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Constraints on an Asymptotic Safety Scenario for the Wess-Zumino Model
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Using the nonrenormalization theorem and Pohlmeyer’s theorem, it is proven that there cannot
be an asymptotic safety scenario for the Wess-Zumino model unless there exists a non-trivial fixed
point with (i) a negative anomalous dimension (ii) a relevant direction belonging to the Kähler
potential.
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In this note, we will consider the existence of certain
renormalization group fixed points in theories of a chiral
superfield. Suppose that a non-trivial fixed point exists
and, moreover, that there is a renormalized trajectory [1]
emanating from it, such that the low energy effective the-
ory is well described by the Wess-Zumino model. It will
be proven that, for such an asymptotic safety scenario [2]
to occur, the putative fixed point must have both a nega-
tive anomalous dimension1 and at least one relevant oper-
ator belonging to the Kähler potential. This generalizes
earlier work [3] on zeros of the β-function of the Wess-
Zumino model in a way that will be precisely spelt out
below.

To formulate our argument, we introduce the Wilso-
nian effective action, SΛ, constructed by integrating out
degrees of freedom between the bare scale and a lower,
effective scale, Λ (this implies that we have transferred
to Euclidean space, so that momenta can be readily
separated into large and small). The Wilsonian effec-
tive action, being infrared safe, does not suffer from the
holomorphic anomaly in the massless case. Therefore,
the nonrenormalization theorem always holds and the
superpotential does not renormalize, even nonperturba-
tively [5].

To conveniently uncover fixed point behaviour, we
rescale to dimensionless variables by dividing all quan-
tities (coordinates and fields) by Λ raised to the appro-
priate scaling dimension. In the case of the chiral super-
field, Φ, (and its conjugate) we must take account of the
anomalous scaling according to

Φ → Φ
√

ZΛ, (1)

where Z is the field strength renormalization and the
anomalous dimension is defined by

γ(Λ) ≡ Λ
d lnZ

dΛ
. (2)
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1 It is worth pointing out that in the vicinity of a nonperturbative

fixed point, we cannot rule out a negative anomalous dimension,
γ, by the usual unitarity arguments. These relate the unitarity
constraint 0 ≤ Z ≤ 1 to a non-negative γ via a perturbative
calculation; but there is no reason to believe such a calculation at
a nonperturbative fixed point (see [4] for an interesting discussion
on negative anomalous dimensions).

As a consequence of the rescalings, the superpotential
does now renormalize, but just according to the (anoma-
lous) mass dimension of the various couplings. In partic-
ular, denoting the rescaled three-point superpotential by
λ(Λ), we have that

βλ ≡ Λ
dλ

dΛ
=

3λγ

2
. (3)

In the rescaled variables, a fixed point is defined by

Λ∂ΛS⋆[Φ, Φ] = 0, (4)

where Λ∂Λ is performed at constant Φ, Φ and a star is
used to denote a fixed point quantity. Immediately, it is
apparent from (3) and (4) that if λ⋆ 6= 0, then it must
be that γ⋆ = 0. However, there is a theorem due to
Pohlmeyer [6] which implies that, in the current scenario,
the only scale invariant (i.e. fixed point) theory with γ⋆ =
0 corresponds to the Gaussian fixed point. This was the
reasoning used in [3] to rule out zeros of the β-function
in the Wess-Zumino model; the same logic has also been
applied to the O(N) symmetric Wess-Zumino model [7].
Here, though, we deal with general fixed point actions.

However, the condition that λ⋆ = 0 is not sufficient
to rule out an asymptotic safety scenario for the Wess-
Zumino model. This is because, although a putative
non-trivial fixed point cannot possess a three-point su-
perpotential term, it could be that (i) λ constitutes a
relevant direction at the fixed point (ii) trajectories ini-
tiated along the λ direction happen to flow towards the
Gaussian fixed point. Note that a marginally relevant λ
will not do, because this requires γ⋆ = 0 and we again
fall foul of Pohlmeyer’s theorem.

Let us suppose that such a scenario is realized i.e. we
perturb our fixed point action in the λ direction and flow
towards the Gaussian fixed point. Now, in the vicinity of
the Gaussian fixed point the low energy effective theory
is described arbitrarily well by the Wess-Zumino model.
This follows simply because, although λ is irrelevant with
respect to the Gaussian fixed point, it is only marginally
so, and so all other couplings (besides the mass, which
can be ignored in this discussion) die off much faster.

Along the resulting renormalized trajectory between
the two fixed points, we can write the action in ‘self-
similar’ form [8, 9]. This means that all scale depen-
dence of the action appears through λ(Λ) which, as a
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consequence of the nonrenormalization theorem, can be
traded for the anomalous dimension:

SΛ[Φ, Φ] = S[Φ, Φ](γ(Λ)). (5)

(More generally, a self-similar action depends on Λ
through the relevant / marginally relevant couplings, as
defined at the UV fixed point, and the anomalous dimen-
sion.) It is worth noting that self-similarity is a nonper-
turbative statement of renormalizability [9].

As just stated, in order for us to construct this renor-
malized trajectory, it must be that λ(Λ) is relevant with
respect to the non-trivial fixed point. This requires that
γ⋆ < 0, as follows from (3). Crucially, however, suffi-
ciently close to the Gaussian fixed point—where we can
rely on perturbation theory done with the Wess-Zumino
model—we know that the anomalous dimension is posi-
tive.

Therefore, in going from the UV fixed point down to
the vicinity of the Gaussian fixed point, γ(Λ) must pass
through zero (at least once). Consider the first time that
this happens. Since all scale dependence along our renor-
malized trajectory is carried by γ(Λ) then, if γ(Λ) ever
vanishes, we must be at a fixed point. Now, on the one
hand, this fixed point cannot be the Gaussian one: the
action in the vicinity of the Gaussian fixed point is (es-
sentially) the Wess-Zumino action, but γ(Λ) has not yet
increased above zero, by assumption. On the other hand,
Pohlmeyer’s theorem tells us that this fixed point cannot
be anything else! Therefore, our original assumption that
there exists a non-trivial fixed point with a trajectory,
spawned along the λ direction, emanating from it such
that the low energy effective theory is well described by
the Wess-Zumino model, must be incorrect.

However, suppose that the fixed point also possesses
a relevant operator coming from the Kähler potential,

O[Φ, Φ], with coupling g(Λ) (obviously, we can generalize
this to several such operators). Perturbing the fixed point
action in both the λ and g directions, the action along
the resulting renormalized trajectory now reads

SΛ[Φ, Φ] = S[Φ, Φ](g(Λ), γ(Λ)). (6)

Whilst it is still true that, in order for an asymptotic
safety scenario to be realized for the Wess-Zumino model,
the anomalous dimension must pass through zero, it is
no longer true that the vanishing of γ(Λ) at some scale
necessarily corresponds to fixed point, since g(Λ) could
still be flowing.

Assuming such an asymptotic safety scenario to exist,
we now have the following picture of the renormaliza-
tion group flows. If we perturb away from the non-trivial
fixed point in just the λ direction, then we must shoot off
away from the Gaussian fixed point. (A finite distance
along the resulting trajectory, it may be that O[Φ, Φ] is
generated, but now we have g(Λ) = g(γ(Λ)).) However,
by perturbing the fixed point in both the λ and g direc-
tions, we flow towards the Gaussian fixed point, with the
low energy effective action being well described by the
Wess-Zumino action. The question as to whether such
non-trivial fixed points actually exist will be addressed
in a companion paper [10].
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