [1;50(1 = 20") (1= 27 (250) = [1;50(1 — 2p). (1.12)

The detailed discussion in this paper is as follows. In section 2 the superconformal
transformation properties of A/ = 1 chiral scalar and vector multiplets are described. For
free theories it is shown how expressions for the index are constructed which are in accord
with the results ([L.§) and ([.G) given above but with the R-charge restricted to its free
field value. In section 3, the dual Seiberg and Kutasov-Schwimmer theories, with SU (NV,)
gauge groups and SU(Ny) x SU(Ny) flavour symmetry, are reviewed and the single particle
indices are obtained by applying ([.-§). The multi-particle indices for these theories which
are given by ([L.6) are then shown to agree in a certain large N., N limit in section 4. The
case of Seiberg duality for (N., Ny) = (2,3) is discussed in detail in section 5. Section 6
extends to the general (N, Ny) case where a theorem due to Rains is shown to demonstrate
that the results for the index in the electric and magnetic theories are identical. Section
7 consider dual theories with Sp(2N) gauge groups. With similar constructions the index
is shown to agree for both theories as a consequence of a related theorem. As in section
6 the final result depends on non trivial integral identities. We also discuss in section 8
dual theories with SO(N) gauge groups where the chiral matter fields belong to the vector
representation. The resulting elliptic hypergeometric integrals are similar in form to the
previous cases and the required identities can be found by expressing them in terms of the
corresponding integrals for the Sp(2N) and using the associated identity proven by Rains.
We also consider an expansion in one simple case and verify that the result is in accord
with ([.7) to the order calculated.

Various appendices with miscellaneous mathematical details are included. Appendix
A gives a discussion of N' = 1 superconformal representation theory and derives expres-
sions for the characters for different representations. The limits which are appropriate
for the index and which are relevant for section 2 are also discussed. In appendix B we
summarise some general results for group characters which are used in the main text while
in appendix C we show how some corrections to the large N limit discussed in section 4
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can be calculated. Appendix D describes some properties of the essential elliptic Gamma
functions introduced in ([[.9) and ([.I3). Identities given here are used in appendix E to
outline how the single variable elliptic hypergeometric integral, that gives the index in
the simple example for the electric theory when N, = 2, Ny = 3, may be evaluated in
agreement with the result determined by the corresponding magnetic theory. Although
a special case, the methods used in this calculation are illustrative of those necessary to
obtain more general results.

2. N =1 Superconformal Transformations and Chiral Fields

The N = 1 superconformal algebra contains besides the usual supercharges, Qq, Q4,
{Qu, Qs = 2P,4, also their conformal partners, S¢, §%, {S¢, %} = 2K, the generator
of special conformal transformations. For a superconformal primary field O then |O) =
0(0)]0) is annihilated by S%, S¢ and forms a lowest weight state for a supermultiplet. The
state has scale dimension A and R-charge r if [H,O(0)] = AO(0), [R, O] = rO, and the
supermultiplet then has a basis formed by the action of Qu, Qg, Pag on |O). A chiral field
is such that Q4]O) = 0. As a consequence of {S% Qz}|O) = 0 the scale dimension is then
determined by the R-charge

A=3r, (2.1)

and O must belong only to a (j,0) spin representation.

For a chiral scalar field ¢ the action of the chiral supercharges @, S% is then

[Qom(p} = woz7 {chwﬁ} :€QBF7 [QQ7F:| =0,

{SP o} =6rdlp, (S, F] = —2(3r — 2) e*Pypg, (22)

where the S action is determined by consistency with the superconformal algebra. Fur-
thermore for Q4 the algebra also requires

{Qar Yo} = 20 aatp, [Qa, F] = 2i£°¥0nst)s . (2.3)

For a chiral (1,0) spinor field A, we have similarly

{Qa7>\6}:fo¢ﬂ+5aﬁiDa [Qonfﬁ'y] :5a6/17+5ory/~l/ﬂ,
[Qa, D] =i pa, {Qa,ps} =0, 24
(7, fas] = 23r +1) 6" Ag) [57,D] = 3(r — )i\, ‘

{S% o} = —3(r = 1) for, — (3r +1)i 6D,
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with fog = fga, and

[Qd? fozﬂ] = 2i a(ozo'z)‘ﬁ) ) [Qc’u D] = gﬂaaadAﬁ )

_ 2.5
Qés tha =ief0 afas + OaaD . ( )
Y B

For each chiral multiplet there is a corresponding anti-chiral partner obtained by
conjugation when (907 wcu F) - (@7 Ed,ﬁ); (>\ou faﬂ7 D7 /J/oz) - (an ?d@? E? ﬁd) and when
the R-charges change sign.

For the spinor multiplet, with transformations given by (2.4)), (B.5) and their conju-
gates, we may impose the reality condition
D=D. (2.6)
By considering [Q,, D] we must then have
fo = 1 €°%0aa s | (2.7)

and using this to calculate {{in, Qs} and {pq, P} = 25a555d{Qd,X5} it is also necessary
for consistency that .
70,6 fop + P00y fap =0, r=1. (2.8)

The equation for f.g, fas is identical with the abelian Bianchi identity for a field strength
Fuoaps = €ap fap + €ap fap and the condition r = 1, ensuring f.s, fas and D have
vanishing R-charge, shows that no anomalous dimensions are possible with this restriction.
The requirement (B.6]) of course ensures that the chiral spinor multiplet and its anti-chiral
conjugate form the superconformal multiplet for a gauge field.

For the free chiral scalar field we have

F=0 = €6aaadlpﬂzo, 82@:0, r=

wIinN

, (2.9)
as a consequence of the algebra, (B.2), (R.3). For a free spinor multiplet from (2.4), (R.5)
D=ja=0 = Mg =0, °0uafs,=0, r=1, (2.10)

which clearly are in accord with (B.§).

For the construction of a superconformal index as described in the introduction we

identify in (1))
Q=@Q;, QO'=-S' H=H-2J;-3R. (2.11)
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The commuting operators formed from the generators of the superconformal group
SU(2,2|1) and which form the generators of the subgroup SU(2,1) as in ([.7) are then

Po=1Pu, PP=—1K¥ (212)

and since [Py, P?] = M + 6,°(H + J3) we have
R=R+2J;+ 2H, (2.13)

as in ([L.3).

For free fields it is then straightforward to find the results for the index as defined in
(T). For the chiral scalar and its conjugate then [Q, OF, ] = 0, {Q, QT , 15} = 0 so that
the subspace annihilated by Q, QT, and belonging to the kernel of H, has a basis

VS = {PlgnP22m|g0>, P12nP22m)|E2>} y n,m = O, 1, 2, [P (214)

where R has cigenvalues (2 +n+m, 5 +n+m) and 2J3 (n —m,n —m). Hence evaluating
(L4) on the space spanned by Vg gives
t5 —t5

(1—tx)(1—tx=1)’

stry, (t72?7) = (2.15)
where the two terms arise from the chiral and anti-chiral fields respectively. For the free
vector multiplet {Q, 9%, A\,} = 0, [Q, QF, fo,] = 0 but taking into account the equation
of motion

822)\1 = 812>\2 . (216)

the corresponding basis has the form

VV == {PlgnP22m|)\1>,P22m|/\2>,P12nP22m)|722>}, n,m:0,1,2,... . (217)
Hence
ta tx~t t2
t fR2T5) — .
stvy (F5272) = — s ey T T T O ) 18
2t2 — t yo(x '
_ XQ( ) XQ(«CC):C(?‘f’x_l.

(1—tz)(1—tz=1)’

These results correspond to appropriate SU(2,1) characters as shown in appendix
A. If the chiral field ¢ forms a representation space for a representation Rg of a internal
symmetry group G while its anti-chiral partner belongs to the conjugate representation
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Rg, and the vector multiplet transforms under the self-conjugate representation Ry ,then

(B-15) and (RB-I]) can be extended to

, 1 1 2

is(p,q,9) = m((?tﬁs Xg,rs(9) — (PQ)3 Xg. Rs (9)) .19
, _ p q '
iv(p ¢, 9) = — <ﬂ + 1—_(])XQ,RV (9)

Q

where we introduce the variables p = tx,q = tz~! as in ([.§) and Xg,rs(9), Xg s (g) and
XG.Ry (g) are corresponding group characters evaluated at g € G. The general expression
in ([.§) is an extension to take into account general R-charges for chiral fields.

3. Indices for Seiberg and Kutasov-Schwimmer Duality

For application to Seiberg duality [f], we first consider the usual N' = 1 SQCD electric
theory with the overall symmetry group Gg = U(1)r x U(1)p x SU(Nys) x SU(Ny) x
SU(N.), where the generator of U(1) g is the baryon number charge and U (1) is generated
by the R-charge and is part of the superconformal group at a fixed point, SU(Ny) x
SU(Ny) is the flavour symmetry group while SU(N.) is the colour gauge group. For such
supersymmetric versions of QCD there are two chiral scalar multiplets @, Q, belonging
the fundamental f, anti-fundamental f representations of SU(N.), each carrying baryon
number, and a vector multiplet V', in the adjoint. The representation content for all fields
is detailed in Table 1, where we have defined

N.= Ny — N,. (3.1)

Table 1: Seiberg Electric Theory

Field | SU(N.) | SU(Ny) | SUNy) | U)p | UQ)r
Q f f 1 1 ]Y /Ny
Q S 1 f -1 N,./N;
v adj. 1 1 0 1

The characters xr(g) for g € SU(N.) and xgr(h) for h € SU(Ny) x SU(Ny) are
functions of the complex eigenvalues of g, h for which we adopt the abbreviated notation,

'7ng)7Hiyi = Hzgz =1.
(3.2)

z=(21,.-,2n.), [L;z=1, y= - ,un,), ¥= (01,



For SU(n) the required characters, as functions of x = (z1,...,x,) with [[,z; = 1, are

then ,
XSU(n),f(Z> =pu(x) = ijl Ti s XsU(n),f(X) =pu(x),
XsU@myad.(X) = Y @i/z; —1=pu(x)pa(x") — 1, (3:3)
1<i,j<n
using the notation x~! = (z;71, ... 2,7 1).

Applying (B.3) for SU(N.) and SU(Ny) the expression given by ([.5) for the single
particle index, with v corresponding to U (1), becomes

ZE(p: q,0,Y, 5’7 Z)

_ <1’%p + 1%}) (pr. () (a7 = 1)

1 ) ) (3.4)
+ (pa)2" vpn, (¥)pn.(2) — (@) 2" = pn, (v ) pN.(z71)
(1-p)(1—q) ( ! ‘ ! ‘
+ (@) ~pn, (7) pv.(z71) — (p)' " vy, <y-1>ch<z>) :
where N
r=1- Ff (3.5)

For the dual magnetic theory, whereby the overall symmetry group becomes G, =
U(l)p x U(1)p x SU(N;) x SU(Ny) x SU(N.) with N, as in (B1]), we have, again, two
fundamental scalar multiplets ¢, ¢, a SU (NC) adjoint vector multiplet 1% along with an
extra colour singlet scalar multiplet M with representations and R-charges as in Table
2. The consistency of the choices in Tables 1 and 2 is determined by applying 't Hooft
anomaly matching conditions.

Table 2: Seiberg Magnetic Theory

Field SU( C) SU(Nf) SU(Nf) U(l)B U(l)R
q Ji f 1 NC/NE Nc/Nf
q~ f 1 f _Nc/Nc NC/Nf
1% adj. 1 1 0 1
M 1 f f 0 2N./Ny

Applying ([.5) the single particle index for the magnetic theory becomes, in a similar

fashion to (B.4)), but, for characters for SU(N,), replacing z by Z

ZM(Z% q,0,Y, yv 2)
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M T ((p 02 opy, (v) pg, (2) — (pg)> ") %pzvf (v Vg (@)
+(pg)2* ") %pzvf F)py, @) — (pa)? T opn, (77 oy, (2)

Fra) o, () o, ) — 00 o, (v V) o, <y>) 36

with 7 as in (B.5]) and the U(1)p assignments requiring

e = pNe (3.7)

For Kutasov-Schwimmer dual models [[], the overall symmetry groups are similar to
the Seiberg dual theories considered above but there are additional chiral matter fields.
In the electric theory there is an extra scalar multiplet X transforming according to the

adjoint for SU(N,). For the dual magnetic theory the SU(N,) gauge group now has
N.=kNy —N,, for k=1,2,..., (3.8)

and there is also an extra SU (NC) adjoint scalar multiplet X along with now k gauge singlet
scalar multiplets, M;, j =1,..., k. For k = 1, these examples reduce to the Seiberg dual
theories as X, X then decouple. The field content in the electric and magnetic theories
are outlined in Tables 3 and 4.

Table 3: Kutasov-Schwimmer Electric Theory

Field | SU(N.) | SU(N;y) | SUNy) | Ul)s Ul)r
Q ! ! ! Ll gy
Q i 1 i SR
1% adj. 1 1 0 1
X adj. 1 1 0 ut

This time the electric theory single particle index is given by,
ZE(pv q,0,Y, 5’7 Z)

_ < po,_a (1_p>1<1 mnd (L (pQ)l‘S))(ch(z)ch(z_l) -1)

T (3.9)
3.9
+ m ((pQ)%TUpr (V) pn.(2) — (pQ)l_%T %pr (y_l)ch(z_l)

L ) ) = ) o, G )

Nl=

+ (pq)
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where now

7":1———, S = . (3'10)

Field SU( C) SU(Nf) SU(Nf) U(l)B U(l)R
q f f 1 N./N. — RN
7 / : N R A - B
1% adj 1 1 0 1
M, j=1,...k 1 f 0 — 4 Ne 4 2 (5
j ]—~ e f f k+1Nf+k:+1(] )
X adj. 1 1 0 =l

The magnetic theory single particle index involves a sum over contributions corre-
sponding to M, of the form Z?zl(p q)"*U =1 which is easily summed giving

ZM(pv q,0,Y, S’? Z)

_ < b, 1 _ : ((pq)s—(pQ)l_S))(PNC@PNC(Z_I) _1)

l-p 1-q ((1-p)(1-gq)

+ m ((M)S‘%szvf () Py, (2) — (pg)' 2" %pzvf (v Hpg @
+ (00 = o, ()P, 7Y — (00) T oo, (57 g, (2)
1—(pg)'~ __
FRTPME

((p Q)" pn, (V) on, () — () N, () iy (?))
(

with the definitions (B-I0) and requiring (B-7)) once more. When k = 1, s = 1 and (B9)
and (B.IT) reduce to (B4) and (B.G).

There are important differences between the Seiberg dual theories and those described
by Kutasov and Schwimmer, except in the special case k¥ = 1 when the operators X, X
decouple. In the former case there is no superpotential and so no operator relations to
take into account. Requiring the colour singlet operators QQ and ¢¢ to both satisfy
the superconformal unitarity bound requires in (B.4) and (B.6) that r,1 —r > % which
corresponds, using (B.), to the conformal window %Nc < Ny < 3N.. In the Kutasov-
Schwimmer electric theory the corresponding condition for the operator QQ also gives
r > g or with (BI0) Ny > 3N./(k + 1). In the magnetic theory there is no similar
restriction for ¢q since the superpotential implies that it satisfies operator relations in this
case.

12



4. Large Ny, N. Limits

We now show that the multi-particle index given by ([.6) with i replaced by
ig(p,q,v,v,7,2) with G = SU(N,) and also by i (p,q,v,y,¥,2) with G = SU(N,) agree
in the large N, limit, requiring N¢/N, fixed so that N, is also large. This holds in the
general Kutasov-Schwimmer dual theories which includes the Seiberg dualities as a special

case.

Each single particle index above, (B-4), (B-6), (B-9) and (B.I1]), may be expressed in
the generic form,

i(t,z) = f(t) (pn (z)pn (271) = 1) + g(t)pn(2) + g(t)pn(z71) + h(t) (4.1)
for f, g, g, h functions of appropriate variables t and z = (z1,..., zx). Inserting i(t, z) into
([Q), with G = SU(N), the leading term in the large N expansion may be obtained by
extending the methods used in [Lf] for ¢ = g = 0. An alternative approach following [[] is
also discussed subsequently.

The method in [[[ relies on the critical observation that power symmetric poly-
nomials are orthogonal up to contributions which disappear in the large N limit. For
pn(z™) = Zi\]:l z;", power symmetric polynomials, which are labelled by a = (a1, as,...)
a; =0,1,..., are defined by

Pa(2) = Play as,..) (2) = pn (2) P (7). (4.2)
These obey the orthogonality relation,
| du@)p@ e = zabar s ol la| <N, (4.3
SU(N)
where
Za = Z(ay,a3,..) = H n*a,!, la| = >, nay . (4.4)
n>1

In consequence ([.J) becomes exact for any a,a’ in the large N limit.

This result may now be used to evaluate
=1
70 = [ duta) exp (3 i), (4.5
SU(N) nz_:l "

by expanding the exponential

Z 1 (4.6)
< pantbatba g b, 1D,
br,bn



so that, applying ({.3), (E4) in (EF), the SU(N) integral gives

> (an + by)! o (4.7)
IS Lt bl e (g g

el an o0 n°» a,!b,!

where the right hand side is exact so long as ({.3) holds and so (7)) is valid, up to
contributions which are negligible for large N. Using > -, (T+S) 2" =1/(1 —x)*T! and

r

Yoo ﬁ # = ﬁ exp(n £=) we then easily obtain
- — 1 /g(t™) g(t") n o)) T 1
I(t)_exp<nz_:lﬁ(1_7f(tn)—f(t ) + h(t )))Hw (4.8)

This result gives the leading large N form for Z(¢) if we assume g, g are both O(N) and h
is O(N?).

Alternatively we can also show how conventional large N techniques give the same
result (f§). For z; = ¢ the invariant integration over SU(N) has the form

1 1 -1 .2
/S du(z) = N W/ Hf\il dé; H4sm (6, — 0)), (4.9)

U(N) —7<01<0:<.. <Oy 1< i<y

where we impose ), 6; = 0. The basic integral (f.J) then becomes
I =~ 1 / [Vlde;, e 5o (4.10)
= - i=1 4V , :
N @Y i< oy zn

for

< 1 ‘ .
_ - _ n n(0;—0;) n —inb; n inb, n
Zn{(l f(t ))Ze J g(t)Ze g(t Ze }
n=1 i#£j 7
(4.11)
defining for convenience h = h— f. In the large N limit we assume 6; — 0(i/N), a continu-
ous monotonic function such that ), f(6;) — N fol dzf(6(x)). In (E.10) the product of db;

integrals then becomes a functional integral d[]. The asymptotic evaluation is obtained
by introducing instead of 6(x) a density function p(#) defined in terms of (x) by

dx
— =p(6 4.12
and then defining
pn =N / dbp(0)e™,  po=N, (4.13)
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Wwe assulne

/9/>0 H/ / [1 Z &, (4.14)

n>1

normalising to unit group volume. Letting

S(t 0 - S t :0 Z { ) PnfP—n — g(tn) P—n — g(tn) Pn — h<tn)} ’ (4'15)

we obtain

I(t) ~ / d[p] e~ 5 (4.16)

which is a straightforward Gaussian functional integral, assuming 1 — f(¢) > 0. The saddle

points are
. t" . g(t"
ho= T8 e T
1— f(tm) 1—f(t")
and it is easy to see that ([[.I6) reproduces the leading expression shown in (£.§), although

n=1,2,..., (4.17)

it is not so evident that this result is exact for the first few terms in an expansion.

We now apply (E.§) to verify that it gives the same expression for both dual electric
and magnetic theories considered in the previous section. Since the Seiberg dual theories
are a special case of those considered by Kutasov and Schwimmer we focus on the latter.
Comparing ({.0]) with (B.9) and (B-I1) it is easy to see that f in (f.1)) is the same in both
cases and that (B.9), (B.11) give

1-s
sy L0 ) s
We may then read off from (B.9), comparing with (1)),
95(0,0,0,5,9) = 7= (07 P, () = 00" ¥ o, (7).
50, ¢,0,7.5) = ﬂ_;ﬁ((pq)%fpm G - e ey, ), (419
hE(p:Q,}’:y) = 07
and, from (B.I1)),
on (P, 0,0, 7, 5) = m((qu—%rpm 67~ (a) T N, 7))
— v 5 — {]_1 s—%r AN 1-— s—|—2r
9 (p.0.0.39) = T =7 §<p 2 o 5) = (00~ b, (v)) w0
hM(p7Q7Y7S’) = — (pQ)

(1-p(1—-q) 1-(pg)*

% (wa) v, () v, 7 = (@) " b, () o, (5
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with the same notation as in (B.I() and also requiring (B.1). From (f.19) and (f.20) we
have

gE(p7 q,0,Y, S/) gE(p7 q,0,Y, S/) - gM(p7 q,0,Y, S/) gM<p7 q,0,Y, 5’)

1—(pg)*t—) , _ . _ . (4.21)
= 02 g ((pQ) P, (V) pn, (57 = (0 @) o, (v 1)pzvf(y)),
and hence
gE(p7q7U7Y7y) gE(p7q7U7Y7y) gM<p7q7U7Y7y) gM(]%Q?”;Y?S’)

1— f(p,q) - 1= f(p.q) +hm(p ¢y, ). (4.22)

Thus (-§) demonstrates that the large N limit for the index is the same in both dual and
electric theories. In this limit there is no dependence on the U(1)p variable v since there
is no contribution from baryon operators and this limit is also insensitive to the precise
dual gauge groups.

Applying (E-§) in this case then gives for the index

00 ~ _ ~
~ 1 gE(pn’qn,,Un,yn’yn) gE(pn,qn’Un’yn,yn> n n
I<p7Q7U7Y7y)geXp<ZE( l—f(p” qn) _f(p , 4 ))

Gl 1
X n]:[l o) (4.23)

The first few terms in the expansion involving operators of low scale dimension are then

n=1

Itz ta o, y,5) = 1+ t2pn, (v)pn, 1) + 72 on, (v ow, (3)
—t* (o, (o, (v ) + o, Fon, (571)) (4.24)
+ t48 _ (t1+23 _ t3_2s)x2(m) + cee

where xo(z) = x + 27! is a SU(2) character corresponding to operators with j = 1. In
the Seiberg case, when s = % and r is given by (B.§), the results shown in ({.24) are in
exact accord with the tables in [[T]. The expansion of (£.23) neglects contributions from
operators with non-zero baryon charge which first arise at O(t"<"). In ([:24) the expansion
clearly generates integer coefficients, as required in ([[7), to this limited order. Except for
the Seiberg case the expression for the index may be expected be modified once constraints

on the operator spectrum arising from the superpotential are incorporated.

5. Index Matching for V' = 1 Superconformal SU(2) Gauge Theories with Three
Flavours and its Seiberg Dual

For the Seiberg dual theories analytic proofs of the equality of the index between
the electric and magnetic theories are possible for general finite N., Ny. These depend
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crucially on the detailed choice of the dual gauge groups and the assignments of U(1)p
charges and provide very non-trivial tests of duality in this case and also of the framework
described here for calculating the index in these theories.

As a simple example in this section we discuss in some detail the example of dual
theories when (N, Nf) = (2,3). There are various simplifications in this case. Since for
N, = 2 there is no distinction between the fundamental representation and its conjugate
the flavour symmetry group extends U(1)p x SU(3) x SU(3) — SU(6). In the electric
theory Q¢ = (Q°, QZ) forms the six dimensional fundamental representation while in the
magnetic dual theory ¢% = (V¥ g, eijkijk, M ij, —M7;) forms the 15 dimensional antisym-
metric tensor representation 74. The index formulae are then more simply given in terms
of SU(6) characters which depend on

u=(pg)® (vy,0y),  [I°_,ua=pq, (5.1)

where the rescaling is introduced to ensure i, ips have the form exhibited in ([[.§), ([-I0).

Also in this example N. = 1 so the magnetic theory at the superconformal fixed point is
a free theory. From (B4), since for N. = 2 we may take z = (z, 2~ !), we then have

. P q
ig(p,g,u,2) = — (Tp + I——q)XS(Z)

1 (5.2)
- m(m(u) —pgps(uh))x2(2),
with the SU(2) characters
x3(2) =22+ 14272, xo(2) =24 271, (5.3)
Also from (B)
ins(p0:0) = s (V0,7 (9 = P s, (07 1) (5.4)

where the character for the antisymmetric tensor representation for SU(n) has the form

Xsu(n), 14 (%) = Z Lily Xsmn),m(x):XSUm),TA(X_l)- (5.5)
1<i<j<n

For SU(2) the invariant measure becomes

1 dz dz
| 16 =~ § G0-2Pr0 =5 § Ca-206). 6o

U(2)



for any analytic f(z) = f(27!). Hence we may express the index for the electric theory by

using ([LI0) with ([I7])

Ie(p,q,u) = /S dpu(z) exp (iliE(P" q", un7zn))

ve (5.7)

1 dz
= —( 4—%_3 )p ;q)I(p,q,u,z),

where for |u,| < 1 the contour may be restricted to the unit circle. With the aid of (L.§)

and ([L.9)

6
Z(p,q,u,2) = [ [ T(wazip, q) T(ua/2:p,q) , (5.8)

a=1

or, since from the definition ([.9),

L(y;p,q) T(pg/y;p,q) =1, (5.9)

then, with the constraint (5.I), we may also write (f.§) in a form involving just 4 =

(ul,...,U5)

(5.10)

5 5
. [(uaz;p,q) I'(ua/2; p,
I(p,q,0,2) = T(p,q, 11, 2) — IT_, T(waz;p,q) T(ua/2; p, q) A= .

I(Azp, ) T(Mzp,q)
so that, with |u,| <1, a=1,...5 and |A| > pq,

Ie(p,0.0) = Alp.. ) = () (6:0) 1 § 55

— 0% p) 0% ) L(p, g, 0, 2) . (5.11)

For the magnetic index there is no integration so that ([.9) gives directly

oo

1
IM(p7Q7u) = exp (Z EZM (pn7qn7un7 Zn))

n=1

= JI T(uew:p,q) (5.12)

1<a<b<6
. H1§a<b§5 I'(uqup; P, q)

Hi:l P<)‘/ua;p7 Q)

where in the last line we have used (f.9) again to write the index in terms of .

= B(p,q, 1),

An identity obtained by Spiridonov [I4] shows that (5.1) and (5.19) are identical. This
result is discussed in appendix E, but here we consider on the special case for p = 0, which
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is known in the relevant literature as the Nassrallah-Rahman theorem, and summarise a
particular simple proof which may be generalised to show A(p, ¢, 1) = B(p, ¢, 1) B

When p =0 (p.7) may be written in the form

1 dz _ . N
Ie(0.0.0 = (@0) o 5 o 50 Jaas) = L), (513)
with definitions in ([.13), where

o (Az;9) (M z5q) ) 514
TS = i) (e 50) o

The Nassrallah-Rahman theorem [[[3] implies essentially that (b.13) is equal to

I (0,q,0) = [Tooi (M uai @)
o H1§a<b§5(uaub;q>

=R(gq,0). (5.15)

If us = 0 the corresponding integral is a well known result first considered by Askey and
Wilson, see [[7]. A simple proof due to Askey for this result was also extended to the
full integral given by (b.13) and (5.17) [I§] and involves first finding a g-difference relation
satisfied by J(q¢, 1, z), when u, — qu, for a particular a and any z so that it must hold
for £(q,1) as well. The essential requirement is that this is also satisfied by R(g, ). The
g-difference relation is then shown to allow a proof of the identity £(gq, 1) = R(q, 1) to be
derived from that for some suitable special cases for .

The required g¢-difference relation is obtained from

(1 —u12)(1 —uy/2)
(1 =X2)(1—=X/2)

j(Q?Q“l:“Q:"qunZ) = j(q,ﬁ,Z), (516)

2 Even for p = ¢ = 0, and taking also ug = 0, the identities are not entirely trivial. In this
limit i (0,0,u, z) = (ps () — A)x2(2) and i (0,0,u) = Z1§a<b§5u@ub - Zl§a§5 A/uq. Hence

q) — 1 [dz _ 2 (1=X2)(1=X/z2) _ (1 — Aup) (1 — A/ up)
I15(0,0,u) omi % > (1 ) H1ga§5(1 —ua2)(1 — uq/2) - Ha#(l — uqtp) (1 — ug /up)
_ 1L = Mua) = (0,0, u) .

HKb(l — UqUp)

This result may be expanded in terms of Schur polynomials as

IE(0707 11) = Z (S(n,n,o,o,o,o)(u) + 5(n—3,n—3,2,2,2,0)(u) - 8(n—1,n—2,1,1,1,0)(u)) )
n>0

where we set ug¢ = 0 and the three terms contribute for n > 0, 5, 3 respectively. This matches the

leading terms in the expansion given in [[L].
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and then using the identity
ug(l —up2)(1 —uy/2)(1 — Aug) (1 — AN uz) —ug (1 —ugz)(1 —ug/2)(1 — Auq)(1 — X/uq)
= —(up —u2)(l —uguz)(1 = A2)(1 — \/2), (5.17)
to show that J(q, 1, z) satisfies
uz(1 = Aug)(1 = Auz) T (g, qui, uz, ..., us, 2) — ur (1 — Aur)(1 — A ui) T (q, w1, qua, . .., us, 2)
= —(Ul _u2)(1 —U1U2) j(Q7ﬁv Z) (518>
Clearly from (p.13) L£(q,1) satisfies the same g-difference relation. Also we have from

(B19)
5
1 —uiug .
R(q, qui,uz, ..., us) = H ———— R(q,0), (5.19)
25l =Aug

and in this case using the identity, for A as in (p.10),

ua (1 — Aug) Ha;ﬂ(l —uitg) — ur(l — Aug) Haﬁ(l — Ugly)

. (5.20)
= —(u1 —u2)(1 — wiu2) [[,—5(1 — ua/A),
it is then easy to show that, as well as L(q, 1), R(q, 1) also satisfies (b.13).
For the special case chosen in [[§, Gy = (u, 1, -1, qz, —q%), we then have
_ . 1
(% 0)(27%9) T (g, 10, 2) = (5.21)

(1—u2)(1—u/z)’

using the identity (z;q)(—z;q)(q%z,q)(—q%z,q) = (22,q), and it is easy to calculate the
contour integral in (p.13) giving

(¢,9)

L(gq, o) = 20 —u?) (5.22)

The same result holds from (F15) for R(q,tp) using (—q;q)(q,¢*) = 1. The g-difference
relation implies £(q, 0,,) = R(q, u,) for u,, = (u,q", —1, qz, —q%). Analyticity ensures that
equality must hold for any uq, us and further similar discussion extends this to any 1.

6. Index Matching for N/ = 1 Superconformal SU(N.) Gauge Theories with N;
Flavours and its Seiberg Dual

In this section we show how the matching between the multi-particle indices for the
general (N, N¢) case of Seiberg duality boils down to a theorem for the transformations
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of certain elliptic hypergeometric integrals, due to Rains [[[§]. The exact results here apply
just to the Seiberg dual theories described in section 3

For the invariant integral over SU (n) of any symmetric function f(x),x = (x1,..., %),
we have, equivalent to ([L.9),

n—1
dx] (x) Ax~t
/SU(nC)Lu /n > H 27mc3 AT H;ZlijI’ (01

for T,,_1 = S x x S1 the unit torus and where the Vandermonde determinant is, as
usual,
A = [ @i-=) (6.2)
1<i<j<n

For application here it is convenient to rescale the SU(Ny) x SU(Ny) variables

(P9 vy =y, (Pa) VI, (6.3)
where now
Ny Ny
18 g N _1R <N
[Ty =@aNoNr =N 5 =@q 2 o™ =N, (6.4)
=1 7j=1
and then (B.4)) becomes
. ~ p q
ie(p,q,y,¥,2) = — (— + —) ( > zifz— 1)
l=p 1-4q 1<i,j<N.
Nf N,
—1 |
g o 1_q ;;( —paGi)zi+ (5 —payi ')z )
(6.5)
Hence, using ([.9) and ([.IT)),
exp i Lip @ q" v, 3,2
— n ) 2 9 )
1 i)Y (@)™
= = U(yizj, 1/(9i%)ip: q) »
A(2)A(z™Y) Tlh<icj<n, (zl/zj,z]/zl,p, 1<ng1<£[N J 3)iP;q)
(6.6)
where we use
[T Q-=z/z)=A@AE", (6.7)
1§i‘,i§‘NC
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and adopt the notation

D1, nip,q) = D(x1;p,q) - - T(wn;p, ) - (6.8)
Applying (b)) for SU(N,) and (p.g), the expression ([.§) for the electric index becomes

Ie(p,q,¥,Y)su(n.)
1 / H dz; H1<1<Nf ILi<j<n. T(yizj, 1/(9i%); p, )
2miz; H1§i<j§Nc (Zz/zﬁ zj /i p, q) H;V:cl z;=1
(6.9)
which is solely in terms of elliptic gamma functions. The denominator in (.9) is naturally

= (p;p)N

)

associated with the root system Ay__;, which is expressible in terms of orthonormal unit
vectors as the N (V. — 1) roots £(e; —e;), 1 <i < j < N, where we map the root e; —¢;
to the I' function depending on z;/z;.

For the magnetic dual theory then rewriting (B.q) with the rescaling (6.3) and the
definitions (p.4),

M(p7Q7y7y7 Z)
——<%+%)< >kl —1)
b 1 1<i,j<N,
Ny N, 6 10)
1 ( 1 1~ —1 (6.
+ (Ayz —pgAGi ) Z+ (A0 —pa ATy )
el OI )%+ )%
Ny
+ ) (yiz?j_l —pqyi‘lzjj))
ij=1
Hence following the same route as that leading to (p.9)
In(p, 4.y, 9)SU(N)
N.—1 00
dZJ -1 1 . ~n ~
(Z )exp ( _ZM(pn’qn’yn,yn,Zn)>' -
N l/ H 27mzj nz_:ln H;V:cl =1
= I F(yi/%;p, q) (p;p)™ (g )N
1<i,j<Ny (6.11)

Nt dz; H1§i§Nf H1gj§NcF(/\gj/yi,)\_l?]i/gﬁpaQ)

X —= . ~ -~ ~ =~ _
Nc'/ ]1;[1 277223‘ H1§i<j§1\~[cP(zi/zj7zj/zi;p7Q) ‘H;\I_C Z;=

= 11 Twi/vp.0) Is(,a, 2 N Dsu,) -

1<i,j <Ny
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The essential requirement is the electric and magnetic theories are identical at the IR
superconformal fixed point so that

IE(%%Y’}N’)SU(NC) = IM(p7Q7y7y)SU(]\~[C) . (612>

The integrals appearing in (f.9) and (p-11]) are just those considered by Rains [[[5]. The
right hand side of (6.9) for n = N, — 1, m = N, — 1 defines the elliptic hypergeometric
integral IX:) (y; v~ Lip, q), depending on (m + n + 2)-dimensional vectors y,y. Theorem
4.1 of [[J] requires

19V (y; 575 pog) = T Ti/iipa) I (Y7 y 5 5/Y 75 5p,q)
1<i,j<m-+n-+4 (6.13)

for Y:Hiyi, ?:Higi: Y/?:(pqyn—'_l?

implying then exactly (p.13). Furthermore from [[[7]

Iy )= ] Twi/issea) [ Ty L5/Vipa), (6.14)

1<i,j<n+4 1<i<n+2

with Y,Y as in (6.13). This evaluation of the integral applies when the magnetic gauge
group is trivial.

The detailed expressions in both (f.9) and (6.11]) depend on the precise details of the
dual gauge groups and assignments of U(1)p charges for each theory so this result is a
significant test of the details of Seiberg duality for these theories. This is in contrast to the
large Ny, N. expansions of section 5 where many such details were irrelevant. The proof
of the theorem in [[7], see also [[J], relating these integrals is non trivial and does not
involve any straightforward transformations between each side, it requires demonstrating
the result for particular special cases which are then argued to form a dense set.

7. Indices for Dual Theories with Sp(2N) Gauge Group

Duality extends to AN/ = 1 supersymmetric gauge theories with other gauge groups.
In this section, we consider a gauge group G = Sp(2N), with a matter sector consisting of
2Ny chiral scalar fields @), belonging to the 2N dimensional fundamental representation of
the gauge group. The corresponding flavour symmetry group F' = SU(2Ny) x U(1)r. The
vector multiplet V' of course belongs to the N (2NN 4 1) dimensional adjoint representation.
The overall representation content is summarised in Table 5.
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Table 5: Electric Sp(2N) Gauge Theory

Field | Sp(2N) | SU(2N;) U(1)r
Q f f 1— (N +1)/Ny
1% adj. 1 1

The dual theory is a Sp(2N) gauge theory again, where
N=N;—-N -2, (7.1)

and with the same flavour symmetry group F. The field content consists of 2/N¢ scalar
multiplets ¢, in the 2N dimensional fundamental representation, a vector multiplet V, in
the N (2]\7 + 1) dimensional adjoint representation, and a gauge singlet scalar multiplet M
belonging to the antisymmetric tensor representation 74 of dimension Nf(2Ny — 1) [27].
The representation content is as in Table 6.

Table 6: Magnetic Sp(2N) Gauge Theory

Field | Sp(2N) | SU(2Ny) U)r
q f f (N +1)/Ny
1% adj. 1 1
M 1 T 2(N +1)/Ny

Imposing r >  for both @, ¢ leads to the conformal window 2(N+1) < Ny < 3(N+1).

The single particle index in each case, ig(p,q,y,2) and iy (p, q,y,2), may be straight-
forwardly formed by applying ([F), using (B-3) and (B.H) for SU(2Ny) characters
Xsu@en)(y) with y = (y1,...,y2n,). The required Sp(2N) and Sp(2N) characters are
obtained from the following results for Sp(2n) in general

XSp(2n),f(X) = Z (5132 + «'132'_1) )
i=1
Xspenyad. ()= D (wiwj+zia +a eyt e ) 4 ) (2 ai?) +n
1<i<j<n i=1
(7.2)
For invariant mtegratlon over Sp(2n) of any symmetric f(x) we also have

n

n dz; 2
/S du(x) f(x) = an, / 2m.;j [ (-2 Ax+x")2fx).  (7.3)

p(2n) j=1
Assuming the rescaling
_ 2Ny
PNy —y = [wi= oV, (7.4)
i=1
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the single particle index then becomes

. » .
ZE(pa%}’,Z) = — (ﬂ + 1—_(]) XSP(QN),adj_<Z)
1 gl (7.5)
A=) i —Dq/Yi 7).
=g 2 W Pa/v) xspon 5

As a consequence of ([(.3) the result ([.f]) for the electric index is expressible as a multi-
contour integral

I5(p,q,¥)spiN)

_ <_1)N al de al —1 ZA —1\2 S 1. n on .n _n
9NN .1_[127Tizj H(Zj_zj ) (z+2z7)" exp ZEZE(P gyt ") )
J:

(7.6)
Using ([.I0), (L.I1) and ([.3), we may write, with the notation (f.§),
exp i L ( pn —+ < ) XSp(2N),ad] (z")
AR 1=q" e
1
= (=)Np;p)N (g ) 5 (7.7)
Az+2z71) [Ticjen(zi —271)?
1
X )
H1§i<j§N P(zizj7 i/ zj, 25/ zi, 1/ (2i25); Q) ngjgjv P(Z]27 1/2#;p, Q)
where the inverse Sp(2N) measure is generated by
[T (U =ziz)(t—2i/2)(1 = 2/2) (1 = 1ziz)) = Az +271)?,
1<i<j<N
N (7.8)
H 1-22)(1—2)=(D)N]] (2 == ")*.
i=1 i=1
Hence ([(.5]) becomes
Ie(0 0. ) sy = 050" (@:0)" 57
E\DP;4,Y)sp(2N) = \D; P q;4 9N NI

/ H H1gz§2Nf [Ticj<n T (yizj, yi/2j5p,q)

1<j<N 27mz] H1<z<g<NF(ZiZJ"Zi/Zj’Zj/Zh1/(Zizj>§p, q) HlSJSNF(Zf’l/Zf?P, q)’
(7.9)

where the integrand now involves only elliptic gamma functions in a similar manner to

(6.9). In this case the factors in the integrand denominator are associated with the roots
for Cy, *e; £ej, @ # j, £2¢; fori,5 =1....N.
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For the corresponding magnetic theory the single particle index becomes, using (5.9),

iv(p,q,y,%) = — (% + %_q) XSp(QN),adj.<Z)
1 2Ny
TSI ((qu W =) Xopem s @) (7.10)

=1

+ > (v - pq/(yiyj))) :

1<i<j<2N;

The magnetic index is then

et 2miz;j j=1 ~ (7.11)
% T n on .n sn
eXp(n§:1 nzM(p 4"y z ))

and, in the same fashion as ([(.9) was obtained, we now have

g ¢ 1
L aV)spemy = [ Twvin g B0 @0 5=
1<i<j<2Nj :
y H dz; H1gi§21vf H1gj§1\7 F(téj/yiat/(yigj%p, Q)
P 2miZj [licicien D(2iZ), 2/ 25, 25/ 20, 1/ (BiZ5); 0, @) Tlhcj< i T(25%1/2% 0, 9)
= I TWuwir.a) Iee ety spen - (7.12)
1<i<j<2N;

for t = (pq)=.

Again, happily, the relevant integrals were considered by Rains [[J]. The right hand
side of ([*9) for n = N, m = N defines the elliptic hypergeometric integral

158 (vip,q) = (050)" (g5.9)"

2nn!
y / H dz; H1gig2(m+n+2) [Ticj<n U(vizj,yi/ 2539, q)
1<j<n 2miz; H1§i<j§n P(Zizjv zif 2, 25/ 2iy 1/ (2i25); D, Q) H1gj§n F(2327 1/z7;p, q) ’
(7.13)
depending on a 2(m + n + 2)-dimensional vector y. Theorem 3.1 of [[J] requires
IS8 (vip.a) = [T Tiviea) 152 (Vpay " ip.a), for [Ty = (pg)™ .
1<i<j<2(m+n+2)
(7.14)

This then implies Ig(p, q,y)spen) and IM(p,q,y)Sp(m in (79) and ([[-I3) are equal. In
this case Il(;é)o (y; P, q) = 1. Applying the transformation twice leads to the identity as a
consequence of (p.9).
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8. Indices for Dual Theories with SO(N) Gauge Groups

The original paper on duality [, see also [BT]], discussed additionally N' = 1 theories
with orthogonal gauge groups with /Ny chiral quark fields in the vector representation, so
that the flavour symmetry group F' = SU(Ny) x U(1)g. The adjoint representation here
has dimension $ N (N — 1). The overall representation content is summarised in Table 7.

Table 7: Electric SO(N) Gauge Theory

Field | SO(N) | SU(Ny) U)r
Q vec. f 1—(N—-2)/Ny
V adj. 1 1

The dual theory is also a SO(N) gauge theory, where

N =N;—N +4, (8.1)

and with the same flavour symmetry group F'. The field content consists of Ny scalar mul-
tiplets g, in the vector representation, a vector multiplet V, in the %]\7 (N —1) dimensional
adjoint representation, and a gauge singlet scalar multiplet M belonging to the symmetric

tensor representation 7Ts of dimension %N #(Ny 4+ 1). The representation content is as in
Table 8.

Table 8: Magnetic SO(N) Gauge Theory

Field | SO(N) | SU(Ny) U)gr
q vec. f (N —2)/Ny
1 adj. 1 1
M 1 Ts 2 —2(N — 2)/N;

Imposing r >  for both @, ¢ leads to the conformal window 2 (N —2) < Ny < 3(N-2).

For characters for SO(NN) it is necessary to distinguish according to whether N is even

or odd. For x = (1, ...,x,) the relevant results are

n

XSO(2n),veC.(X) = Z (371 + xi_l) s

i=1 (8.2)
XS0(2n).adj.(X) = Z (wizj+ ooy oty +a e ) +n,
1<i<j<n
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and
n

XSO(2n+1),vec.(X) = Z (l‘z + 932‘_1) +1,
=1

n

XSO (2n+1),adj.(X) = Z (i +wiwy s ey o e + Z (i +ait) +n.

1<i<j<n i=1
(8.3)
We also require
~1
Xsumyrs(X) = D xiw; + Zx v Xspm),7s ) = Xsumyrs(X) - (8:4)
1<i<j<n
For invariant integration over SO(N) of any symmetric f(x) we also have
[ dut 1) | H A 1)
SO (2n) ~ - 1n' - 2miz; ’
o (8.5)
— Zj 1
aue) £ = S 5T (st — o )2 A+ x 2 F(x).
/;0(2n+1) Q”n' T,, H 277'7,5(3] H J
The single particle indices ([[.J) are obtained in a similar fashion as previously
. 4 q
ig(p,q,y,2) = — (ip + Tq) XSO(N),adj. (%)
1 Ny (8.6)
+ D> (¥ —Pa/¥i) X50(N),vee. ()
T=ni—0) % ) Xsow
and
~ P q ~
M, q,y,2) = — <ﬂ + m) XSO(N),adj.(Z>
1 ad
1 1 ~
Tt (P2 Yy —Yi) X V),vec. \Z 8.7
T (0} 2 05 ) s @ &0
+ Y (v —pa/ (i) + Z > —pq/yl ) :
1<i<j<Ny
where y has been rescaled so that
! 1
[Ty = gz ™42, (8.8)
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The integral formulae for the index are then generated very much as before. The
R

adjoint characters in (B-J) and (B-J) generate contributions which cancel the integration
measures in (B.5) by using ([[.§) once more. Hence, taking N = 2n and N = 2n + 1,

1
2n—1p)!
/ H dz; nging ngjgn F(%r’v’jy Yi/ 253 Py Q) (8.9)

(i 2m%5 Thicicjen T (2i%)0 21/ 25, 23/ 20,1/ (2i2)ip,q)

Ig(p,q,¥)so@n) = (:0)" (¢:@)"

and

1
Ie(p.¢.¥)so@n+n) = i) (0" [ Twip.q) Sl
1<i<Np )
/ H dz; H1gz’§Nf ngjgnf(yizj,yi/zj;p, q)
e 2775 Thcicjan T(2i%): 21/ 25, 2/ 2,1/ (2i23)i 0, @) Tlhi<j<n T (25, 1/2550:0)
(8.10)
In (B9) and (B.I0) the factors in the integrand denominator may be matched with the
roots for Dy, £e; e;, @ < j, and By, *e; T ej, @ < j, *e;, respectively.

For the corresponding magnetic theory the results are very similar except for contri-
butions involving the meson field M, which are obtained from the last line of (81). The
results are expressed concisely as

In(p.a.y)soy = ] Twiviipa) [] Twép.a) Ielp o vPay sow) . (8.11)
1<i<j<Ny 1<i< Ny

The required identity is then

=
I
=
+
=
=~

Ie(p, ¢,y)son) = Im(p, ¢, y)sowy , for [[yi = (pq) ™ (8.12)

The relation (B.13) involving By and Dy multi-variable elliptic beta integrals can be
reduced to a special case of ([{.14]) by virtue of an argument due to Rains [23]. It is easy
to verify

N|=

1 1 1 1 1
U(z%p,q) = [[,I(2ua;pyq),  uw=(1,-1,p2,—p?,q2,—q2, (pq)2,—(pg)2), (8.13)

With the definition (B.9) we may then express the index in terms of I 1(3’%)11 as in (F.13) by

o [N+

Y, u;p,q), Ny even;
IE(pv q, Y)SO(2n) = { (BC(}LVf_Fg)_n) d

(8.14)
Yy, VviDp, q) ) Nf Odd7
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where, noting that F((pq)% ,(pq)2/ zj;p,q) = 1 as a consequence of (B.9), we also define

Nl=

= (1,-1,p%, —p%,q%, —q%, —(pqg)?) . (8.15)

In a similar vein starting from (B-I() we may also write

1 -n
1Y% Dysspq) TN Y7 (v, w'5p,q), Ny even;
IE(p:Q7Y)SO(2n+1) = N (%(Yzbvf+5)—n) , (8.16)
[1.25 Tyispq) Ipe, (v;v'sp,q), Ny odd;
for
u/: _17p%7_p%7q%7_q%7_(pQ)% )
( ) (8.17)

v = (—1,p%,-p%,¢%,—q%, —(p9)?, (pg)?) .

The necessary identity to ensure (B.11) and (B.IZ) then follows from ([.14), taking into
account v/ ~ /pgv~! and the results

[L.T(wivaip, @) =T(ydip,0) s [1.LD(wivai v, @) = Dy p, @) T(\/0/is p, @)
(

U'(/Pa/yi; p, q) Yi'; by
Har(yiu/a;p7 ) r yzz) yq ) F(yp q) 9 HCLP(yiUIa;p, Q) - ((y D, q )) 9
Ha<bf(uaub;p, ) Ha<b ( ,aulb§p7 Q) =1 5

2 [TocsD(vavei P, @) = 5 [1ocp D (Wavhip,q) = 1. (8.18)

We also test the result in the simple case N = 4, Ny = 3, N = 3 which involves
duality between SO(N) gauge theories with even and odd N by considering the first few
terms in an expansion. As a result of SO(4) = SU(2) x SU(2)/Zs and SO(3) = SU(2)/Z»
we have, letting for SO(4) 21 = uv, 22 = u/v and for SO(3) z; = w?, from (BFH)

Lo = [ ae [ . [ o= [ g, sa0)

since A(z+2z71)2 = (1 —u?)?(1 — v?)?/u?v?. With p = tz, ¢ = tz~! the electric single
particle index from (B.6) becomes

. _ 1
(it~ y,,0) = gy (21 (@) (o) + xa(0) (5.20)
+ (ps(y) = sy ™)) a(w)x2(v) )
for
= (Y1, Y2, ¥3) » Y1y2ys =t, (8.21)
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and with xa, x3 defined in (b.3). For the magnetic index from (B.7),

1
(1 —tx)(1 —tx—1)

iM(txa tfll_l, Y w) = ((2t2 — tXQ(fE) + tpg(y_l) — tpg(y))XZ%(w)
+5(2,0)(¥) — *52,0) (y_l)) :

52,0 () = 3 (p3(¥)* + ps(v?)) -

(8.22)
The required index identity is then from ([[.9)
= 1
I(tz,tz™ty) = / du(v) / dp(u) exp <Z — zE(t”,x”,y",u”,v")
SU(2) SU(2) il
(8.23)

It is straightforward to expand (B.:23) where we may use x2(u"™) = xpnt+1(u) — Xn-1(u),
X3(u™) = x2n+1(u) — X2n—1(u) + 1 and apply standard SU(2) tensor product rules to de-
compose products of y,, into single characters. The SU(2) integrals can then be evaluated
using orthonormality of characters or equivalently just by evaluating residues. The index
has an expansion

I(te,tz™y) =1+ Y falt,,y),  falt,z,y) = O(t3"), (8.24)

n>0

where from (B.21) y = O(t%). We have checked that both the electric and magnetic
contributions to (B:2J) are the same up to O(t*) and give the following non zero terms, in
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terms of SU(3) Schur polynomials sy ,)(y) and SU(2) characters x2j41(),

fa(t,2,y) = s2,00(y)

fa(t,z,y) = 54,00(y) + 502,2)(¥)

fs(t,z,y) = tx2(x) (52,00 () — s,1)(¥)) »
fo(t,z,y) = 566,0)(y) + 5(4 2)( ) — tse)(y) + 267,
fa(t iz, y) =t x2(2) (5(4,0)(y) + 52,2)(¥))

fs(t, z,y) =

+ t*x3(2) (52, 0)( )= sa1)(y))
folt,z,y) =t x2(x) (5(6,0)(¥) + 25(4,2)(y) — 5(3,3)(y) +t52,1)(y) + tz) ,

fro(t, @, y) = 510,00 (¥) + 5(8,2)(¥) + 5(6,4)(¥)
— ts(6,1)(¥) — t5(5,2)(¥) — t5(4,3)(y) — 27531y (¥)
+ 23 (2) (25(4,0)(¥) — 53,1 (V) + 2502,2) (¥) = t5(1,0)(¥)) 5

it z,y) =t x2(x)(s(s,0)(y) + 25(6,2)(¥) + 5(a,0)(y) + t28(2,0) (y) — t23(1,1)(Y))
+t7xa(2) (52,0)(Y) — s, (¥)) 5

fr2(t, 2, y) = 5(12,0)(y) + 5010,2)(¥) + 8(8,4)(¥) + 56,6) (V)
—tse)(Y) —ts2)(y) —tse6,3)(y) —ts5,a(y)
— 225051y (y) — *s(a,2)(¥) + 2%503.3)(y) + 2t°5(3,0)(¥) + t*52. 1) (y) — t*

+ t*x3(2) (25(6,0) () 4 35(4,2)(y) — 25(3,3)(y) — t $3,0)(¥) + ts2,1)(y) + Qtz) -
(8.25)

These results are sensitive to all terms which are in i and iy in (B:20) and (B:23), and

= 5(3,0)(y) + 8¢, 2)( )+ 5, (y) —tsu1)(y) —tss2)(y) — t28(1,1)(}’)
(

therefore provide good support for the required all orders result (8:23). It is significant to
note also that all coefficients are integers in accord with the expectation in ([L.7).

9. Conclusions

This paper has demonstrated that the naive prescription for the superconformal index
given by ([.) and ([L.6) and using the standard results for dual N' = 1 gauge theories, where
the matter content and its R-charges are determined by careful matching of the spectrum of
gauge invariant operators and also matching the 't Hooft anomalies, leads to results which
are the same in both dual theories. The exact equality of the two expressions for the
index has been shown for theories in which there is no superpotential and then depends on
very non-trivial g-series type integral identities, only recently proved, which are only valid
for the detailed R-charges and gauge groups determined by the consistency conditions for
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duality. This remarkable correspondence perhaps lends credence to the results for the index
described here following on from Rémelsberger [[[1]]. The elliptic hypergeometric functions
which are generated by the index, and whose non trivial transformation properties are
a necessary requirement for duality, are also relevant to other areas such as quantum
integrable systems, [B3].

The situation when there is a superpotential, as in the Kutasov-Schwimmer case, is
less clear. The operator spectrum is then constrained by equations of motion and the result
for the index should be modified. Nevertheless we also verified that the naive formula for
the index gave results which agreed in the large N limit and also showed that the leading
finite IV correction was also consistent. Perhaps physical considerations may suggest novel
identities which have not yet been proved. Seiberg duality has been extended to a much
wider class of A = 1 theories than those considered in this paper, including theories with
exceptional gauge groups [P4].

A remaining issue concerns the precise derivation of the formula for the index pro-
vided by applying () and ([.§). In particular other than in the free case when r = %
the results for chiral fields given by ([.§) have not been derived in this paper. For inter-
acting theories it is necessary to consider the superconformal algebra in (2.2) and (B.4)
with in general F' and D non zero. However, letting for instance F' — @™ for some n
still enforces r = % as a consequence of the commutator [S¢, F']. Similar considerations
apply for other modifications although the derivatives in (B.3) and (R.5) may be replaced
by gauge covariant derivatives by allowing for the algebra to be extended by appropriate
gauge transformations. Perhaps further inclusion of internal symmetry transformations
is necessary at non trivial superconformal fixed points. This is perhaps suggested by the
rescaling of internal symmetry character variables, such as in (£.3), which was a necessary
feature of the analysis of the integrals defining the index at the interacting N' = 1 super-
conformal fixed points, at which the duality between electric and magnetic theories that

is considered in this paper is fully realised.
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Appendix A. N =1 Superconformal Representation Theory and Characters

Using the notation of [[], the generators of the N” = 1 superconformal group SU (2, 2|1)
consist of those for Lorentz transformations My, translations P,, special conformal trans-
formations K,, a,b = 1,...,4, dilatations H, which is the Hamiltonian in radial quanti-
sation of conformal theories, the U(1)r R-charge R along with supercharges Q., Q4 and
their superconformal partners S, S, a,& = 1,2. In a spinorial basis Py = (0%)aaPa,
K% = (69)%K,, M’ = —%i(a“&b)aﬁMab, M%; = —%i(&“ab)%MabE . With the nota-
tion,

B __ Mozﬂ + %5046H %Paﬁ- _ Qoz NB .
ML —< L ges N — L6%H ) Qa= ga | O =(5" Qp). (A1)

the SU(2,2|1) algebra is expressible as

[(MAB, MP] =6 MA° — 6P MP
(M, Qc] =6° 04— 204Qc, [(MAE, Q] = —6.°0F + 16.80°,

~ - (A.2)
[R7 QA] = - QA7 [R7 QB] = QB )
{04,098} =4aM L +30°PR, {Q4, 05} =0, {04 0%} =0,
B 0l 0
for 6 4~ = L In terms of the usual angular momentum generators we have,
B
Js J — Js J
Bl — 3 + B.1_( /3 +

[Ma}—<J_ _JS), (M7 <J_ _Jg), (A.3)

with [Jo, J_] = 2J3, [J4, J_] = 2Js.

A generic highest weight primary state for this superalgebra |A, 7, j, 7)"%-, which has
conformal dimension A, belongs to the spin SU(2); x SU(2) 7 representation (j,7) and has
R-symmetry eigenvalue r, satisfies

(Kaa7 Sa? Sd? J+7 j+>|A,/,"’j,j>hW = 07

. . . . (A.4)
<H7 R7 J37 J3)|A7T7jaj>h.w. = (A7T7jaj)|A7T7jaj>h.w. .

3 The standard hermiticity requirements are

(ML) = (rMmr)st, RT=R, (Qu)'=(an)*, T:((l) (1))

Thus H' = —H and (M,°)" = MP,,, interchanging SU(2)s and SU(2) ;.
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The corresponding Verma module V(A ;7 is then spanned by the states

[T (Pac)Nes (@)™ (@)™ (J)N ()N A, 7, 5, 7)™, (A.5)

a,&,3,6=1,2
for Nog, N, N,=0,1,2,... and ng, ng=0,1.

When BPS conditions involving different supercharges are imposed there are truncated
Verma modules and A is determined in terms of r, j, 7, although there may also be various
other potential constraints on r, j,7. For unitary representations the following conditions
are relevant, labelled by ¢, £ according to the fraction of the Q, Q) supercharges to be omitted

from (A.5),

N[

QQ_ -QlJ—>|A7T7j7j>h‘W‘ :07 ] >07 Q2|A7T707j>h‘w‘ :07 (A6b>

which are referred to as semi-short [BH]. The conditions ([A.6d) and ([A.6) are equivalent to
the descendant states Qz|A, 7, 7, )™ and Q1|A, 7, §, 7)*¥ being annihilated by Q1, S* and
Q2, S? respectively. Chiral/anti-chiral short multiplets correspond to the BPS conditions

1:A:%T7 Qd|A7T7j70>h‘W‘:O7

A7
1:A=-3r, Qul|A, 7,0, =0. (A7)

~+ |
I

Only if there are BPS conditions requiring both ¢,¢ non zero is r and hence A fixed and
the associated supermultiplet is therefore protected.

When ¢, = 3, Q2, Q1 are omittedifrom (B3), if t,f = 1 then Q,, Q4 are removed
respectively. As a consequence of {Q.,Qs} = 2P, then for ¢, ¢ both non zero particular
P, should be removed from (A7), thus for t =t = % P5q is dropped. The corresponding

Verma module is denoted by Vf’Atij).

The Verma modules do not form a basis of physical states for a unitary represen-
tation, since in particular the action of J_,J_ in (A5 is truncated to ensure positivity
of the norm. A space with positive norm Hléir’j’j) is constructed from the quotient of
corresponding Verma module by zero norm sub-modules if 25,27 =0,1,2,.... For unitary
representations we also require A > 2427+ %r, 24-25— %7‘ unless one of the BPS conditions
in (A7) hold and accordingly then A = 37 or —3r. As described in [J2G] the characters

corresponding to unitary representations are constructed from the formal Verma module
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characters by symmetrising under the Weyl group for the maximal compact subgroup of
the superconformal group, in this case the spin group SU(2); x SU(2) ;7 with Weyl group
Z2 X ZQ.

The characters for the Verma modules V?’Af’r’j’j) are expressed in terms of variables
s,u, x,Z so that in a series expansion of the character the zeroth term is s22u" 227227 which
corresponds to the contribution from the highest weight state. The states in the Verma
module in (A7) correspond to terms with further factors according to P — s2r1zF!,
Qo — su~tazt!l Qs — suzF!, where a = 1,2 correspond to z,z~ ! and & = 1,2 to
z~1, 7, respectively. For t = t = 0 the Verma module character, which is written as a
formal trace, is then

' =\ _ i 2H , R .2J3 ~2J3
Clamin(su,2,2) =ty ., (s ut2*® 255)

= ?2u"C;(x)Cy() Z (s%2=F")"en Z (suz®)" (su' 27)™n

nen=0,1,2,..., e,n==*x1
e,m==+1 ne,nn=0,1
= s22y" C;(2)Cy(z) P(s,x,7) Q(su™t, x) Q(su, 7), (A.8)
where the factors
1
P(s,z,z) = H —_—, (s, z) = H (1+sz), (A.9)
e,n==x1 (1 — st ;(;7]) e==+1
arise from the translation generators and supercharges, and also
o0 2j+2
3 2J3\ _ 2j—2N _ L
Cj(x) = try, (z*7®) = NZ_:OJJ J =31 (A.10)

corresponds to the SU(2) Verma module V; = {(J_)N|j>h'w'}, J3|j>h'w' = j|j>h'w',

Ji|j >h’w’ = 0. With shortening conditions the corresponding Verma module character
t,t
(A7T7.j7j)

cussion. Since the Weyl group is generated by z — =~

(s,u,z,x) has various factors in ([A.§) omitted in accordance with the above dis-

Lz — z71! the actual characters for

physical unitary irreducible representations are then given by

o T) = . 2H | R, 2J3 ~2J
X(Aﬂ’r:jaj)(s, u, x, ZC) o trHEZ,T,jJ) (8 T ’ v 3) A
3 11
- Z CégTjj)(S,u,xE,jjn)’ ( )
g,n==1
where we may note that
xt — "
(@)= D Copuony(#9) = — (A.12)

r — X
e==+1

36



is the usual character for the familiar n-dimensional SU(2) representation. For the super-
trace in ([A-T])) it is sufficient to let z,2 — —z, —Z.

For long multiplets all states in the Verma module (A7) contribute and (A§) and
(A1) give,

X?’AO’r’j’j) (37 u,x, 53) = SzA u” X2j5+1 (CE) X27+1 (j) P(Sv xz, j) Q(Su_17 IL’) Q(SU, 5:) 5 (A]_?))

For semi-short multiplets we have,

0.4
2
(27+2+3r,r,4,7)

= ST o () (X2741(Z) + suX2742(2)) P(s,z,7) Q(su

(s,u,z,x)

_1,11), T2 %(] _j)v
10
X(2]+2+%T7_T’Jaj)

= ghHat3r o (X2j+1(a:) +su? X2j+2(x))xgj+1(5:) P(s,z,z) Q(su,z), > %(j— J)-

(s,u,z,x)

(A.14)
Similarly, for chiral/anti-chiral short multiplets the superconformal characters are,
X?%ITTJ-O)(S?%'%?E) = (SSU)T X2j+1<x) P(‘Saajajj) Q(Su_l7m)7 "> %(j"i_l), (A )
o 15
X, —ro.p) (5 0,0) = (8°0™1)" X251 (2) P(s,2,7) Qsu,7), 72 3(7+1).
The characters in ([A.15) are a special case of those in ([A.14]) since
0,3 Ny _ 0,1 _
g (500 =X (500, o
2,0 1,0 _ )
(U+3r-r-3.2 5 B8 = X 1), 1,0 (9B T T) -

The other cases correspond to protected multiplets. The relevant examples are, for a
self-conjugate multiplet involving conserved currents,

11

1 ) — w309 (D (5. 2. 7) + 4 7
Xijer2.3G-9. (5 18 8) = w0 Dygls,,2) + ™ Doy 552, 7) (A.17)
+ U/Dj’]—_'_% (8, X, .73) + Dj—i—%,]_-l-% (87 Zz, j:)) )
where
Dj (s, 2, %) = s (0,1 (2) Xo711(T) — 5% x25(2) x25(%)) P(s, 2, 7) , (A.18)

is the conformal group character for a (j,7) conserved current in four dimensions 4], and
the Dirac multiplet, with its conjugate, for which the characters are

3.1 N 2(j41 , -1 _
ijﬂ’%(jﬂ)’j’o)(s,u,x,az) = 30 )(5j(s, T, T)+u 5j+% (s, x, x)) , (419
1,1 _ _2(3 = _ = _ ’

X(jj_l’_%(]—+1)’07j)(87 u,T,T) =u s+ (87<37 T,T) + ugj—l—% (s, 2, x)) )
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where
Ei(s,2,) = 772 (x2j01(2) — $°x2; (%) x2(Z) + s*X2j-1(x)) P(s, 2, T) (A.20)
Ei(s,x,2) = s712 (X274+1(2) — s*x2(x) x25(%) + 84X2j—1(5@))P(8,£€,5€) : '

The characters in ([A.19) correspond to spin-j chiral/spin-7 anti-chiral free field represen-
tations of the conformal group in four dimensions [2q].

At the unitarity threshold the multiplets are reducible which is reflected by

0,0 (s,u,z,x) = 0.3 (suxﬁs)-l-o’% (s,u,z,T)
X@at2rrgn o W T = Xogror gy 5 W X@3+2rr+1,5,5-1) 5 W L)
0,3 - 3.3 -

2 o (s,u,x, ) =y 2 o (s,u,x, T

X(]‘H"‘Q,%(J—J):J,])(’ 2, %) X(J"‘J"‘Q,%(J—J),J:J)(’ %, %)
1
10 _
+x2 (s,u,z,x), (A.21)

(U+7+3,30-D-1.3—3.)
where we may use ([AI6) if j or 7 are zero.

The results for the index in section 2 are equivalent to setting 1 + suz = 0 and then
letting s — 0 for fixed ¢t = s3u and z. From ([A-19) we obtain

3,1 o (L 1\27 42(+1) X2j+1(%) — t x25(z)
X(j+17%(j+1)7j,0)(3’ U, =%, Su)‘t:sf’u = (=173 (1—tx)(1 —tz=1)

o _(—1)%J
X(r1,-2G41),0,)(8 W =8 =50, o = (51) (I—ta)(1—tz 1)~

The expressions (B.15) and (B.1§) correspond just to the sum of the chiral/anti-chiral
contributions in (A-23) for j = 0 and j = 1 respectively.

For other characters the limit in ([A:22) gives just the following non zero results

0,1 o (L 1)\2§427 2742+ X2j+1(2)
X (23424 g (8 =8 =50, pay, 7p = (71) t (1—tz)(1—ta= 1)’
0,1 2j X2j+1(%)
X(armgioy (8 =T =50 o, —2 (=1)¥ 1 (1—tz)(1—ta—1)’
11 .
32 o (L 1\27+27 ;2(5+27+3) x2j+1(7)
XGt312,3 G105 (88 —2 =50 omgs, = (FDPTV 82 (1—tx)(1—tz 1)

(A.23)
The expressions in ([A.23) are relevant for disentangling contributions of different operators
in the expansion of the index in ([[.7).

Appendix B. Characters for Unitary, Symplectic and Orthogonal Groups

We here give general results for characters for the groups discussed in the text and
verify orthogonality properties in the case of SU(N).
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For SU(n) the characters, depending on x = (21, ..., z,) subject to [[;_, z; = 1, are
the well known Schur polynomials,
det [z;2 7]
det [z;77]

$2(X) = 50,0 (X) = : (B.1)

where we require A to be ordered so that Ay > Ao > ... > \,, and since, as a consequence of
the constraint on [], x5, s(x,,... 3.)(X) = 5\ 4c,... A\n+¢) (X) We may also impose A, = 0. In
terms of (B-3), Xsu(n),f(X) = 5(1,0,...,0)(X)s Xsv@m),7(X) = $(1,...,1,0)(%) and Xsv(n),aqj.(X) =
5(2,1,...,1,0)(x). For the Vandermonde determinant in (f.3),

A(X) = det [min_j} . (BQ)

As a consistency check we may verify orthogonality of Schur polynomials sy (x), sy (x),
where both A, \" are ordered, with respect to the measure (F-1))

| s st = | ﬁ;f;z A 52(6) 50 (x)

U(n)

n—1 .
dz; 5\ _nai . o
:/<£[1 2mix; zooT Z Slgn(g>jl;[l(0£€j) g

cES,

H?:1 zi=1

=S

(B.3)

n
;=1
Hz‘:l K

where the sum is over n! permutations o, ox; = z;-, belonging to §,, the Weyl group for
SU(n). The only non zero term surviving the integration in (B.J) is then for o = e, the
identity, and only when A = )\'.

The Weyl characters for Sp(2n) are also given by the determinantal formula,
det |:$i>\j+n_j+1 _ xi—kj—n—l-j—l]
S(Al,..-,An)(X) = det [z, 41 — g;—n+i=1] ’

(B.4)

with Ay > Xy > ... > X, > 0. The results in ([.3) correspond to Xxsp(2n),f(X) =
5(1,0,...,0)(X); XSp(2n),adj.(X) = 8(2,0,...,0)(x). For the denominator in ([B.4)

det [ — a1 = A 4 x) B35
i=1
For N = 2n the characters for SO(N) are given by
A det HNTTI gy = A T ] det (g Nt - T

2A(x+x71) ’
where A1 > Ao > ... > |Ay| > 0 and X50(2n),adj.(X) = 5(1,1,0,...,0)(X). For N =2n +1,
det [z; tatn—i 4 og, A'_l_”ﬂ]

Alx+x1) [T, (27 —2;73)
where A\; > Ao > ... > A\, > 0 and Xs0(2n+1),adj.(X) = 5(1,1,0,...,0) (X)-

sSx(x) =
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Appendix C. Finite N Corrections

In section 4 we discussed the leading large N expressions for the index, here we discuss
the form of the leading corrections which involve contributions from operators with non
zero baryon number. The expansion of the integral defining the index generates power
symmetric polynomials p,(z) in z = (21, 22,...) as defined in (L.3). We follow a method
described in [[@] which relates them to the symmetric Schur polynomials, as defined in

(B.1),

S)\<Z), where )\1 Z )\2 Z e Z )\g(&) Z 1, )\Z(A)"‘l =0. (Cl)

The Schur polynomials are characters of SU(N) when z has N components and £(A) < N.
In this case also

[lilizi=1 = sa(z)=satpn(@), pv=(11,...,1), Lpy)=N. (C.2)

The power and Schur symmetric polynomials are related by
pa(z)= D watsalz),  lal=|Al=30. (C3)
e(ﬁSN

The coefficients wgA are characters for the symmetric group and they satisfy the complete-

ness relations

ngi wgﬁ = 2a 0a,b » (C.4)
A

for z, as in (.4), and (IC.3) can be inverted giving

sa(z) = Z e Pa(2z) . (C.5)

The orthogonality relation (B.3) can be extended to, as a consequence of ([C.2),

| dute)sale) sy
S

U(N)

=0y a+ Do (O3 Adnpn + On/4npna) - (C.6)
(0,60 <N - -

Hence

/ dpu(z) pa(2) pb(Z_l) = Z <WaA wbé + 2211 (WQA Wh Atnpn 4 wgé+nBN wgé)> .
S

U(N) a A
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We now consider applying these results to the integral (f.J) for the index, where
i(t,z) is given by () but assuming here for simplicity h(t) = f(t) (otherwise there is an
additional overall factor as in (£.7)). Hence the integral becomes

Z(t) :/s dyu(z) eXp( 3 %(f(t”)pw(zn)pzv(z_”)+g(t”>pN(Z”>+g(t”)pzv(z_”)>)

n=1
1 _ _
- Lo ) 95(0) [ dnla) parsl@) passte).
Q’Q7§ ZQ Zg ZQ SU(N)
(C.8)
with the definitions (f-4)) and also
=TT reemye . = [T o™, gst) =[] at™)> . (C.9)
n>1 n>1 n>1
The integral in ([C.7) ensures
() = Y —— fult) () g5(0)
~ a2 %5 =
X Z <"‘Jﬁ+éA ‘*"Q-FEA + 3 (WQ-FQA Wa+b AFneN Wa+b atnen Wa+b A)) :
AN
(C.10)

Using the completeness relation ([C.4]) the leading term in ([C.I0) gives, essentially as

in (£3),

To(t) = g+92 fa(t) 90(t) Gu(t) = exp (Z leg1tj ”) ) E%ﬂtn) (C.11)

Qaé - -

Z(t) = Zo(t) + Za(t) (C.12)
where
1 _
Ti(t) = P fa(t) gu(t) g5(t)
abb * 2%
X Z (fozl (wngé/\ wa+b_+npN + Wa+tb AHnEN +b~ ) Zwa+b Wa+b )
Z(A)ASN Z(A)>N
(C.13)
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Any sub-leading terms for large N may then be extracted from the expression ([C.13) for
7, (t). The first non zero term arises for n = 1 and A = 0 when ([C:I3) reduces to

L)~ () + a0t =N (©11)
o

We consider here the application of (C.I4) to the Seiberg and Kutasov-Schwimmer
dual theories, extending the discussion in section 4. Thus we take N = N, and N = N,
and use the leading results for gg(tz,tz=1,v,y,y), ge(tr,tz~* v,y,¥), which are propor-
tional to t", from (1Y) and also gas(tx,tx=t v,y,¥) and ga(tz, tr=1, v,y,¥), which are
proportional to t**", from ([:20). This gives

_ N 1 _ o
I (ta, ta l,v,y,y)NthTZZ—b(UNCPQ(Y)ﬂLU Nepp(71)) wp 2N
Q =

_ N (25— 1 5 _ o N :
Ina(to, ta= v,y §) ~ ¢ T)ZZb(UNcpb(y D+ N py(3)) wpte
b =z

with py(y) defined as in (C.9).
For Seiberg dual theories then k = 1, s = 3 and from (B)), (BH) and (B71) the

results in ([C.I17) are proportional to tNeNe/NiyNe for both electric and magnetic cases.
The dependence on y,y is also compatible using ([C.5))

1 1 _ ) _
> Z—bpg(}’) wpNe = saney(y) = D —po(y ") wiFe = 535y, (C.16)

2 b
b p b

assuming [[, y; = 1 and N., N, < Ny.

For Kutasov-Schwimmer dual theories k& = 2,3,... and N, is as in (B-g) and r, s are
given by (B.I0). For this case

(k+1)N¢(Ner —Ne(2s—71)) = (k—1)Ny(kN;y—2N,), kNy—2N,=2N.—kN;. (C.17)

In consequence the powers of ¢ in (C.13) do not match. If kN; — 2N, < 0 then we must
have N. > N; and then
b

so that the leading contribution to I 1(tz,tz~1 v,y,¥) in (C:1§) vanishes. Conversely if
kN¢—2N. > 0 we must have N, > Ny and the leading contribution to Ips 1 (tx, tz =, vy, ¥)

po(y) wp e =0, (C.18)

| =

is absent. In consequence there is no manifest inconsistency between I and I; beyond
the large NV limit and so perhaps further evidence for matching of the index for the electric
and magnetic dual Kutasov-Schwimmer theories.
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Appendix D. Useful Identities

We here note some useful properties of the elliptic Gamma functions and other infinite

products defined by ([.9) and ([.12). As well as (£.§) we may also define

(1, 205q) = (7159) - (Tn; @) o1
O(w1,...,203q) = 0(z1;9) - 0(2n; q),

for (x;q),0(x;q) in ([.17). Useful identities are
(250) = (2:¢°) (zq:4°),  (2:0%) = (V@19) (—=V309), (D.2)

which extend also to 6(z;q). For the latter we may also note

0(qx;q) = 0(z~ "5 q) = —i 0(z;q) . (D.3)

In terms of standard Jacobi theta functions (¢, ¢?) 0(qe?™*,¢?) = Y4(u,q). The Jacobi
product identity is equivalent to

oo

() 0(zig)= Y (-1 Var, (D.4)

n=—oo

while the addition formula in the form
af(ba,ba™ ", cz,cz7tip) +bO(ch,cb™, ca,cat;p) 4+ cO(ac,ac™t, bz, bz p) =0, (D.5)
with notation as in ([D.1]), is significant later.

For the elliptic gamma function, properties which prove useful are, besides the reflec-

tion formula (.9),

U(xq;p,q) = 0(x;p) U(z;p,9),  T(zpip,q) = 0(z;¢) U(w;p, q), (D.6)

and
L(psp,q) = (g9)/(sp),  Tl(gp,0) = (p;p)/(49), (D.7)

and
H=lipg) = 2(—q; q;(—p'p) ’ (D-8)

so that, using also (D.2),
L(~Lip,q) T(=pip,q) = 5(0.0°)*,  T(-Lpa)T(~¢:p.q9) = 3(a.¢>)*. (D9
With the notation in (6.§) we have
1
0(zq)0(z"1ip)’
which may be rewritten in various forms with the aid of (D.3).

(D.10)

[(z,27 Y p,q) =
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Appendix E. Verification of the Spiridonov Elliptic Beta Integral

We here describe an approach to showing A(p, ¢,1) = B(p, ¢, 1), as defined in (5.11)
and (p.19), analogous to that outlined for the Nassrallah-Rahman theorem in section 5.
From its definition in (5.10) and appendix D, with the notation in (D.1), we have that

. O(urz,u1/z;p) » .
I(p7Q7qu17u27--'aZ>: é()l\z )\jé]f;) I(p7Q7uvz>7 (E1>

so that using the identity, which follows from ([D.5) and ([D.3),

u20(u1z, ur/z, Mg, Afuz; p) —uib(uzz, ua/z, Aur, ANus p) = —u16(uiug, ua/ur, Az, A\/z;p)
(E.2)
(for p = 0 this reduces to (517)) we find that Z(p, ¢, 1, z) satisfies the ¢-difference relation

~ A~

Uze()\uz, )\/Uz;P) I<p7Q7qU17U27 ceey Z) - U19(>\U1, A/UIQP) I(p,q,ul,un, .- -,Z)

. A (E.3)
= —u16(uruz, uz/u1;p) Z(p, ¢, 4, 2) -
Since this holds for any z the g-difference relation extends to A(p, ¢, ).
Similarly,
> 0(uiuq;p)
B cous) = [T =222 B(p, g, 1 E.4
<p7Q7qu17u27 ,U5) C:Ll;[l Q(A/Ua;p) <p7Q7u>7 ( )
so that using the identity, which is also equivalent to (D.5),
U206 (uruz, urtg, urus, Aug; p) — u10(ugus, uzuag, uzus, Aua; p) (E.5)

= —u10(ug/ui, \/us, A\/ua, \/us;p),

assuming A as in (B.10), it is easy to show that B(p, q, 1, z) also satisfies (E.J).

The proof is now essentially the same as that described in section 5. A(p,q, 1),
B(p, q, 1) are both are analytic functions in each u, so it is sufficient to show that they are
equal for a particular non zero choice of i and use the g-difference relation to extend this
to an infinite discrete set of  which then, by analyticity, implies A(p, ¢, 1) = B(p, g, 1) for
arbitrary 1 so long as both are non singular.

We then consider the same special case chosen for proving the Nassrallah-Rahman
theorem, iy = (u, 1, —l,q%, —q%). For 7 as in (b-1I0) we have

. 1
A _ 2
(P4, 00,2) = =2 0(2%; q) 0(22;p2) O(uz,u/z;p)’
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and in (B.17)),

A(p, 4, %0) = (p;p) (¢;9) ﬁ f % C Z;(iz), i'j;;?)p ). (E.7)

Using (D7), (D.§) and (D.9), we may show, for B as in (f.13), that

(45 9) 1

B(p, ¢, 1) = . E.8
(P, ) (p;p) 260(u?; p?) (E8)
Thus to show equality of ([E7) and ([E.§) it is necessary to verify that
F(u )—L%%I(uz ) = 1 1 To(u, 2 )_M (E.9)
P omi N T o 0z ) Y T Gz ugzmp)

where, requiring p < |u| < 1, the z-integration is around the unit circle.

Spiridonov [[[4] evaluated the integral in ([E.9) by using rather non trivial identities. We
here present a simpler argument. The integrand Zy(u, z, p) has poles inside the contour
|z] = 1 at z = up™,p"™! /u and outside at z = p~"/u,up ", for n = 0,1,2,..., and
satisfies, from (D.3),

To(pu, z,p) = u*To(u, 2, p) . (E.10)

If we let u — pu (E.10) would naively imply that a similar relation holds for F(u,p) but
under this change the pole at z = p/u moves outside the contour while the one at z = u/p
moves inside. Taking into account the contributions of these poles we get

) 1
(pip)? 0(u2p?;p?)

2 1
(p;p)? O(u?;p?)

F(pu,p) = u*F(u,p) + = u’ (f(u,p) - ) - (E11)
The form of the integral in ([E-) shows that F(u, p) has poles solely at u? = p" for some
positive or negative integer r, then (E.IT) and analyticity implies that F(u,p) can only

have the form given by the result in (E.9).
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