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We investigate transitions between topologically ordered phases in two spatial dimensions induced by the

condensation of a bosonic quasiparticle. To this end, we formulate an extension of the theory of symmetry

breaking phase transitions which applies to phases with topological excitations described by quantum groups or

modular tensor categories. This enables us to deal with phases whose quasiparticles have non-integer quantum

dimensions and obey braid statistics. Many examples of such phases can be constructed from two-dimensional

rational conformal field theories and we find that there is a beautiful connection between quantum group sym-

metry breaking and certain well-known constructions in conformal field theory, notably the coset construction,

the construction of orbifold models and more general conformal extensions. Besides the general framework,

many representative examples are worked out in detail.

PACS numbers: 05.30.Pr,11.25.Hf.

I. INTRODUCTION

In both high energy and condensed matter physics, there is

a long tradition of studying systems which exhibit topologi-

cal excitations. Recently, this field has received a new impe-

tus, since it has been realized that such topological excitations

may permit fault tolerant storage and manipulation of quan-

tum information1–3. In connection with this, there are current

experimental efforts to prove the existence of nontrivial topo-

logical phases in the fractional quantum Hall effect4–7 and to

construct such phases in Josephson junction networks8.

Topological excitations are usually introduced at the classi-

cal level as solutions to the equations of motion and the ob-

servables that distinguish them are directly linked to topologi-

cally invariant properties of these solutions. This places topo-

logical particles in marked contrast to the more usual pertur-

bative (quasi)particles. The latter are described as low energy

quantum fluctuations over a given vacuum state. The group of

symmetries of the system that fixes the vacuum state will act

on the fluctuations and cause them to organize into multiplets.

As a result these perturbative particle states form irreducible

representations of the symmetry group. For topological parti-

cles no such labeling is obviously present.

A similar dichotomy exists when considering the ground

states of different phases, or the order parameters that distin-

guish between phases. Traditionally, when a phase exhibits

ground state degeneracy, the different ground states would be

related by the action of symmetry operators, but in topolog-

ical phases, ground state degeneracies appear for models on

topologically nontrivial spatial manifolds without the obvious

intervention of any symmetry, and in fact the different ground

states can often not be mixed by any local operator. Analo-

gously, traditional phases can be distinguished by the expecta-

tion values of local order parameters, while different topolog-

ical phases may exist which are not distinguished by any local

order parameter. As a result a number of indicators for topo-

logical order which are not based on symmetry have emerged,

notably the dimensions of the spaces of ground states on spa-

tial surfaces of non-trivial topology9,10 and the topological en-

tanglement entropy11,12.

Despite the fact that topological phases may not be fully

characterized by their symmetries (or at least not by symme-

tries represented by local operators), one may often still orga-

nize the excitation spectra of such phases by using ‘symme-

tries’ that are not obvious from the Hamiltonian or Lagrangian

of the system and which may in fact not be realized locally106.

One may then hope for a generalization or analogue of the

theory of symmetry breaking phase transitions which applies

to topological phases, by allowing for such ‘topological sym-

metries’. One of the main goals of this paper is to set up such

a formalism for the particular case of phase transitions which

occur due to the formation of a condensate of bosonic quasi-

particles.

A well known example of topological symmetry occurs in

gauge theories with gauge group ZN defined on a lattice in

2+1 dimensions15 In such gauge theories, the spectrum con-

sists of charges, whose internal state transforms under the ZN

gauge group, magnetic fluxes (where flux is the topological

quantum number), which are gauge invariant and composites

of charge and flux, called dyons. One sees immediately that

the ZN representation label on the particles is not enough to

completely fix the sector, since it is blind to the flux. However,
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one may introduce a second “dual” ZN symmetry – which is

not a gauge symmetry. This symmetry acts on fluxes in the

same way that the original gauge group acts on charges and

it leaves states without flux invariant. The topological sectors

of the theory are completely distinguished by their behavior

under the full ZN ×ZN symmetry and the addition of flux

and charge quantum numbers is also captured by the tensor

product of ZN ×ZN representations. One may even include

the Aharonov-Bohm braid interactions between charges and

fluxes by introducing a new structure on Zn×Zn called the

universal R-matrix.

In general, one cannot expect to capture the full particle

spectrum and topological interactions of a physical system

using only group theory. Still, it is believed that every type

of topological order in 2+1 dimensional systems can be de-

scribed using the representation theory of a modular tensor

category or, dually, a quantum group. While the breaking of

quantum group symmetries has been an important idea under-

lying our work on this subject, one of our aims in this paper is

nevertheless to minimize the amount of knowledge of quan-

tum groups or tensor categories needed for an understanding

of our approach to topological phase transitions. All that is

really needed here are basic notions of fusion and braiding in

planar physics and we have collected the mathematical for-

mulae for fusion rules, spin and monodromy that we will use

in section II. While we may occasionally make reference to

more advanced concepts from quantum group theory, we hope

that such excursions will not prevent non-experts in that field

from following the main thread of the paper.

After identification of a bosonic condensate (cf. sec-

tion III), our treatment of condensate induced transitions pro-

ceeds in two steps. First, the symmetry is broken (sec-

tion IV A), leading to a spectrum of excitations that occur in

the broken phase, or on an interface between domains that

support the broken and unbroken phases. Then these excita-

tions are separated into confined and non-confined excitations

(section IV B), where the word ‘confined’ means that the exci-

tations are either bound to a boundary between a domain in the

broken phase and a domain in the unbroken phase, or bound

together like quarks in hadrons. This should lead us finally to

a description of the fusion and braiding properties of the non-

confined particles and ultimately also to a description of the

strings pulled by the confined particles and a classification of

“hadronic” composites of confined particles.

The breaking scheme we discuss should also have interest-

ing applications in describing the physics of spatial geome-

tries where interfaces between different topological phases oc-

cur, that may be enforced by external means (by applying dif-

ferent magnetic fields for example). We give an example of

such a two phase geometry in figure 1, where the interface

carries only those edge states of the interior disc (with phase

I), which are confined in phase II of the outer region, the outer

edge carries (non-confined) states that are also allowed in the

outer region. We will return to the specific phases indicated in

the figure later on. In line with this application one may also

draw conclusions on the boundary theory of certain two layer

systems as will be explained in sections VIII B and X A.

Some general features and methods of our scheme are col-

Phase I

Phase II

SU(3)

Irreps: 1, 3, 3*

Irreps:  0,1,2,3,4

SU(2)

1

Interface Irreps: 1~3

Edge Irreps: 1, 3, 3*

4

FIG. 1: A geometry with an interface between two topological phases re-

lated by the proposed breaking mechanism. In the inner region there is an

unbroken phase, while the outer region is in a broken phase. The interface

states correspond to the representations that are confined in the outer region

(i.e. the 1 and 3 representations of SU(2)4). The states on the outer edge

belong to representations that are not confined in the outer region (the 3 and

the 3∗ of SU(3)1).

lected in section V and the later sections are devoted to worked

examples and to an exploration of the relation between con-

densation transitions and a number of constructions in confor-

mal field theory, notably conformal embeddings and the coset

construction.

A. Remarks on gauge and hidden symmetries

Before we go into a further description of our formalism, let

us make some remarks which we hope may prevent confusion

in reading the rest of the paper.

First of all, we do not want to limit ourselves to ‘strictly

topological phases’, which have no nontrivial symmetries rep-

resented by local operators. In fact we will include the-

ories which have a discrete symmetry represented by lo-

cal operators but no nontrivial topology as a special case.

We would like to point out that in gauge theories, electric

charges, which are supposedly ‘non-topological particles’,

coming from the locally represented gauge symmetry of the

system, can have nontrivial topological interactions with mag-

netic fluxes through the Aharonov-Bohm effect, so in order to

describe the full topological order of gauge theories it is nec-

essary to take the usual gauge symmetry into account.

Secondly, we will often speak of ‘symmetry breaking’

when some of the symmetries involved may be gauge sym-

metries. Gauge theories can be interpreted to a certain extent

as constrained systems; some of the gauge degrees of free-

dom are auxiliary and could in principle be eliminated at the

price of introducing very complicated interactions among the

true physical degrees of freedom. In a theory with a gauge

symmetry the physical states are the gauge invariant states, so
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the spectrum does not manifestly exhibit the degeneracies of

nontrivial representations and one may wonder at the idea of

a symmetry breaking phase transition. However, despite the

absence of gauge-variant states, the physics of gauge theories

certainly depends on the invariants characterizing the repre-

sentations that are present in the model and one speaks of

gauge symmetries as ‘hidden symmetries’. A similar situation

occurs in topological field theory, where the particles often do

not have internal degrees of freedom on which a symmetry

could act, but nevertheless, their fusion rules can be described

by the representation theory of a quantum group.

Hidden symmetry breaking is to a large extent analogous

to the usual breaking of global, non-gauge symmetries. In

the global case, there is typically a local order parameter that

breaks the symmetry and as a result, in the broken phase

the degeneracies due to the original symmetry are (partially)

lifted, and the spectrum is now organized in representations

of the smaller residual symmetry group. A gauge symme-

try cannot be broken by a local order parameter (by Elitzur’s

theorem14). Yet, condensates with invariant order parameters

are allowed and the hidden symmetry can effectively be re-

duced due to such a condensate. This phenomenon is usually

referred to as the Higgs effect or the ‘breaking’ of a hidden (or

local) symmetry. Bearing this warning in mind, our philoso-

phy is to use the term ‘breaking’ in this cavalier way.

B. Connection to earlier work

In earlier work16,17, we have developed a theory of quan-

tum group symmetry breaking and applied it to discrete gauge

theories. This theory was later refined and applied to phase

transitions in quantum nematics and other systems18–20. Re-

cent work of Bombin and Martin-Delgado21,22 also provides

interesting realizations of such transitions in models based on

Kitaev’s toric code model1, which exhibits the same topolog-

ical order as the discrete gauge theories.

Injective map

Intermediate algebra T

Surjective map

Irreps label

Kernel K

Breaking by

Irreps <=> excitations 
in unbroken phase

Irreps <=> excitations 
in broken phase

Irreps <=> unconfined
excitations

strings / walls

condensate

Confinement

Unconfined algebra U

Quantum group A

FIG. 2: A schematic of quantum group symmetry breaking. After breaking

we arrive at an intermediate algebra T that may have irreps which are in fact

confined. The low energy effective theory of the condensed phase is based on

the unconfined algebra U .

The general features of this symmetry breaking scheme are

as follows (see figure 2). Before condensation, the system is

described by a quantum group A, that is, the different types

of quasiparticle correspond to the irreducible representations

of A and the fusion and braiding interactions are described

by the tensor product of representations and the R-matrix of

A respectively. When particles carrying the representation πc

condense, the condensate will have an order parameter which

is a state in the module of the representation πc. The symme-

try of the condensed phase should leave this order parameter

invariant and hence the quantum group A is broken down to

a Hopf subalgebra T ⊂ A whose representations characterize

the excitations of the condensed phase. Depending on their

braiding interaction with the condensed particles, these exci-

tations may or may not be confined. In particular, if an ex-

citation over the condensate has nontrivial braiding with the

condensed particle then the order parameter of the condensate

will not be single valued near this excitation and the excita-

tion will pull a string or wall in the condensate and be con-

fined (the energy required for the creation of the string will be

linear in the string’s length, since the condensate is destroyed

near the string). The non-confined particles are particles in

the true sense of the word, that is, point-like excitations, and

their interactions are described by the representation theory of

a ‘Hopf quotient’ U of T (U is the image of T under a sur-

jective map that preserves the Hopf algebra structure). The

strings pulled by the confined particles can also be studied

and they are classified by the representations of a subalgebra

of T which is determined by the Hopf map from T onto U and

which is analogous to the kernel of a homomorphism between

groups.

In the sequel, we will devise a treatment of Hopf symmetry

breaking which generalizes the treatment given in our earlier

papers, while keeping the amount of quantum group or Hopf

algebra theory that is needed to a minimum. Therefore, it will

not be necessary to flesh out the details of the algebras con-

tained in diagram 2 (detailed definitions can be found in the

original papers). However, the structure of the diagram will be

preserved, in that there will still be two levels to our treatment

of condensation-induced phase transitions - quantum group

symmetry breaking followed by confinement.

II. SETTING THE STAGE

A. Fusion rules, spin and monodromy

Let us quickly review the minimal knowledge of (2 + 1)-
dimensional topological field theory that we will need for the

rest of the paper. For much more detail, the reader may con-

sult for instance Refs. 23–26. First of all, we assume that the

theory has a finite number of topological sectors, labeled by

some finite set of labels. We will call these anyonic charges,

or in some cases topological charges, especially when it is not

obvious if we are dealing with charges characterizing point-

like excitations. We can think of these charges as topological

quantum numbers, but also as charges related to some (group)

symmetry and sometimes, like in the case of ZN gauge theory

described before, we can think of them either way. In many

physical situations, it is necessary to introduce superselection
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sectors which correspond to the same topological charges but

which have different non-topological quantum numbers (these

may for instance characterize short-range interactions). For

the purposes of this paper, we will ignore these and consider

such sectors to be the same. As a result we can describe theo-

ries which include electric charge and other gauge charges as

if they have only finitely many sectors.

The basic interactions between topological sectors in 2+1

dimensions are fusion and braiding. Fusion may be summa-

rized using fusion rules of the form

a × b =
∑

c

Nab
c c. (1)

Here a and b are the two topological charges which are to be

fused, the labels c are the possible overall topological charges

of the result of the fusion and the integer coefficients Nab
c in-

dicate the number of independent couplings between a and b
that give c. Concretely, a zero fusion coefficient means that

the charges a and b cannot fuse to c and a nonzero coefficient

means they can. One may think of the fusion coefficient Nab
c

as the dimension of the space of low energy states of a piece

of topological medium which has overall topological charge c
and which contains two topological excitations with charges

a and b. A physical requirement on fusion rules is that they

must be associative, that is

(a × b) × c = a × (b × c) (2)

We also require that there is a unique vacuum sector, labeled

0 or 1, depending on the context, which has the property that

1 × a = a × 1 = a (3)

for any other sector a. Finally, we require that any sector a has

a charge conjugate sector, denoted ā, with which it can fuse to

the vacuum in a unique way, i.e.

a × ā = 1 +
∑

c6=1

Naā
c c (4)

ā × a = 1 +
∑

c6=1

N āa
c c. (5)

For systems with well defined braiding interactions (that is, all

two-dimensional systems with pointlike excitations), we will

also have ‘symmetry of the fusion interaction’, that is a× b =
b × a.107

Any topological charge a has a spin factor θa associated

with it. This is a phase factor that the wave function of the

anyonic system picks up when the anyon is rotated (twisted)

over a 2π angle. We can think of the particle as being in an

eigenstate of two dimensional spin and the spin factor is the

effect of a 2π rotation on this eigenstate. We will also use

the spin ha of the particle, which is related to the spin factor

by θa = e2πiha . For systems with finitely many topological

sectors, the spins are always rational27.

Adiabatic exchanges of the particles (without twisting) also

have an effect on the wave function of the system. This is the

analogue of the statistical interaction of fermions or bosons

(for bosons the fact that there is no effect of the exchanges ac-

tually tells us a lot about collective behaviour). In two dimen-

sions these exchanges are governed by the braid group, rather

than the permutation group. In particular this means that left

over right exchanges are not the same as their inverses, the

right over left exchanges. The product of two right over left

exchanges is often called the monodromy. It returns the exci-

tations to their original positions, but may nevertheless have a

nontrivial effect on the state of the system. This effect may be

described in terms of fusion and twisting, using the so called

‘ribbon equation’ whose pictorial representation is shown in

figure 3. The braiding process is topologically the same as

a full twist of the region containing both charges (i.e. a full

twist of their fusion product), combined with full twists of the

charges themselves in the opposite direction. Hence, given

two anyonic charges a and b, the effect of the monodromy on

the fusion channels that yield overall charge c is to introduce

a phase factor θc(θaθb)
−1, or e2πi(hc−ha−hb).

FIG. 3: The ribbon equation, relating fusion to topological spin and mon-

odromy.

B. Quantum dimensions and modular group

Like the monodromy, many of the other properties of the

topological phase may be obtained directly from the fusion

rules and the spin factors. Examples are the quantum dimen-

sion da of a particle labeled a, the modular matrices S and T
and the topological central charge c. We give formulas for all

these quantities here.

The quantum dimension da of the sector a gives the asymp-

totic number of fusion channels available when many particles

of type a are fused together. If there are N such particles, then

the total number of fusion channels scales asymptotically as

(da)N for large N . We may find da as the Perron-Frobenius

eigenvalue of the fusion matrix Na whose elements are de-

fined by (Na)b,c = Na,c
b . The quantum dimensions are real

and positive and they have the important property that they are

conserved under fusion, that is

dadb =
∑

c

N c
abdc. (6)
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The total quantum dimension D is defined by

D =

√

∑

i

d2
i (7)

The quantity D2 can be considered the quantum dimension of

the quantum group that underlies the system. The topologi-

cal entanglement entropy of the ground state of a system in a

topological phase is proportional to the logarithm of D.

The topological central charge c is defined by the following

formula. It is only determined up to a multiple of 8.

ei π
4

c =
1

D
∑

i

d2
i θi (8)

Any conformal field theory whose topological sectors have

these quantum dimensions and spin factors must have confor-

mal central charge c̃ equal to c modulo 8. It is in fact im-

possible to find out more about the conformal central charge

of a CFT from the TQFT corresponding to the CFT than its

value up to multiples of 8. To see this one may consider the

E8 WZW model at level 1. This is a CFT at c = 8 which has

only one primary field, or topological sector. Tensoring any

CFT with copies of this E8 model allows one to change the

central charge of the CFT by multiples of 8 without changing

the corresponding TQFT.

On a surface of nontrivial topology, a TQFT will have a set

of degenerate ground states. On the torus there is one state

for every topological sector (for anyon models described by

a modular tensor category). The mapping class group of the

surface acts projectively on this ground state space. In the

case of the torus this means we can work with ordinary rep-

resentations of the double cover of the mapping class group,

the famous modular group generated by two elements S and

T subject to the relations

S2 = C, (ST )3 = C. (9)

Here C is an element of order 2. On the basis of states labeled

by the particle sectors C is represented by the charge conjuga-

tion matrix, that is Cab = δab̄.

In a CFT that realizes this TQFT, the modular S-matrix and

T -matrix are given by28

Sab =
1

D
∑

c

N c
ab̄

θc

θaθb
dc

Tab = e−2πi c̃
24 θaδa,b (10)

The numbers Sab can also be defined within TQFT, as the

trace of the monodromy acting on particles with labels a, b.

This, together with the ribbon equation, leads to the formula

above. The formula for T is interesting, because it depends

on the value of the conformal central charge c̃ modulo 24. We

just noted that the value of the central charge c in a TQFT is

only determined modulo 8, so it seems that there might be a

problem defining the above modular group representation for

TQFTs. However, it turns out that any choice of c̃ modulo 24,

given that c̃ = c modulo 8, gives a good representation of the

double cover of the modular group. The different choices just

change the action of T by a third root of unity and this factors

through the relations (9) that S and T must satisfy.

Still, it is remarkable that CFTs are able to see topologi-

cal information that TQFTs are blind to, namely a factor of

a third root in the action of the modular matrix T . Of course

one might include this third root into the definition of a TQFT.

If this is done, then there will be three TQFTs with only one

sector, realized in CFT for example by the trivial, E8 level 1
and (E8)1⊗(E8)1 theories. Taking this third root into account

in any definition of topological order would also necessarily

mean that ‘topologically ordered’ phases arise whose ground

states on the torus are not degenerate, but do transform non-

trivially under the action of T . Such phases can be realized by

E8 Chern–Simons theories at levels 1 and −1 respectively.

C. Contact with experiment

Fusion rules, spin factors and the quantities that can be ex-

pressed in terms of these are the only elements of topological

field theory that will be essential for an understanding of the

main thread of the rest of this paper. An important question

one may ask is thus whether fusion rules and spin factors are

information that can be accessed through experiment. Exper-

imental probes of topological systems (notably quantum Hall

systems) that have been proposed in recent years include mea-

surements of the tunneling current at point contacts and es-

pecially interferometric measurements of tunneling currents

through double point contacts29–38. Experiments with double

point contacts have in fact recently been performed, both for

Hall states with Abelian topological order39,40 and for presum-

ably non-Abelian Hall states6,7.

The tunneling current at a single point contact in a Hall sys-

tem is dominated at weak tunneling by the quasiparticle with

the lowest scaling dimension. By observing the behavior of

the tunneling current as a function of temperature, voltage or

the size of the system41–43, it should be possible, in principle,

to extract this scaling dimension and from that the topological

spin of the particle. Extracting the spins of the other particles

will probably be considerably more difficult.

Interference experiments with double point contacts are

governed by the monodromy matrix32. This is just a normal-

ized version M of the S-matrix, given by

Mab =
SabS11

Sa1Sb1
=

1

daθadbθb

∑

c

N c
ab̄dcθc (11)

It seems likely that at least some elements of the monodromy

matrix M will become available through interferometric mea-

surements in any topological system that allows these. On the

other hand, it should be noted that for example in the Hall

systems, it will be difficult to get elements that do not involve

the quasiparticle of lowest scaling dimension, which naturally

dominates the tunneling. If enough of the matrix elements of

M are known, it might be possible to reconstruct the whole

M matrix and its close relative, the S-matrix. The M and S-

matrices are strongly constrained by various TQFT-identities,
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so a relatively small number of measured elements may be

enough to determine them completely. From the S-matrix one

may reconstruct the fusion rules using Verlinde’s formula,

N c
ab =

∑

x

SaxSbxSc̄x

S1x
(12)

The S-matrix also gives information on the spins of the par-

ticles. For example, given the S-matrix and the fusion rules,

the second line of equation (10) becomes a system of equa-

tions for the spin factors θi. Another set of equations for the

spin factors comes from the fact that S and T satisfy the mod-

ular group relation (ST )3 = S2. These equations do not al-

ways allow for a full determination of the θi: two theories

which have the same S-matrix, but different spin factors are

the Ising model and the SU(2) Chern Simons theory at level

2. These theories are distinguishable by their central charges,

which are 1
2 and 3

2 , respectively. However, there also exist ex-

amples of distinct theories with the same S-matrix as well as

equal central charge, but with different spin factors, for exam-

ple the two c = 0 theories based on the quantum doubles of

the finite groups D4 (the symmetry group of a square) and D̄2

(the group of unit quaternions). Nevertheless, it is clear from

Ocneanu rigidity (see section II D) that for given fusion rules

(and hence for any given S-matrix), there can only be finitely

many possible solutions for the spinfactors.

D. From fusion and spin to a full TQFT

The mathematics of topological phases obviously involves

more than just fusion rules and spin factors. The requirements

on fusion we have given may be fleshed out with more math-

ematical structure to give the definition of a tensor category.

Similarly, including braiding and spin, we may get to the def-

inition of a ribbon tensor category. The Hilbert spaces and

transition amplitudes of the topological systems we are inter-

ested in may then be viewed as coming from representations

of such categories. The categories themselves in turn may

be viewed as the representation categories of (appropriately

generalized) quantum groups. While such structures will cer-

tainly be of importance for a more mathematically rigorous

treatment of transitions between topological phases, that is not

the aim of this paper and we intend instead to go into these de-

tails in a separate publication44.

Still, one may ask at this point wether knowledge of the fu-

sion rules and spin factors would allow one to reconstruct the

full TQFT describing the system. An important step towards

answering this question is a mathematical theorem which is

usually referred to as Ocneanu rigidity45. This theorem states

that, given a set of fusion rules, there can only be a finite set

of inequivalent TQFTs, ribbon tensor categories, or just plain

tensor categories corresponding to it. Since we are given not

only the fusion rules but also the spin factors, it seems likely

that a TQFT will be uniquely determined by this information

in most cases. In fact, we are not aware of any example of

a pair of inequivalent TQFTs with the same fusion rules and

spin factors and even if such pairs do exist in nature, it will

be difficult to separate them by experimental observation, for

instance because they have the same M -matrix.

III. ON BOSONS

In 3+1 or more dimensions, bosons can be characterized

either as particles with integer spin or as particles which

have trivial exchange interactions, that is, wave functions for

many identical bosons are invariant under exchanges of the

bosons. These two properties are equivalent by the spin statis-

tics theorem46,47. In 2+1 dimensions, the requirements of in-

teger spin and trivial statistics are no longer equivalent. There

may be particles which have the property that when two of

them are fused together, multiple fusion products may arise

and the braiding of the original particles is trivial or nontriv-

ial depending on the fusion channel they are in. Therefore it is

not completely obvious what constitutes a boson in dimension

2+1. Two necessary conditions for a particle a to be a boson

are the following.

• a should have trivial spin, that is θa = 1, or ha ∈ Z.

• a should have partially (or completely) trivial self-

monodromy.

By partially trivial self-monodromy, we mean that there

should be at least one fusion channel in a × a for which

the monodromy factor equals 1. In other words, if a × a =
∑

c Naa
c c, then there should be at least one charge c in the

sum such that θc(θa)−2 = 1. Since we already required that

θa = 1, this comes down to the requirement that there is a

fusion channel c with trivial twist, θc = 1.

Both of these conditions are special cases of a more general

condition,

• For every number N of identical particles of type a,

there should be at least one state in the Hilbert space for

a×N which is completely invariant under monodromy.

This condition is a reasonable requirement for particles which

should be able to condense, because for any particle number,

it provides at least one state which will not notice any ‘stir-

ring’. This is analogous to the requirement that any ‘order

parameter’ for the condensate should be single valued. The

general condition is much more difficult to check than the two

special cases mentioned earlier. A thorough treatment would

also require that we introduce much more of the formalism of

topological field theory. However, we can make two useful re-

marks. First of all, for any particle a with quantum dimension

da = 1, one may show that the requirement of trivial spin ac-

tually implies the general condition above (and hence it also

implies trivial self-monodromy). Secondly, in a number of

cases with da 6= 1, we have been able to show explicitly that

there are in fact states with trivial monodromy for any number

of particles of type a.

For the rest of this paper, we will ignore the general condi-

tion and work with condensates of particles with trivial spin

and partially or fully trivial self-monodromy. These condi-

tions seem to be sufficient for the condensate transitions we

have studied.
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Finally let us note that we have asked only for trivial mon-

odromy and not for completely trivial braiding. This means

that in principle, the exchanges in multi-particle states may

be represented non-trivially (with eigenvalues ±1), so that the

particles would behave in some ways like fermions, though

spinless ones. We could of course exclude this behavior, but

this restriction is unnecessary for our purposes and so we will

allow for the more general situation.

A. Examples

It turns out that bosons, that is, particles with trivial spin

and partially trivial self-monodromy, are a very common oc-

currence in topological field theories and particularly in the

theories that arise from proposed models for topological quan-

tum computation. Let us give a few examples.

1. Non-Abelian Hall states

The quantum Hall effect is currently the only physical sys-

tem where theory predicts the existence of anyonic excita-

tions in a parameter regime that is accessible in the labora-

tory. Recently, direct observation of anyonic statistics has

been claimed39,40 and much indirect experimental evidence is

also available. Anyons with non-Abelian braiding are also ex-

pected to exist at filling fraction ν = 5
2 and predicted at a

number of other filling fractions, including ν = 12
5 . These

non-Abelian Hall states are currently the most experimentally

advanced avenue toward topological quantum computation.

Hall states are described by Chern-Simons theory in the

bulk of the sample and by a corresponding chiral conformal

field theory on the edge. In the case of non-Abelian theories,

the CFT on the edge is often better understood than the bulk

theory. The Moore-Read (MR) state48 for ν = 5
2 and its gener-

alizations, the Read-Rezayi (RR) series of states49, which in-

cludes a candidate wave function for ν = 12
5 , are described by

an SU(2)k parafermionic CFT coupled to a U(1) theory de-

scribing an electrically charged chiral boson. Electrically neu-

tral excitations of these models may be described more simply

using the even spin subsectors of an SU(2)k Wess-Zumino-

Witten model. The SU(2) WZW-model at level k has k + 1
primary fields which we will label 0, . . . , k by their SU(2)
weights. The field labeled Λ corresponds to a topological sec-

tor with spin factor given by e2πihΛ , with hΛ = Λ(Λ+2)
4(k+2) . In

particular, the field labeled by Λ = k has spin factor e
iπk
2 ,

which equals 1 whenever 4 divides k. It also has quantum di-

mension equal to 1, so trivial spin is enough to guarantee that

this field is a boson. We may also see directly that this field

has trivial self-monodromy, since it fuses to the vacuum sec-

tor with itself. Thus the RR-states based on the SU(2) WZW-

theories at levels which are a multiple of 4 all have bosons.

If we want to consider excitations that have nonzero electric

charge we have to introduce labels corresponding to the U(1)
part of the CFT describing the RR-states, in addition to the

SU(2) labels. Taking the full spectrum into account, we then

find even more bosons. However, the condensation of such

charged bosons should lead to superconductivity as well as

a change in the filling fraction and so it may be physically

more difficult to interpret. It is perhaps interesting to note that

the k = 3 RR-state, which could describe the Hall plateau at

ν = 12
5 , is one of the few low-lying states in the Read-Rezayi

series that does not admit any bosons. We will present an

inventory of bosons in the proposed non-Abelian Hall states

and the expected condensed phases that result from them in a

separate publication44.

2. Non-chiral theories

Most of the known local models with anyons are in fact

non-chiral; they have vanishing central charge. Important ex-

amples of this class of model are Kitaev’s toric code mod-

els for discrete groups1 and Levin and Wen’s string net

condensates50 (the loop and dimer models of Refs. 51–53 can

also be viewed as a special case of these54).

The toric code models exhibit the same topological order as

the discrete gauge theories55–59, described by a quantum group

called the quantum double D(H) of the finite gauge group H .

We have treated quantum group symmetry breaking in these

models in our earlier works16,17, so we will discuss them only

briefly here. In the model with gauge group H , topological

sectors are labeled by a conjugacy class A ⊂ H and by an

irreducible representation α of the centralizer group NA of an

element gA of A (the choice of gA does not matter). The spin

factor of the sector labeled (A,α) is 1
dα

Tr(α(g−1
A )), where

dα is the dimension of the irrep α. Depending on the group

H there may be many bosonic sectors, but in general there are

two classes of bosons that are always present: the electric sec-

tors which have A = {e} (where e ∈ H is the unit element)

and the magnetic sectors which have α = 1, the trivial repre-

sentation of NA. It is clear that both electric and magnetic sec-

tors have trivial spin. Under fusion, the electric sectors only

produce new electric sectors, so they also have trivial mon-

odromy (in fact not just for two particle states, but for arbitrary

numbers of particles). The purely magnetic sectors may fuse

to give sectors which have nontrivial electric charges (that is,

nontrivial centralizer labels), called ‘Cheshire charges’. The

sectors with Cheshire charge will usually have nontrivial spin

and so one may wonder if the magnetic particles are always

true bosons. However, it is not difficult to show that the fu-

sion of identical magnetic particles always contains at least

one channel without Cheshire charge, so that the requirement

of partially trivial self-monodromy is satisfied. In fact, one

may go further and show that the topological Hilbert space for

arbitrarily many identical magnetic particles always contains

at least one state which has completely trivial monodromy.

This state is basically the gauge invariant magnetic conden-

sate state proposed earlier16,17, but to make contact with the

present formalism one must project this onto a subspace of

the Hilbert space with fixed total topological charge (for ex-

ample the space of topological singlets).

String net condensates are also described by quantum dou-

bles, but more typically by quantum doubles of quantum
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groups like Uq(sl(2)) and its generalizations. These mod-

els are directly related to doubled Chern-Simons or WZW-

models, with gauge groups G×G, where G is now a Lie group

and the left and right hand copies of G occur with the oppo-

site levels, i.e. these are Gk ⊗ G−k theories. The topological

sectors of such models are labeled by pairs of representations

of G that are admissible at level k. The spin of the sector

labeled (λ1, λ2) is given by θλ1
θ−1

λ2
and we see that all ‘diag-

onal’ fields (λ1, λ2) with λ1 = λ2 have trivial spin. The fu-

sion of two diagonal fields always yields at least one diagonal

field, so the requirement of partially trivial self-monodromy

is also satisfied. However, as with the case of the toric code,

one may show that there are in fact states with totally trivial

self-monodromy for any number of identical diagonal fields.

The reason is that the monodromy of any state with n diago-

nal fields (λ, λ) may be described using the tensor product of

the braid group representation associated with n copies of λ
and its dual braid group representation. This tensor product

contains a canonical singlet representation of the braid group

and the corresponding state has totally trivial monodromy.

IV. CONDENSATION, SYMMETRY BREAKING AND

CONFINEMENT

A. Symmetry Breaking:

Branching Rules and Physical Requirements

Suppose we can change the parameters of the microscopic

Hamiltonian underlying our anyonic system in such a way that

the particle with charge a condenses (a should be a boson in

order for this to happen). Then we can ask what the over-

all effect of this condensation on the topological excitation

spectrum of the system will be. The basic idea of this paper

is that the condensate breaks down a symmetry underlying

the spectrum. That is, before condensation the charge sec-

tors correspond to irreducible representations of some quan-

tum group A, the fusion rules are described by decomposition

of the tensor products of these irreps etcetera. Then conden-

sation breaks A down to a subalgebra T and afterward the

excitations carry irreps of T . When a quantum group is bro-

ken down to a subalgebra, two things generically happen to

its irreducible representations. First of all, some irreps of the

original quantum group A will not be irreducible as repre-

sentations of the subalgebra T . These representations will

split into multiple irreps of T . Secondly, some representa-

tions which are inequivalent under the full A-action will have

equivalent T -actions and hence become identified. More con-

cretely, all this can be described by branching rules of the

form

a →
∑

t

na
t t. (13)

where a is an irreducible representation of the original quan-

tum group A, the t’s are irreps of the algebra T that is left af-

ter symmetry breaking and the na
t are multiplicities. We will

now make an important conceptual step and put these repre-

sentation labels and branching rules center stage, forgetting

for the moment about quantum groups and their subalgebras.

So assuming that we have a set of labels {a, b, c, . . .} which

characterise the charge sectors of the unbroken theory, as well

as fusion rules and spin factors for these labels, then we will

say that symmetry breaking means that to each of these labels

we associate a branching rule

a →
∑

i

na
i ai. (14)

We will call the right hand side of this equation the restriction

of a (we are still thinking of it as the restriction of a represen-

tation a of A to T ). The na
i are again multiplicities and we

have introduced a new notation where instead of labeling the

components of the restriction of a directly by sectors of the

broken theory (which we think of as labels of irreps of T ), we

simply label them a1, a2 etc. Of course the new labels ai that

occur will most likely not all correspond to distinct sectors of

the new theory, for different choices of a. However, the no-

tation introduced here is quite useful in the process of finding

out exactly what the new set of sectors actually is.

We want the new labels to be the labels for the excitations

of the broken phase, so we will make the physical assumption

that they have their own set of fusion rules satisfying the re-

quirements of section II, namely, associativity, existence of a

vacuum label and conjugate representations, and a unique way

for each conjugate pair of labels to annihilate to the vacuum.

We will not require the new fusion rules to be symmetric, that

is, we may allow that ai × bj 6= bj × ai for some pairs ai, bj .

We also do not require a well defined spin or monodromy of

the ai at this point. The reason that we do not impose these

requirements is that we want the new set of labels to capture

not only pointlike excitations of the condensate vacuum, but

also topological excitations which pull strings or alternatively,

excitations which are confined to a boundary between the bro-

ken and unbroken phase. The string pulling excitations are

expected to be the same as the excitations which occur only

on the boundary, since a confined boundary excitation may be

visualized as a thread or string extending from the boundary

into the broken phase, ending at a string-pulling excitation of

that phase.

Apart from the requirement that the new theory has sectors

with associative fusion and unique duals, there are two more

important assumptions that go into the determination of the

new set of labels and and their fusion rules. First of all, the

sector that contains the condensed excitation should be indis-

tinguishable from the vacuum sector in the condensed phase.

Hence we require that the restriction of the condensed sector c
of the original theory contains the vacuum label 1 of the new

theory. In other words

c → (c1 ≡ 1) +
∑

i>1

nc
ici. (15)

Secondly, we require that the fusion of the old and new labels

is compatible with the branching, that is, restriction and fusion

commute and we have

a×b =
∑

c

Nab
c c ⇒ (

∑

i

na
i ai)×(

∑

i

nb
ibi) =

∑

c,k

Nab
c nc

kck

(16)



9

and

a →
∑

i

na
i ai ⇒ ā →

∑

i

na
i ai. (17)

The equations above, together with the uniqueness of the unit

of the new theory also imply that

1 → 11 ≡ 1. (18)

Here, we introduce a slight abuse of notation that we will uti-

lize throughout, namely, if a sector branches to a unique new

sector, we will denote the old and new sectors by the same

label, as long as the meaning is clear from the context.

The compatibility of fusion and restriction has another im-

portant consequence: it implies that the quantum dimensions

are preserved under branching, that is, for every label a of the

unbroken phase, we have

(

a →
∑

b

na
b b

)

⇒
(

da =
∑

b

na
bdb

)

. (19)

1. Example: breaking SU(2)4.

We will now give a simple example of how one can de-

termine the set of labels for the broken phase and their fu-

sion rules directly, given the assumptions above. Consider

the representation theory of SU(2)q at q = e2πi/6. This is

the quantum group for the SU(2)4 WZW model of conformal

field theory and for the SU(2) Chern-Simons theory at level

4. There are five different topological sectors in this theory

which are simply denoted by Dynkin labels 0, . . . , 4, with 0
denoting the vacuum. The quantum dimensions, spins and fu-

sion rules for these sectors are given in table I and from this

table, we may read off that the sector labeled 4 is bosonic (we

have h4 ∈ Z, 4 × 4 = 0 and h0 − 2h4 ∈ Z). If an excitation

SU(2)4 unbroken

0 d0 = 1 h0 = 0

1 d1 =
√

3 h1 = 1

8

2 d2 = 2 h2 = 1

3

3 d3 =
√

3 h3 = 5

8

4 d4 = 1 h4 = 1

1 × 1 = 0 + 2

1 × 2 = 1 + 3 2 × 2 = 0 + 2 + 4

1 × 3 = 2 + 4 2 × 3 = 1 + 3 3 × 3 = 0 + 2

1 × 4 = 3 2 × 4 = 2 3 × 4 = 1 4 × 4 = 0

TABLE I: Spins, quantum dimensions and nontrivial fusion rules for

SU(2)4 (the fusion rules are symmetric and fusion rules for the vacuum have

been omitted).

in the 4-sector condenses, then 4 will have to branch to the

new vacuum and possibly other new labels. However, since

d4 = 1 and the quantum dimension of the new vacuum is also

necessarily equal to 1 and quantum dimensions are preserved

under branching, we find that

4 → 0. (20)

From here, we may conclude immediately that the restrictions

of 3 and 1 must equal each other, since 4×1 = 3 and 4×3 = 1.

Also, the restriction of 1 (or 3) can only have one part, because

each part would contribute at least a numerical value of 1 to

the quantum dimension of the label 1 and the value of this

quantum dimension is less than 2. Now let us look at the

fusion of the restriction of 2 with itself. We have

2 × 2 = 0 + 2 + 4 → 0 +
∑

i

n2
i 2i + 0. (21)

Since the vacuum appears twice on the right hand side, 2
must branch into at least two parts (if there was only one part,

it would be able to annihilate with itself in two different ways).

Since the quantum dimension of 2 equals 2, this is possible,

and in fact there must be exactly two parts 21 and 22, each

with quantum dimension 1. Note that neither 21 nor 22 can

be identified with the vacuum sector 1, since this would imply

the splitting of 1 through the fusion rule 1 × 1 = 0 + 2 =
0 + 21 + 22 and this is impossible, since d1 < 2. Looking

back at the fusion 2 × 2 we then conclude also that 21 6=
22. We have now completely identified the branching rules

for this transition and we turn to the fusion rules. These are

straightforward for the new labels 0 and 1(using (16)), but for

21 and 22, we have two options, in principle. Either these

sectors are both self dual, giving 21 × 21 = 22 × 22 = 0, or

they are dual to each other, giving 21 × 22 = 22 × 21 = 0.

Now rewriting equation (21) with our current knowledge, we

see that

2 × 2 = (21 + 22) ×(21 + 22)

= 21×21 + 21×22 + 22×21 + 22×22

= 0 + 21 + 22 + 0.

(22)

Hence if we assume that 21 and 22 are self-dual, it follows that

either 21×22 = 21 and 22×21 = 22 or 21×22 = 22 and 22×
21 = 21. In either case, one quickly checks that associativity

of the fusion rules is violated, by evaluating (21×22)×21 and

21 × (22 × 21). Hence 21 and 22 must be dual to each other.

Now we just have to decide whether 21 × 21 equals 21 or 22

(and similarly for 22 × 22). A similar associativity argument

as before quickly yields that we must have 21 × 21 = 22 and

22 × 22 = 21. Hence we can straightforwardly obtain the full

new set of sectors, as well their fusion rules. We summarize

these results in table II Note that while the fusion rules of the

broken theory turn out to be symmetric, we did not put this in

by hand and it is in fact just a particular feature of this theory

that is not reproduced in general.

B. Confinement

Not all of the excitations of the broken phase will be point-

like; some will pull strings in the condensate. These exci-

tations will be confined, since a string is just a part of the
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SU(2)4 broken

0 → 0 d0 = 1

1 → 1 d1 =
√

3

2 → 21 + 22 d21 = d22 = 1

3 → 1

4 → 0

1 × 1 = 0 + 21 + 22

1 × 21 = 1 21 × 21 = 22

1 × 22 = 1 21 × 22 = 0 22 × 22 = 21

TABLE II: Branching rules, quantum dimensions and nontrivial fusion rules

for SU(2)4 after condensation in the 4-sector (the fusion rules are symmet-

ric).

medium where the original symmetry is restored and will cost

an amount of energy proportional to its length. The excitations

which do not pull a string will be the particlelike excitations of

the new phase and they should have well-defined fusion and

braiding interactions, in particular well defined monodromies

and spin factors. Intuitively, an excitation should pull a string

when it has nontrivial monodromy with the condensed exci-

tation, since such nontrivial braiding would lead to a branch

cut singularity in the condensate order parameter. Though not

very rigorous, it is probably best to say that it is not possible to

have a smooth single valued order parameter field enclosing a

particle which has a nontrivial monodromy, and that therefore

that particle has to pull a string upon entering such a phase.

One expects at least that the presence of the condensate does

not interfere with the monodromy of the non-confined parti-

cles. In particular, we expect to be able to assign spin factors

to the non-confined sectors by ‘lifting’ them into the unbroken

phase. The lifts of a sector b of the broken theory are just all

labels bi of the original theory that have b in their restriction.

A necessary condition for a sector to not be confined is the

following:

• If a sector b is not confined then all its lifts bi must have

equal spin factors.

In the other direction, sectors which do not satisfy this con-

dition will be confined. Note that it is only natural that we

should not be able to assign spin factors to string-like excita-

tions, since twisting such an excitation leads to a physically

observable twist in the string connected to it and we should

not expect that such a change can be absorbed by a change of

the phase of the wave function.

There are a number of other physical criteria on the set of

non-confined particles which we could impose separately, but

which in practice turn out to be implied by the simple re-

quirement above in all cases we have investigated. First of

all, the non-confined sectors must form a closed set under fu-

sion, since pointlike excitations must fuse to pointlike excita-

tions. Also, this set must contain the vacuum. In particular,

this means that all lifts of the vacuum must have trivial spin.

This is of course a criterion that is intimately related to the

nature of the condensate; we can impose it already at the sym-

metry breaking stage, or even view it as part of the definition

of a ‘bosonic’ condensate. Finally, we can go so far as to re-

quire that there is a unitary braided tensor category describing

the fusion and spins of the set of unconfined excitations. Prov-

ing such a thing is beyond the scope of this paper, but again it

does turn out to be true in all our examples. Also, we would

like to stress once more that it is likely that if such a braided

tensor category exists, it will actually be fixed uniquely by the

fusion and spins of the unconfined sectors.

From our assignment of spin factors, we may derive the

monodromy of the non-confined particles using the ribbon

equation (assuming that the set of non-confined particles

closes under fusion). The resulting monodromy is just the

same as the monodromy of the lifts of the particles. More

specifically, let a, b and c be sectors of the broken theory

which are not confined and let c ∈ a × b. Also, let ai, bj

and ck be arbitrary lifts of a, b and c with the property that

ck ∈ ai × bj . Then the monodromy of ai and bj in the fu-

sion channel ck is given by the combination of spin factors

θck/(θaiθbj ), but since the spin factors of the lifts of a, b
and c are all equal, this factor does not actually depend on

the choice of lifts ai, bj and ck and we may as well write

θc/(θaθb), which is the monodromy of a and b in the fusion

channel c. An important special case of this argument is the

case b = 1. In this case we are looking at the monodromy of

the lifts of a with the lifts of the vacuum, which are of course

the condensed sectors. The argument we just gave now says

precisely that the lifts of the non-confined particle a have triv-

ial braiding with the condensed particles, so we have managed

to give a more precise meaning to the intuition about confine-

ment that we mentioned at the start of this section.

We could in fact turn the whole argument above around

and start by requiring that all lifts of a non-confined sector

should have trivial monodromy with lifts of the vacuum sec-

tor (i.e. with condensed sectors). From that assumption we

can get back to the confinement criterion given above if two

conditions are satisfied. First of all, all lifts of the vacuum of

the broken theory should have trivial spin (we also required

this before) and secondly, it must be possible to obtain all lifts

of a sector of the broken theory by fusion with lifts of the vac-

uum. As we remarked, the first requirement is intimately con-

nected with the nature of the condensate and with the question

what exactly constitutes a boson in 2 + 1 dimensions. If the

second requirement does not hold, then it would seem that we

have identified sectors which should be distinguishable. It is

not clear to us at this point whether these two requirements

follow from the conditions on the condensate and on the sym-

metry breaking scheme that we had imposed already, though

they do in all our examples. In any case, assuming that these

two requirements do hold, we can regain our previous con-

finement criterion. Any lift of the fusion channel b × 1 = b is

of the form bi × 1j = bk and the monodromy factor in this lift

is θbi/(θ1j θbk). Now using the two conditions above, we see

that θ1j = 1 for all j and also, for any j, the possible bk run

through all lifts of b. Thus for all these monodromy factors to

be equal to 1 is equivalent to θbi = θbk for all i and k. In other

words, excitations in the b factor are not confined precisely

when all lifts of b have the same spin factor and we are back

at our original criterion.
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1. Back to the SU(2)4 example

Applying the confinement criterion to our SU(2)4 example,

we see that the sectors labeled 0, 21 and 22 are not confined.

For 21 and 22 this is immediate, since they have a unique lift,

and 0 lifts to either 0 or 4, both of which have spin factor 1.

The sector with label 1 is confined, since 1 lifts to 1 and 3,

which have different spin factors (eiπ/4 and −eiπ/4 respec-

tively). This gives the results in table III. This result actually

SU(2)4 after confinement

0 θ0 = 1

1 confined

21 θ21 = e2πi/3

22 θ22 = e2πi/3

21 × 21 = 22

21 × 22 = 0 22 × 22 = 21

TABLE III: Spin factors, and nontrivial fusion rules for the non-confined

sector of SU(2)4 with a condensate in the 4-sector.

fixes the topological order of the non-confined sector of the

broken theory uniquely, since there is only one solution to the

consistency conditions for topological field theories (notably

the pentagon and hexagon equations60) which has these fusion

rules and spin factors61,62.

C. Classification of strings

We have given a description of the spectrum of topological

excitations in a theory which has undergone a condensation

transition. We have seen that the broken theory has excitations

which are pointlike as well as confined excitations which pull

strings. These confined excitations can exist as boundary ex-

citations, when their strings are attached to a phase boundary,

or as ‘hadronic’ composites, when two or more confined exci-

tations form a cluster whose overall topological charge is not

confined. In such clusters, the confined particles are joined to-

gether by their strings. It is interesting to try and characterize

the different types of string themselves in some non-redundant

way. A redundant labeling is given by the set of labels of con-

fined particles. Many confined particles will likely pull the

same type of string in the condensate vacuum, since each con-

fined particle can be fused with any non-confined particle to

give some other confined particle, and this should not change

the type of string that occurs. Therefore, we propose to label

the different types of string by equivalence classes of confined

sectors modulo fusion with excitations from non-confined sec-

tors. To be more precise, let us introduce an equivalence rela-

tion on the sectors of the broken theory as follows,

a ∼ b ⇔ ∃ c, c′ not confined,

such that (b ∈ a × c) ∧ (a ∈ b × c′)
(23)

We clearly have a ∼ a, just take c and c′ trivial. Also a ∼
b ⇔ b ∼ a, since the definition of the relation is symmetric.

Finally if a ∼ b and b ∼ c then a ∼ c. To see this, note that

from a ∼ b, we have unconfined sectors d, d′ with a ∈ b × d
and b ∈ a × d′. Similarly, from b ∼ c, we have unconfined

sectors e, e′ with b ∈ c × e and c ∈ b × e′. Hence, we have

a ∈ c × e × d and c ∈ a × d′ × e′ and since d, e, d′ and e′

are not confined, neither are e× d or d′ × e′, so a ∼ c and we

have a good equivalence relation.

The different types of string should be uniquely labeled by

the equivalence classes, which are some sort of ‘orbits’ under

fusion with non-confined excitations. As a check, we note that

all non-confined representations are equivalent to each other,

which is what we want, since they all correspond to the situ-

ation with no string. To see this note that if a and b are not

confined, then neither are ā× b and b̄×a. But b ∈ a× (ā× b)
and a ∈ b × (b̄ × a), so indeed a ∼ b.

For our SU(2)4 example the classification of strings is

rather trivial, since there is only one type of confined particle.

Hence there are just two classes under the equivalence above,

the class consisting of the confined particle 1, which pulls a

string and the class consisting of the unconfined particles 0,

21 and 22, which pull no string.

D. Summary and comparison to our earlier approach

In the previous sections we have given general principles

for the treatment of the phenomenon of ‘breaking’ a quantum

symmetry A through the formation of a boson condensate, as

well as a detailed example. The analysis proceeds in three

stages:

1. Criteria for a condensate. We formulated some criteria that

have to be satisfied for a ‘field’ c to be a ‘boson’, and to serve

as a possible candidate to form a condensate. Two necessary

conditions are that it should have trivial spin factor (θc = 1)

and partially trivial self monodromy, i.e. there is at least one

fusion channel f ∈ c × c with θf = 1.

2. Consistent branching. Our analysis is based on the con-

struction of a set of branching rules giving the decomposition

of the topological sectors of the unbroken theory into sectors

of the broken theory. We can think of this as branching rep-

resentations of the quantum group A describing the unbro-

ken phase into representations of an intermediate algebra T
(whose structure is not discussed a priori). There are a num-

ber of consistency conditions on these branching rules that

have to be met and these in fact appear to determine the possi-

ble branchings uniquely. A crucial condition is that branching

commutes with fusion. This implies in particular that the total

quantum dimension is preserved under the branching rule and

that the old vacuum branches into the new. We furthermore

require that the condensate has the new vacuum in its branch-

ing.

3. Confinement. We observe that we can determine which

representations in the broken phase have a nontrivial braiding

with the condensate, and it is clear that these will pull a string

in the new vacuum and hence are confined. The effective topo-

logical low energy theory is then described by the fusion and

braiding rules of the non-confined representations (these must

form a closed fusion ring) and these can then presumably be
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identified as the irreducible representations of some quantum

group U .

To our knowledge applying these conditions and perform-

ing these steps determines the breaking pattern uniquely. In

previous papers on this subject we restricted our attention

mostly to theories described by finite dimensional quasitrian-

gular Hopf algebras, especially the so-called discrete gauge

theories, whose hidden symmetry corresponds to the quan-

tum double of the discrete gauge group. In those cases the

analysis of the breaking phenomena was done by explicitly

considering the algebraic structure of T and U . However fol-

lowing that route directly in case one is dealing with represen-

tations that carry non-integer quantum dimensions is problem-

atic, and that is why in this paper our analysis is based on the

‘dual’ route, directly studying the breaking pattern on the level

of topological sectors (‘representations’) and their branching

rules.

Indeed, in the explicit example we treated in the previous

section of this paper we showed that the present approach,

using the branching rules directly, can also be applied to topo-

logical systems which have sectors carrying non integer quan-

tum dimensions, for example the systems described by the

quantum groups based on quantum deformations of semisim-

ple Lie algebras which show up in relation to conformal field

theories of the Wess-Zumino-Witten (WZW) type. This is an

important extension of the possible applications of the break-

ing mechanism which will allow applications in physical con-

texts like the fractional quantum Hall effect.

V. GENERAL FEATURES OF THE CONDENSATION

TRANSITION

A. Simple current condensates

Let us uncover some features of the condensate transition

that are mostly independent of the details of the topological

phase we start with. One can get surprisingly far with this if

the condensed sector is a simple current. A simple current in

CFT is a primary field J whose fusion rules are such that the

fusion of J with any other field contains only one channel,

i.e. for any primary field φ, the fusion rule J ×φ has only one

primary field on the right hand side. We will use the analo-

gous definition in the context of TQFT. It is easy to see that

a topological sector labeled J is a simple current precisely if

dJ = 1. First of all, since there are only finitely many sectors,

we must have J×p = 1 for some p. We call this integer p the

order of J and denote it |J |. Now using formula (6) repeatedly

and noting that d1 = 1 (which also follows from formula (6)),

we see that (dJ)p = 1. But since dJ is real and positive, it fol-

lows that dJ = 1. For the converse, let us assume that dJ = 1.

Then it is immediate that all fusion powers of J are dimension

1 sectors and there will be some J for which J×p = 1. Now

if there would be some sector b for which the fusion J × b has

multiple channels, then this would imply that Jp × b also has

multiple channels, or multiplicities greater than 1. However

since Jp = 1, this is a contradiction and hence J is a simple

current.

If a bosonic simple current J condenses, we can immedi-

ately see that the restrictions of a number of fields of the orig-

inal theory will be identified. First of all, the fusion powers of

J all branch to the vacuum. More generally, for any sector a,

there is an orbit of a under the action of fusion with powers of

J and the restrictions of the fields J×l × a in this orbit are all

identified.

If the orbits are all of the maximal size, |J |, then these iden-

tifications lead directly to a new fusion theory, without any

further identifications or splittings. The J-orbits of the old

theory correspond to the excitations of the condensed theory.

The lifts of the new vacuum sector are precisely the sectors

1, J, . . . , J |J|−1 of the old theory and using that θJ = 1, we

find that θJl = 1 for all l, so all lifts of the vacuum have trivial

spin. more generally, the non-confined excitations of the new

medium are precisely those J-orbits for which the spin factor

is the same for all particles in the orbit.

If there are J-orbits of less than maximal size, the sectors

in these orbits will split. To see this, let a be sector in a non-

maximal J-orbit and let p be the smallest integer for which

Jp × a = a (note that p must divide |J |). Then we have

a×ā = 1+. . . = (Jp×a)×ā = Jp×(a×ā) = Jp+. . . (24)

and so a × ā = 1 + Jp + . . .. An analogous argument shows

that we must have a × ā = 1 + Jp + . . . + J |J|−p + . . . and

so the restriction of a × ā contains at least
|J|
p copies of the

new vacuum sector, which implies that a (and ā) must split. If

there are no multiplicities ni
a greater than 1 in the restriction

of a, then it must in fact split into at least
|J|
p parts, but there

may be extreme cases where a restricts to
√

|J |/p copies of

the same sector of the new theory.

To obtain the fusion rules for the parts of the split sectors,

new input about the theory is necessary; we have examples

where two parts obtained in this way are dual to each other

(like 21 and 22 in the broken SU(2)4 theory) as well as exam-

ples where they are self dual (see for instance the discussion

of SU(2)8 in section VII A).

B. More general condensates

When the condensed sector is not a simple current it be-

comes much more difficult to say anything general about the

symmetry broken and confined theories. In this case the sector

c that condenses branches to a number of copies of the vac-

uum and possibly to other sectors, i.e. c → nc
01 +

∑

i6=0 nc
ici,

where we have chosen c0 = 1. Here nc
0 ≥ 1 and some of the

nc
i with i 6= 0 may be greater than zero. If dc is not an integer,

then there have to be such non-vacuum components of the re-

striction of c, in order to preserve the quantum dimension. In

fact, some of the restrictions of c may be confined. One may

heuristically interpret this ‘partial condensation’ by thinking

of particles in the topological sector labeled by c as having a

hidden internal Hilbert space of dimension dc and condensing

in a particular state in this internal space. The condensed state

(and possibly some other states in the internal space) will then

branch to the vacuum, but other internal states will not and
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may even be confined. In our earlier work, where we restricted

ourselves to a class of theories with integer quantum dimen-

sions, this interpretation could be made completely rigorous.

However, in the present context, this seems more difficult. It

is likely better to think of the number n0
c as a measure for the

number of states in a system of N identical particles of type

c which would be indistinguishable from the vacuum in the

condensed phase (one would expect this number to grow as

(n0
c)

N ).

With the condensate c not a simple current, there will still

be identifications, but they are more difficult to obtain. In

general, the fusion rules c × a =
∑

b N b
cab just tell us that the

components of the restriction of a are identified with some of

the components of the restrictions of the sectors b appearing

on the right. Similarly, if a fusion a×b contains the condensed

sector c, then this tells us that some component of the restric-

tion of a must be identified with a component of the restriction

of b̄. To get more information, we need to use the requirement

that the broken theory is once again a good fusion theory.

It is possible to make some general predictions on splitting,

though not as strong as the ones for simple currents. If, for

some sector a, the fusion a × ā contains nc
aā ≥ 1 copies of c,

then the restriction of this sector must split in order to produce

the at least nc
aā +1 copies of the new vacuum in the restriction

of a × ā. Again, if the components of the restriction are all

distinct then there must be at least nc
aā + 1 of them, but in ex-

treme cases, we may have just one component with multiplic-

ity
√

nc
aā + 1. Note that if c is a simple current, then nc

aā ≤ 1,

since if nc
aā ≥ 2, then we would have n1

c|c|−1×a,ā
≥ 2, con-

tradicting the axiom of fusion that says that sectors can only

fuse the vacuum in a unique way. Also, in the simple current

case, one may see easily that the splittings deduced here are a

special case of the splittings of sectors in non-minimal orbits

discussed before. Similar arguments to the above show that

for any pair of sectors a, b for which N c
ab ≥ 2, at least one of

a and b must have a restriction which splits.

Another case in which splitting of a sectors a occurs for

arbitrary condensates c is if the fusion c × a contains a and

no other sectors whose quantum dimension is greater than or

equal to that of a. Of course if c is a simple current this just

says that a is a fixed point. In the general case the restriction

of the fusion c × a × ā must contain at least na
ca + 1 copies

of the new vacuum sector, one from the c in c × (a × ā) and

na
ca from the copies of a× ā in (c× a)× ā. Now if a (and ā)

do not split, we see that there must be at least na
ca + 1 copies

of the restriction of a in the restriction of the fusion of c × a.

However, none of the components of the restrictions of other

fields in c× a can be identified with the restriction of a, since

the quantum dimensions of these other fields are smaller than

da by assumption. Hence, it follows that a must split.

C. Observations on c and D

From the examples we have calculated, we observe that the

central charges and total quantum dimensions of anyon mod-

els seem to follow certain general rules under condensation, if

the anyon model that one starts with is modular. Modularity

is equivalent to the requirement that the monodromy is non-

degenerate, that is, for every topological sector a there is at

least one topological sector b such that a and b have nontrivial

monodromy (see Ref. 23, section E.5). Another useful char-

acterization of modularity is that the S-matrix of the theory

must be unitary. This requirement is satisfied for many models

that have been studied in physics, for example for all models

coming from conformal field theories with bosonic chiral al-

gebras. However, there are examples where modularity does

not apply, notably in systems with excitations which behave

like the vacuum under monodromy but which have nontrivial,

necessarily fermionic, exchange behavior. Typical examples

of such excitations are the actual electrons in quantum Hall

systems.

Given modularity, we observe that

• The topological central charges of the unbroken theory

and the unconfined theory are equal

• Denoting the total quantum dimensions of the original,

broken and unconfined theories by DA, DT and DU , we

have DA

DT
= DT

DU
.

We also note that generally (independently of modularity) we

have DA ≥ DT ≥ DU . In the remainder of this paper we

will study connections between the quantum group symmetry

breaking scheme we have described so far and constructions

in conformal field theory. We will argue that quantum group

symmetry breaking in CFT is dual to conformal extension of

the chiral algebra. This should also clarify the observation that

central charge is conserved. It appears more difficult to get an

intuition for the identity between total quantum dimensions

from the CFT side.

VI. QUANTUM GROUP BREAKING VS. CONFORMAL

EXTENSIONS

In an idealized system with topological order, topological

quantum numbers cannot be changed by the application of

any local operator. In other words, topological observables

are conserved quantities which commute with the full alge-

bra of local observables. Of course in realistic systems, the

situation is often more complicated than this. First of all,

the topological features are often emergent only at low en-

ergies and different ‘topological sectors’ of the Hilbert space

may be mixed by high energy (virtual) excitations. Secondly,

any real system has a finite size, which implies that a prod-

uct of finitely many local operators can actually become a

‘topologically nontrivial’ operator and relate states with dif-

ferent topological quantum numbers. In other words, there is

no clean separation between ‘local’ and ‘topological’ observ-

ables. However, in the setting of conformal field theory, such

a separation does exist. Here, the role of the local algebra is

played by the chiral algebra, which can be the Virasoro al-

gebra, or some more complicated algebra like a Kac-Moody

algebra or W-algebra. The Hilbert space of the theory splits

into sectors on which this chiral algebra acts, but which are

not mixed with each other by this action. These chiral sec-

tors correspond to the topological sectors of the CFT. Hence
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it is natural to expect that there should be a TQFT, or modular

tensor category, which describes the fusion and exchange in-

teractions of states from the different sectors. It is also natural

to introduce operators for topological charges which commute

with the full chiral algebra and one may in fact hope to find a

quantum group whose representation category is precisely the

modular tensor category that describes the system’s topologi-

cal interactions and which has an action on the Hilbert space

of the CFT that commutes with the action of the chiral algebra.

Operators for topological charges can then be the analogs of

Casimir operators for this quantum group. While this picture

of a chiral algebra and a quantum group with commuting ac-

tions seems to be part of the lore of CFT, there does not appear

to be a detailed mathematical understanding of this picture for

general CFTs. We will nevertheless attempt to flesh it out for

Wess-Zumino-Witten models in the remainder of this section,

and note in advance that the picture just sketched does pro-

vide useful intuition about the connection between quantum

group symmetry breaking and some well known constructions

in CFT.

Since the quantum group and the chiral algebra are morally

each other’s commutants, we expect that breaking down quan-

tum group symmetry from a large quantum group to a smaller

one should be accompanied by an extension of the chiral al-

gebra on the ‘local’ side of things. In fact, we find that there

is a beautiful connection between quantum group symmetry

breaking and conformal extension of the chiral algebra. In

conformal extensions, we start with a chiral algebra that has a

representation which is bosonic, but topologically nontrivial.

Then we enlarge the algebra by adding an intertwining op-

erator between the vacuum representation and this nontrivial

bosonic representation (i.e. a creation operator for a topologi-

cally nontrivial particle). Before the conformal extension, the

theory would have a topological (or more precisely, chiral)

sector corresponding to this bosonic field, but afterwards, this

sector has become part of the vacuum sector of the new chiral

algebra. On the quantum group side of the story we can in-

terpret this merger of a bosonic sector with the vacuum sector

as condensation of the bosonic particle and describe its effects

using the formalism proposed here. In retrospect, this intuitive

argument explains the similarity of some of our constructions

and criteria to those mentioned for conformal extensions in

Moore and Seiberg’s famous work on the classification of ra-

tional CFT’s63. Since many of the common constructions of

CFTs, most notably the coset construction64, can be described

in terms of conformal extension of the chiral algebra, these

constructions now obtain a physical interpretation as being

due to condensation of bosonic quasiparticles. In fact, this

suggests that some CFT constructions will have a direct phys-

ical realization in phase transitions which occur in systems

described by CFTs.

After this somewhat abstract discussion let us turn to WZW

models. In these models65,66 the physical states are organized

into integrable representations of an extended conformal sym-

metry, a Kac-Moody algebra based on a finite dimensional Lie

algebra G, at a certain level k, which we will denoted as Gk.

These representations correspond to chiral primary fields and

there is a finite number of them. This theory has a central

charge equal to

c(G, k) =
k dimG

k + h
, (25)

with h is the dual Coxeter number of G. The chiral primary

fields are operators which create the lowest energy states of

the different topological sectors of the theory from the vac-

uum and one may obtain the fusion rules and braiding of the

topological sectors directly from the CFT by calculating the

correlators, or more precisely the conformal blocks, of these

chiral primary fields. There is a one to one correspondence

between chiral primary fields in the WZW model and irre-

ducible representations of the quantum group Uq(G), where

q = e
2πi
k+h and in fact, it is known67,68 that the fusion and braid

relation obtained in this way are exactly the fusion and braid-

ing of these quantum group representations. Explicit repre-

sentations of the quantum group in terms of operators acting

on the Hilbert space of the theory can also be obtained, within

the Coulomb gas formalism69–71. All of this goes a long way

toward establishing the picture that we sketched earlier in this

section, of a chiral algebra and a quantum group normalizing

each other. The relation between WZW theory and quantum

groups is quite useful even as a calculational tool, because

many properties of multi(quasi)particle states in conformal

field theory, such as their braiding properties, can be deter-

mined by just using the properties of the quantum group (see

e.g. Ref. 72).

In the remainder of the paper we will pursue the relation

between the breaking mechanism and CFT in some detail, ex-

hibiting the connections between the two formalisms in ex-

plicit examples, most of them based on WZW theories. We

will find that the breaking of quantum symmetries is indeed

closely related to conformal extensions and we will show how

well known constructions like the coset construction64, con-

formal embeddings73,74 and orbifolding75–77 acquire a direct

physical relevance and interpretation in the present context.

VII. CONFORMAL EMBEDDINGS

Conformal embeddings are embeddings of affine Lie alge-

bras Hk′ ⊂ Gk with the property that the central charges are

equal,

c(G, k) = c(H, k′). (26)

As a result, the corresponding cosets Gk/Hk′ have central

charge equal to zero and are therefore trivial. We will have

more to say about this in section VIII. Here we will focus on

the embeddings themselves. General (non-conformal) embed-

dings of affine Lie algebras do not conserve the central charge,

but for all embeddings, the levels k and k′ are related by the

Dynkin index l of the corresponding embedding of H into G,

one has k′ = lk. The conformal embeddings of affine Lie

algebras have been classified in Refs. 73,74; they form a num-

ber of infinite series and a finite list of special cases. In these

papers it is proved that for a conformal embedding the level of

Gk is always unity: k = 1. Conformal embeddings also have
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the remarkable property that the (infinite dimensional) highest

weight representations of Gk branch to finitely many highest

weight representations of Hk′
78.

Let us return to the breaking of SU(2)4 that we studied in

section IV and let us show how it is connected to the well

known conformal embedding of SU(2)4 in SU(3)1; indeed

conformal because both have central charge c = 2. In table

IV we give the representations and fusion algebra of SU(3)1.

From the embedding we obtain the branching of the corre-

SU(3)1

1 d1 = 1 h0 = 0

3 d3 = 1 h3 = 1

3

3̄ d3̄ = 1 h3̄ = 1

3

3 × 3 = 3̄

3 × 3̄ = 1 3̄ × 3̄ = 3

SO(5)1

1 d1 = 1 h0 = 0

4 d4 =
√

2 h4 = 5

16

5 d5 = 1 h5 = 1

2

4 × 4 = 1 + 5

4 × 5 = 4 5 × 5 = 1

TABLE IV: Spins, quantum dimensions and nontrivial fusion rules for

SU(3)1 and SO(5)1.

sponding Kac-Moody representations:

1 → 0 + 4

3 → 2

3̄ → 2

(27)

Indeed, this finite branching is possible because the 0 and 4
representations of SU(2)4 are degenerate, in the sense that

their conformal weights differ by an integer. So one way to

understand the conformal embeddings is to say that because

the Hk′ representations are degenerate there is a larger sym-

metry realized in the spectrum, i.e. Gk. Interestingly, the

(bosonic) singlet module of Gk decomposes into bosonic rep-

resentations under Hk′ , as we see in the first line of (27) and

if we now return to our analysis of section III we see that it

is exactly the nontrivial bosonic component in the branching

(i.e. the 4 of SU(2)4) that is assumed to form the condensate.

On the other hand we make the remarkable observation that

after breaking and subsequent confinement the residual sym-

metry U , i.e. the representations and their fusion rules as given

in table III are precisely those of SU(3)1! The conclusion is

that there is a unique correspondence between the conformal

embedding Hk′ ⊆ Gk and the breaking of the quantum group

for Hk′ → Gk, where it should be noted that on the side of

the chiral algebras, the embedded algebra is ‘smaller’, while

on the quantum group side the residual quantum group cor-

responding to Gk is ‘smaller’ than the one for the embedded

algebra Hk′ . All this is in good agreement with our intuition

that the fusion algebra is somehow the normalizer of the chi-

ral algebra in the operator product algebra of the CFT. In fact,

we can think of the chiral algebra of SU(3)1 as an extension

of the chiral algebra of SU(2)4 by the intertwining opera-

tor between the vacuum sector of the SU(2)4 theory and the

sector labeled by Λ = 4. The breaking of quantum symme-

tries is thus related to enlarging the conformal symmetry, and

the construction of new conformal models with larger chiral

symmetries, starting with models related to Kac–Moody alge-

bras, has in the present context acquired a very direct physical

meaning and relevance, namely the formation of a bosonic

condensate in the phase with the smaller chiral symmetry.

It is instructive to discuss another example of a conformal

embedding, where applying the breaking formalism is less

straightforward. Let us consider the conformal embedding

SO(5)1 ⊇ SU(2)10 both with c = 5/2. We have listed the

quantum dimensions, spins and fusion of the SO(5)1 theory

in table IV. The spins and quantum dimensions for SU(2)10
are given in table V.

SU(2)10

0 d0 = 1 h0 = 0

1 d1 =
√

2 +
√

3 h1 = 1

16

2 d2 = 1 +
√

3 h2 = 1

6

3 d3 =
√

2 +
√

2 +
√

3 h3 = 5

16

4 d4 = 2 +
√

3 h4 = 1

2

5 d5 = 2
√

2 +
√

3 h5 = 35

48

6 d6 = 2 +
√

3 h6 = 1

7 d7 =
√

2 +
√

2 +
√

3 h7 = 21

16

8 d8 = 1 +
√

3 h8 = 5

3

9 d9 =
√

2 +
√

3 h9 = 33

16

10 d10 = 1 h10 = 5

2

TABLE V: Spins, quantum dimensions for SU(2)10.

The fusion rules for SU(2)k, and in particular for SU(2)10,

are given by

Λ1 × Λ2 =

min {Λ1+Λ2, 2k−Λ1−Λ2}
∑

Λ=|Λ1−Λ2|
Λ, (28)

where the sum runs over those Λ in the indicated range for

which Λ1 + Λ2 − Λ is even (i.e. Λ is incremented by 2).

Let us now consider the breaking mechanism. The 6 repre-

sentation is the only nontrivial bosonic representation, and it

has a trivial self-braiding channel because the fusion product

with itself contains the identity representation. We see that it

has a quantum dimension d6 = 2 +
√

3 which tells us that we

have to split the representation 6 → 61 +62 where we assume

61 to have unit quantum dimension and to be the component

that condenses (indeed: 61×61 = 0) while we consider the 62

component with quantum dimension 1 +
√

3 for the moment

as an independent field in the broken phase.

Starting with this splitting of the 6 and using the fusion rules

in a similar fashion as we did in section III we see that also

other representations have to split and furthermore other iden-

tifications have to be made. The net result of this straight-

forward analysis is given in table VI. It is easy to see that

the new representations have the following quantum dimen-

sions: d31
=

√

2 +
√

3, d32
=

√
2 and d41

= 1. At this

intermediate (broken) level we are left with five representa-

tions which have the fusion rules given in table VII: These

fusion rules together with the conformal weights of the par-

ent representations in the unbroken phase now allow us to de-

termine which representation will be confined in the broken
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SU(2)10 broken

splittings identifications

3 := 31 + 32 0 ↔ 61

4 := 41 + 42 1 ↔ 51 ↔ 71

5 := 51 + 52 2 ↔ 42 ↔ 62 ↔ 8

6 := 61 + 62 31 ↔ 52 ↔ 9

7 := 71 + 72 32 ↔ 72

41 ↔ 10

TABLE VI: Splitting and identifications of representations after breaking by

the 61 condensate.

Fusion rules in the broken phase of SU(2)10

1 × 1 = 0 + 2

1 × 2 = 1 + 31 + 32 2 × 2 = 0 + 2 + 2 + 41

1 × 31 = 2 + 41 2 × 31 = 1 + 31 + 32

1 × 32 = 2 2 × 32 = 1 + 31

1 × 41 = 31 2 × 41 = 2

31 × 31 = 0 + 2

31 × 32 = 2 32 × 32 = 0 + 41

31 × 41 = 1 32 × 41 = 32 41 × 41 = 0

TABLE VII: Fusion rules of the broken phase with the 61 condensate.

phase. As we said before, representations will not be confined

if all their lifts have equal spin factors, or equal spins up to

integers. For example if we want to know whether 31 will be

confined, we have to check whether ha − hb ∈ Z for all com-

binations a, b with a and b taken from the list of fields that

restrict to 31 according to table VI, i.e. {3, 5, 9}. Since these

have conformal weights 5/16, 35/48 and 33/16 respectively,

we conclude that the 31 representation will be confined. For

the 32 which is identified with the 72 we have parent confor-

mal weights 5/16 and 21/16 so that that representation will

not be confined. The upshot of this analysis is that only the

0, the 32 and the 41 survive after confinement, of course with

the fusion rules given in table VII. We see that indeed our

residual set of fields and their fusion and spin factors are iso-

morphic to the SO(5)1 algebra under the map 0 ↔ 1, 32 ↔ 4
and 41 ↔ 5. Clearly the fusion algebra is also isomorphic to

the Ising model or the SU(2)2 model, but these have to be

rejected because the conformal weights do not match.

If we furthermore look at the branching rules for the con-

formal embedding:

1 → 0 + 6

4 → 3 + 7

5 → 4 + 10

(29)

we confirm that they are fully consistent with this correspon-

dence. Note that in these rules we clearly have matching

(modulo Z) of the conformal weights. Representations can

only branch into representations with the same conformal

weights up to integers and hence the spin factors of the repre-

sentations are preserved under the branching. The conclusion

is that also in this more complicated situation we find that

the quantum group U , which appears after breaking Hk by a

bose condensate and subsequent confinement, is the expected

quantum group G1 appearing in the conformal embedding.

A. Finding new embeddings

Using the quantum group symmetry breaking formalism,

we can now conjecture new conformal embeddings which are

not contained in the classification of conformal embeddings of

Refs. 73,74, for example because one or both of the theories

involved in the embedding is not a WZW theory. We can start

with an arbitrary TQFT or CFT which has a boson, condense

the boson, find the theory describing the nonconfined excita-

tions of the broken phase and then conjecture that the original

theory can be conformally embedded in a CFT with the same

topological order as the unconfined broken theory.

As an example let us consider SU(2)8. The quantum di-

mensions and spin factors for this theory are given in ta-

ble VIII. The fusion rules for SU(2)8 follow from for-

mula (28).

SU(2)8

0 d0 = 1 h0 = 0

1 d1 =

√

5+
√

5

2
h1 = 3

40

2 d2 = 3+
√

5

2
h2 = 1

5

3 d3 =
√

5 + 2
√

5 h3 = 3

8

4 d4 = 1 +
√

5 h4 = 3

5

5 d5 =
√

5 + 2
√

5 h5 = 7

8

6 d6 = 3+
√

5

2
h6 = 6

5

7 d7 =

√

5+
√

5

2
h7 = 63

40

8 d8 = 1 h8 = 2

TABLE VIII: Spins and quantum dimensions for SU(3)2.

The Λ = 8 representation is the only bosonic field that meets

the requirements for a condensate. Analysis of the fusion rules

after condensation of this field, using the methods of section V

leads to identifications of the Λ = p with the Λ = 8−p sectors

for p ∈ {0, 1, 2, 3}, while the 4 has to split: 4 := 41 + 42,

in two parts which have equal quantum dimension. Without

going through the details we summarize the branching and the

fusion rules of the symmetry broken theory, in table IX.

The 1 and 3 representations will become confined, so that

we are left with four fields: 0, 2, 41 and 42. We see that

the fusion rules of these non-confined fields are just those

of the direct product of two Fibonacci theories. The proper

identification of the algebra U is in fact the quantum group

SU(3)2/Z3⊗SU(3)2/Z3 with the identifications 0 ⇔ (1, 1),
41 ⇔ (8, 1), 42 ⇔ (1, 8), 2 ⇔ (8, 8). This quantum group

has identical fusion rules, quantum dimensions and confor-

mal weights as the ones given in the tables. Alternatively, one
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SU(2)8 broken

0, 8 → 0 d0 = 1

1, 7 → 1 d1 =

√

5+
√

5

2

2, 6 → 2 d2 = 3+
√

5

2

3, 5 → 3 d3 =
√

5 + 2
√

5

4 → 41 + 42 d41 = d42 = 1+
√

5

2

1 × 1 = 0 + 2

1 × 2 = 1 + 3 2 × 2 = 0 + 2 + 41 + 42

1 × 3 = 2 + 41 + 42 2 × 3 = 1 + 3 + 3

1 × 41 = 3 2 × 41 = 2 + 42

1 × 42 = 3 2 × 42 = 2 + 41

3 × 3 = 0 + 2 + 2 + 41 + 42

3 × 41 = 1 + 3 41 × 41 = 0 + 41

3 × 42 = 1 + 3 41 × 42 = 2 42 × 42 = 0 + 42

TABLE IX: Branching rules, quantum dimensions and nontrivial fusion

rules for SU(2)8 after condensation in the 8-sector (the fusion rules are sym-

metric).

might use (G2)1 ⊗ (G2)1. All of this strongly suggests that

there should be a conformal field theory with the same topo-

logical order as (G2)1 ⊗ (G2)1 which has the property that

the SU(2)8 theory can be conformally embedded into it.

B. Modular invariants

In the previous section, we have shown that the quantum

group breaking allows us to conjecture many new conformal

embeddings. Now we will show how these conformal embed-

dings can be used to generate non-diagonal modular invariants

for certain conformal field theories. In fact for what follows,

it will not be necessary to know the exact CFT describing the

theory into which the embedding takes place (i.e. the symme-

try broken theory): it is enough to know the corresponding

modular group representation, which is precisely what we get

from the construction in the previous section.

In standard cases of conformal embeddings the branchings

of representations can be used to construct the non-diagonal

invariants for Hk′ using the standard diagonal modular invari-

ant for Gk
78,79. For example for the simple conformal embed-

ding SU(2)4 in SU(3)1 discussed in section VII we had the

branching rules (27), and substituting these branchings into

the modular invariant partition function for SU(3)1 :

Z = |χ1|2 + |χ3|2 + |χ3̄|2,

yields the exceptional SU(2)4 invariant:

Z = |χ0 + χ4|2 + 2|χ2|2.

This is the lowest member of the socalled A series series of

non diagonal SU(2)k invariants with k = 4p (p ≥ 1)
in the classification of invariants by Cappelli, Itzykson and

Zuber80,81:

Z =

p−1
∑

n=0

|χ2n + χ4p−2n|2 + 2|χ2p|2.

These invariants follow from the breaking scheme of the quan-

tum group SU(2)4p with a condensate in the highest i.e. Λ =
4p representation. This representation corresponds to a simple

current under which the representations Λ = q and Λ = 4p−q
get identified, while the Λ = 2p representation has to split as

2p → (2p)1+(2p)2, furthermore the odd representations with

q = 2n− 1 get confined. This leaves us with a fusion algebra

U of some CFT with the modular invariant partition function

given above.

SU(3)2 ⊗ SU(3)2 ⊇ SU(2)
8

(1, 1) → 0 + 8 h1,1 = 0

(8, 1) → 41 h8,1 = 3

5

(1, 8) → 42 h1,8 = 3

5

(8, 8) → 2 + 6 h8,8 = 6

5

SU(3)
4
/Z3 ⊇ SU(2)

12

1 → 0 + 12 h0 = 0

8 → 2 + 10 h8 = 3

7

10 → 61 h10 = 6

7

1̄0 → 62 h1̄0 = 6

7

27 → 4 + 8 h27 = 8

7

TABLE X: Branching of conformal representations and their spins, used to

construct non-standard modular invariants.

Let us give some details for the cases p = 2 and 3. The first

case is the formation of a condensate in the Λ = 8 represen-

tation in SU(2)8. Here we have the identifications 0 ↔ 8 and

2 ↔ 6 while the Λ = 4 splits 4 = 41 +42. We have discussed

this case already in detail in section VII on conformal embed-

dings, in particular tables VIII and IX. This leaves us after

confinement of the odd representations with four fields de-

scribed by a Fibonacci⊗Fibonacci theory, or equivalently a

theory with the same topological order as SU(3)2 ⊗ SU(3)2.

The branchings are given in the left part of table X.

Finally the case SU(2)12 . One is left with a theory

with five primary fields, which is easily identified as the

SU(3)4/Z3 (for identification one may consult for exam-

ple Ref. 82). This theory has the fields corresponding to

the 1, 8, 10, 10 and 27 dimensional representations with the

branchings and conformal weights given in the right hand part

of table X.

We see that the breaking mechanism allows us to systemat-

ically construct many new conformal embeddings and thereby

it will also generate a large number of non-diagonal modular

invariants for non-chiral CFTs.

VIII. THE COSET CONSTRUCTION

The coset construction64 is a way to construct a new con-

formal field theory, starting from Gk and Hk′ WZW models

based on Lie groups G and H with H ⊂ G. Given an em-

bedding of H into G with Dynkin index l, this embedding

will fix the relation between the levels k′ and k as k′ = lk.

This also implies that c(G, k) > c(H, k′). The canonical
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generators of the conformal algebra for the coset are just the

differences of the conformal generators of the WZW theories

(which are Sugawara bilinears in the currents of the chiral al-

gebras). Equivalently, the energy momentum tensor of the

coset is defined as the difference of the energy momentum

tensors for the G and H theories,

TG/H = TG − TH . (30)

This gives the coset central charge as c(G/H, k′, k) =
c(G, k′) − c(H, k). One physical interpretation of the coset

models is that they correspond to gauging the H subgroup of

G in the WZW model based on G83–85.

Coset CFTs play an important role in for example the de-

scription of fractional quantum Hall states with non-Abelian

anyonic excitations. For example the Moore-Read state and

the series of Read–Rezayi states involve the cosets:

SU(n)1 ⊗ SU(n)1/SU(n)2 (31)

with central charges c(n) = 2n−2
n+2

It is in general nontrivial to the determine the full chiral

algebra and the set of primary fields of a coset theory and

to determine their fusion and braiding properties. One way

to approach this problem is through the character theory of

affine Lie algebra representations (see for instance Ref. 28).

The Gk highest weight representations rΛ branch into Hk′

representations rΛ′ . Both the rΛ and the rΛ′ are infinite di-

mensional and in most cases the branching of rΛ yields either

infinitely copies of rΛ′ or no copies at all. However, the sub-

spaces of the rΛ and the rΛ′ at any fixed eigenvalue of L0,

the chiral Hamiltonian, are finite dimensional. The charac-

ter of an affine Lie algebra representation is just a generating

function for the dimensions of the eigenspaces of L0 in that

representation. Hence there is an identity between the char-

acters of the integrable Gk representations and the integrable

Hk′ representations into which they decompose. We have

χΛ =
∑

Λ′

χΛ;Λ′χΛ′ , (32)

where χΛ and χΛ′ are the characters of the representations rΛ

and rΛ′ and the χΛ;Λ′ are so called branching functions. One

approach to coset models is to consider the branching func-

tions directly as characters of the representations of the coset

theory. In other words, one does not explicitly construct the

coset chiral algebra, but instead one says that there is a non-

zero chiral primary field of the coset theory for any nonzero

branching function χΛ;Λ′ . The requirement that the branch-

ing function should be nonzero means that there will not be a

coset primary field for any combination (Λ; Λ′) but only for

those combinations allowed by the branching rules. On top

of the branching rules, there are so called field identifications

which say that some of the coset primary fields may be la-

belled by various different combinations of weights (Λ; Λ′),
or in other words, some of the pairs (Λ; Λ′) are identified if

they are used as labels for coset primaries. Basically the pairs

(Λ1; Λ
′
1) and (Λ2; Λ

′
2) are identified when the correspond-

ing branching functions are equal, but often it is much easier

to find the identifications by arguments involving the modu-

lar transformations of the characters and the automorphisms

of Gk and Hk′
86, rather than by explicit calculation of the

branching functions.

An alternative way to find the branching rules and field

identifications of coset theories is through the action of the

identification group Gid
87. For a Gk/Hk′ coset, this identi-

fication group is defined as the group of bosonic simple cur-

rent primary fields in the tensor product theory Gk ⊗ Hk′ .

Here the bar indicates that we should use the conjugate rep-

resentation of the usual mapping class group representation

for the Hk′ theory. In particular, the conformal weight of a

Gk ⊗ Hk′ primary field labeled by (Λ; Λ′) is the difference

hΛ − hΛ′ of the Gk and Hk′ conformal weights and bosonic

simple currents are those simple currents for which this dif-

ference is an integer. The group product on Gid is given by

the fusion of the simple currents. Gid also acts on the la-

bels of the branching functions by fusion. If the orbits of

branching functions under the Gid action all have the same

number of elements, then one may describe the field identifi-

cations and branching rules of the coset in a very simple way:

all fields in a single Gid orbit are identified and the branch-

ing rules allow precisely those combinations (Λ, Λ′) such that

the corresponding primary field of the Gk ⊗ Hk′ theory has

trivial monodromy with the elements of Gid. There is obvi-

ously a strong similarity between this procedure for finding

branching rules and field identifications in coset theories and

the procedures we have described for quantum group sym-

metry breaking and confinement, particularly with the special

case of our symmetry breaking scheme described at the be-

ginning of section V A, where the condensed fields are simple

currents and the orbits under the action of these simple cur-

rents are all of maximal size. In such cases, the procedure for

finding the spectrum, fusion and modular properties of coset

fields reduces precisely to the procedure we have described

for the condensation of the bosonic fields in the group Gid, in

the TQFT corresponding to the Gk ⊗Hk′ WZW theory. Field

identifications appear at the symmetry breaking stage, as the

Gk ⊗ Hk′ related by fusion with the condensed fields from

Gid turn out to have the same restriction, whereas the coset

branching rules are due to confinement; only fields that have

trivial monodromy with the fields in Gid are not confined.

As an illustration of this relation between breaking a quan-

tum symmetry and the coset construction, we discuss the sim-

plest example of the series (31), the case n = 2. In this case,

the coset is the chiral Ising CFT, which plays a fundamental

role in the construction of the Moore-Read fractional quan-

tum Hall state, as well as in the hierarchy of non-Abelian Hall

states based on it88. We have to consider a boson condensate

in SU(2)1 ⊗ SU(2)1 ⊗ SU(2)2. The properties of represen-

tations of the factors of this product are given below.

All together there are 2 × 2 × 3 = 12 fields which we denote

by (ij; k). There is one nontrivial boson (11; 2) which we

assume to condense. It is a simple current because (11; 2) ⊗
(11; 2) = (00; 0). We now have to identify the fields which
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SU(2)1

0 d0 = 1 h0 = 0

1 d1 = 1 h1 = 1

4

1 × 1 = 0

SU(2)2

0 d0 = 1 h0 = 0

1 d1 =
√

2 h1 = 3

16

2 d2 = 1 h2 = 1

2

1 × 1 = 0 + 2

1 × 2 = 1 2 × 2 = 0

TABLE XI: Spins, quantum dimensions and nontrivial fusion rules for

SU(2)1 and SU(2)2

form orbits under fusion with the condensed field:

(00; 0, 1, 2) ⊗ (11; 2) = (11; 2, 1, 0) (33)

(01; 0, 1, 2) ⊗ (11; 2) = (10; 2, 1, 0) (34)

where we have used an obvious notation to save space. At

this point we are left with 6 fields which we will label as

the ones on the left. Now we have to determine which of

the remaining fields will be confined. Using the conformal

weights given in the tables we see that for example that the

identified fields (00;1) and (11;1) have conformal dimensions

h = −3/16 and h = 5/16 respectively which differ by 1/2.

This as we explained before, means that this field has to be

confined. Similarly one finds that (01; 0) and (01; 2) are con-

fined. We are then left with three non-confined fields and as

expected these correspond exactly to the coset model, which

is the Ising model, as indicated in the following table.

Ising model

(00; 0) ∼ 1 d1 = 1 h1 = 0

(00; 2) ∼ ε dε = 1 hε = 1

2

(01; 1) ∼ σ dσ =
√

2 hσ = 1

16

ε × ε = 1

ε × σ = σ σ × σ = 1 + ε

TABLE XII: Spins, quantum dimensions and nontrivial fusion rules for the

Ising model .

At this point it is natural to ask how the correspondence

between the coset construction and quantum group symme-

try breaking fits into the general picture of quantum group

symmetry breaking as dual to conformal extension that we

sketched before. It would appear that there is something of

a mismatch. The quantum group symmetry breaking picture

for the coset Gk/Hk′ starts from the Gk ⊗ Hk′ topologi-

cal data and condenses the available bosonic simple currents

(i.e. the fields in Gid). Naively, the dual chiral algebra ex-

tension should start from the chiral algebra for a Gk ⊗ Hk′

WZW model and extend this by the currents in Gid. How-

ever, this chiral algebra is not the chiral algebra of the coset.

In the construction of the coset theory, the Hk′ chiral algebra

is embedded in the Gk chiral algebra so there is a priori no

tensor product of the two. In fact, the interpretation of the

coset theory as a gauged WZW model and the identification

of the coset primary field with branching functions strongly

suggest that the chiral algebra of the coset theory should be

the commutant of the Hk′ chiral algebra in (some extension

of) the Gk chiral algebra. Nevertheless the description of the

coset based on the identification group strongly suggests that,

while the coset theory and the Gk ⊗ Hk′ conformally ex-

tended by Gid may be different as conformal field theories,

they nevertheless have identical topological data. As a result,

one should be able to describe the topological phase in 2 + 1
dimensions whose 1+1-dimensional boundary is described by

the Gk/Hk′ coset model using the topological data obtained

from breaking Gk⊗Hk′ by condensation of the bosons consti-

tuting Gid. This claim is also supported by the work of Moore

and Seiberg63. They study the Chern-Simons theory based on

the gauge group (G × H)/Z, where Z is the common center

of G and H , with Chern Simons terms at level k for G and

at level −k′ for H , and they show that this theory has pre-

cisely the gauged WZW description of the Gk/Hk′ coset as

its boundary theory.

A. Fixed points and maverick cosets

So far we have only discussed the very simplest cosets,

which have the property that the identification group orbits

are all the same size. However in general, there will be orbits

of different sizes. In this case one speaks of ‘field identifica-

tion fixed points’, since some of the elements of Gid will now

fix some of the pairs (Λ,Λ′) labeling the coset primaries. It

turns out that in such cases it becomes necessary to introduce

extra coset primary fields, and to view the branching functions

corresponding to the identification fixed points as linear com-

binations of the characters for these fields. This is analogous

to the situation we describe in the latter part of section V A,

where we show that fields that are fixed under fusion with a

simple current condensate must split under restriction. In the

context of coset CFTs, special techniques have been devel-

oped to deal with fixed points87,89,90, but it appears quantum

group symmetry breaking takes care of fixed points without

any changes to the procedure we have described already (al-

though of course the actual calculations involved in carrying

out the procedure do become more complicated when fixed

points appear).

Fixed points are not the only complicating factors that

may appear in the description of coset CFTs. There are in

fact cosets for which there are more field identifications and

more restrictive branching rules than one would expect from

the action of the identification group (one may show this

for example by explicit calculation of the branching func-

tions). The first examples of such maverick cosets were found

in Refs. 91,92 in 1992, and several more have been found

since93. In the quantum group symmetry breaking formalism,

such maverick cosets can be explained by the condensation of

a bosonic field which is not a simple current, again, without

any change to the framework we have described.

The simplest maverick coset is SU(3)2/SU(2)8. The cen-

tral charge of this coset is 4
5 , which means the coset theory

must be related to the unitary minimal model M(6, 5). In
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fact it turns out that the coset primary fields are in one to one

correspondence with the subset of the chiral primary fields of

M(6, 5) which appear in the description of the critical point

of the three-state Potts model.

We will work out the quantum group symmetry breaking

point of view on this coset in some detail. We listed the con-

formal weights and quantum dimensions of the SU(2)8 al-

ready in VIII and we give those for the SU(3)2 fields in ta-

ble XIII. We label the SU(2)8 fields in the usual way (by

their Dynkin labels) and we label the SU(3)2 fields using a

notation based on the dimensions of the corresponding SU(3)
representations. The correspondence between the Dynkin la-

bels of the highest weights of these SU(3) representations and

the labels that we use is as follows: 1 ≡ (0, 0), 3 ≡ (1, 0),
3̄ ≡ (0, 1), 6 ≡ (2, 0), 6̄ ≡ (0, 2) and 8 ≡ (1, 1).

SU(3)2

1 d1 = 1 h1 = 0

6 d6 = 1 h6 = 1

6̄ d6̄ = 1 h6̄ = 1

8 d8 = 1+
√

5

2
h8 = 3

5

3 d3 = 1+
√

5

2
h3 = 2

3

3̄ d3̄ = 1+
√

5

2
h3̄ = 2

3

TABLE XIII: Spins and quantum dimensions for SU(3)2.

The fusion rules for SU(2)8 can be read off from for-

mula (28). The fusion rules for SU(3)2 are given in ta-

ble XIV. From table VIII, we read off that there is a sin-

3 × 3 = 3̄ + 6

3 × 3̄ = 1 + 8 3̄ × 3̄ = 3 + 6̄

3 × 8 = 3 + 6̄ 3̄ × 8 = 3̄ + 6 8 × 8 = 1 + 8

3 × 6 = 3̄ 3̄ × 6 = 3 8 × 6 = 3̄ 6 × 6 = 6̄

3 × 6̄ = 8 3̄ × 6̄ = 8 8 × 6̄ = 3 6 × 6̄ = 1 6̄ × 6̄ = 6

TABLE XIV: Fusion rules for SU(3)2.

gle nontrivial identification current in the SU(3)2 ⊗ SU(2)8
theory, namely the field with labels (1, 8). in other words,

Gid = {(1, 0), (1, 8)}. There is also a bosonic field which

is not a simple current, the field labeled (8, 4). Let us first

investigate what happens when we condense only the simple

current field (1, 8) and not the field (8, 4). Since (1, 8) acts

trivially on the SU(3) part of the theory, we can just search

for the restrictions of the pure SU(2)8 fields, that is, the fields

labeled (1,Λ) for some Λ. The restrictions for more general

fields will be similar. The problem of breaking SU(2)8 by

condensation of the 8-sector was already considered in sec-

tion VII A, and the results of the breaking were presented in

table IX. After symmetry breaking and confinement, SU(2)8
reduces to a Fibonacci ⊗ Fibonacci theory, with 4 sectors,

labeled in table IX as 0, 2, 41 and 42. This means that con-

densation of the (1, 8) field in the SU(3)2 ⊗ SU(2)8 theory

will lead, after condensation and confinement, to a new theory

with 24 distinct sectors, each labeled by an SU(3)2 represen-

tation and a label from the broken and confined remnant of

the SU(2)8 theory. This 24 sector theory is clearly not the

right description of the coset SU(3)2/SU(2)8. The full Vi-

rasoro minimal model M(5, 6) at c = 4
5 only has 10 sectors,

so 24 sectors is clearly too many and also some of the con-

formal weights we find are not compatible with the conformal

weights of M(5, 6)108.

To describe the coset at c = 4
5 , we must condense the non-

simple current field (8, 4) in addition to the field (1, 8). This

suggests that for the general description of coset models, we

should condense all available bosons. Note however that in

the case treated here, we will show that condensation of (8, 4)
actually implies that (1, 8) condenses as well. We sketch the

calculation of the branching rules.

First of all, we note that there will be many additional split-

tings which do not occur when only (1, 8) is condensed. For

example the fusions (8, Λ) × (8,Λ) for 2 ≤ Λ ≤ 6 all con-

tain the field (8, 4), which means the restrictions of these fu-

sions contain the vacuum at least twice and hence all the fields

(8, Λ) with 2 ≤ Λ ≤ 6 split. As a result the fields (3, Λ) and

(3̄, Λ) with Λ in the same range also split under restriction,

since these fields can be obtained from the (8,Λ) fields by

fusion with the simple currents (6, 0) and (6̄, 0).
There are also 18 sectors which will certainly not split un-

der restriction, because they have quantum dimensions less

than 2. These are all sectors with labels of the form (x, 0) or

(x, 8) as well as the 6 fields with labels (1 ∨ 6 ∨ 6̄, 1 ∨ 7).
The sector labeled (1, 2) could in principle split into two

sectors (1, 2)1 and (1, 2)2 of quantum dimensions 1 and 1+
√

5
2

respectively. Given such a splitting, we know that the restric-
tion of (1, 2) × (1, 2) must contain the vacuum twice and we
find

(1, 2) × (1, 2) ≡ 1 + 1 + . . .

(1, 2) × (1, 2) = (1, 0) + (1, 2) + (1, 4)

= (1, 0) + (1, 2)1 + (1, 2)2 + (1, 4) (35)

and comparing the first and last lines, we notice that either

(1, 4) or on of the components of (1, 2) must branch to the

vacuum. However, this cannot be allowed, since (1, 4) and

(1, 2) have nontrivial spin and hence cannot condense (alter-

natively we might say this would ‘confine the vacuum’). In

conclusion, we find that the sector (1, 2) does not split un-

der restriction. This is a crucial piece of information in what

follows.

Now let us consider the fusion of the condensed field (8, 4)
with the SU(2)8 type fields (1,Λ). Whenever Λ is even, we

have (8, 4) ∈ (8, 4)×(1, Λ). Since (8, 4) has the trivial field in

its restriction, we see that the restriction of (8, 4) must contain

the restriction of the dual of some component of each of the

sectors (1, Λ) with Λ even. Since the sectors (1, Λ) are self-

dual, we see in fact that the restriction of (8, 4) contains the

restrictions of (0, 0), (0, 2), (0, 6) and (0, 8) and at least one

component of the restriction of (0, 4). Similarly, we may con-

sider the fusion of (8, 4) with fields labeled (8, Λ) and derive

that (8, 4) contains at least one component of the restrictions

of (8, 0), (8, 2), (8, 4), (8, 6) and (8, 8).
From this point simple arguments using quantum dimen-

sions give us much information on splittings and field iden-
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tifications. The quantum dimension of (8, 4) is 3+
√

5
2 . We

know that the restriction of (8, 4) contains at least the vacuum

(1, 0), which has quantum dimension 1 and the full restriction

of (1, 2), which has quantum dimension 3+
√

5
2 (it must con-

tain the full restriction, since (1, 2) does not split). Hence it

follows that (8, 4) splits into 3 components, the vacuum (0, 1)
the restriction of (0, 2) which we just denote (0, 2 as well and

a third component (8, 4)3 of quantum dimension 1+
√

5
2 . But in

the previous paragraph we noted that the restriction of (8, 4)
contains the restriction of (1, 8) and since this has quantum

dimension equal to 1, it must be the same as the restriction of

(1, 0), in other words, we have shown that (1, 8) is condensed,

as we promised earlier. This immediately fixes the restrictions

of the fields in the pure SU(2)8 sector, as in our treatment

in section VII A and consequently also the restrictions of the

fields with labels (6,Λ) and (6̄,Λ).
To find the restrictions of the remaining fields, consider the

fusion (8, 0) × (1, 4). We have

(8, 0) × (1, 4) = (8, 4) ≡ (1, 0) + (1, 2) + (8, 4)3

(8, 0) × (1, 4) = (8, 0) × (1, 4)1 + (8, 0) × (1, 4)2 (36)

where (1, 4)1 and (1, 4)2 are the two components of (1, 4)
which result from the condensation of (1, 8) (these correspond
to 41 and 42 in table IX). Comparing the two lines, we see that
the restriction of (8, 0) must equal either (1, 4)1 or (1, 4)2.
We can in fact make an arbitrary choice between these two
options, because the fusion rules of the broken SU(2)8 the-
ory are invariant under the exchange of the sectors (1, 4)1 and
(1, 4)2. Choosing (8, 0) ≡ (1, 4)1, we can write

(8, 0) × (1, 4) ≡ (1, 4)1 × (1, 4)1 + (1, 4)1 × (1, 4)2

= (1, 0) + (1, 4)1 + (1, 2), (37)

using the fusion rules for the broken SU(2)8 theory given
in table IX. Comparing this with the previous equation,
we finally get the full branching of (8, 4), namely (8, 4) ≡
(1, 0)+(1, 2)+(1, 4)1. From here, we can easily produce the
branchings for (8, 1), (8, 2) and (8, 3). We have

(8, 1) = (8, 0) × (1, 1) ≡ (1, 4)1 × (1, 1) = (1, 3)

(8, 2) ≡ (1, 4)1 × (1, 2) = (1, 2) + (1, 4)2

(8, 3) ≡ (1, 4)1 × (1, 3) = (1, 1) + (1, 3). (38)

We summarize the branchings for the fields of the forms

(1,Λ) and (8, Λ) in table XV. They branch to a set of fields

which is in one to one correspondence with the fields of the

broken SU(2)8 theory and which also has the same fusion

rules (see table IX). The full set of fields for the broken

SU(3)2 × SU(2)8 theory has 18 fields corresponding to the

products of the Z3 group of simple currents {1, 6, 6̄} with

the broken SU(2)8 fields {0, 1, 2, 3, 41, 42}. The branching

for the full theory can easily be obtained from the branch-

ings for the fields given in table XV. For example, for

fields of the form (3,Λ), we write (3, Λ) = (6̄, 1) × (8, Λ)
and conclude that if the branching for (8,Λ) was given by

(8,Λ) →
∑

i(1, xi) then the branching for (3, Λ) is given by

(3,Λ) → ∑

i(6̄, xi). A similar statement holds for all other

branchings. The fusion rules of the full broken theory can also

be described easily; they are just the product of the Z3 fusion

rules for {1, 6, 6̄} and the broken SU(2)8 fusion rules.

SU(3)2 × SU(2)8 broken

(1, 0), (1, 8) → (1, 0) ≡ 1 (8, 0), (8, 8) → (1, 4)2

(1, 1), (1, 7) → (1, 1) (8, 1), (8, 7) → (1, 3)

(1, 2), (1, 6) → (1, 2) (8, 2), (8, 6) → (1, 2) + (1, 4)2

(1, 3), (1, 5) → (1, 3) (8, 3), (8, 5) → (1, 1) + (1, 3)

(1, 4) → (1, 4)1 + (1, 4)2 (8, 4) → (1, 0) + (1, 4)1 + (1, 2)

TABLE XV: Branching rules for SU(3)2 × SU(2)8 after condensation

in the (8, 4)-sector. Branching rules for fields of the forms (3, Λ), (3̄, Λ),

(6, Λ) and (6̄, Λ) can be easily produced from this table. Quantum dimen-

sions and fusion of the sectors of the broken theory may be read off from the

corresponding table for SU(2)8 (table IX).

Using the branching rules, we may now check for confine-

ment in the usual way. Note that some of the fields that were

not confined in the broken SU(2)8 theory are now confined,

because they appear in more branching rules than before and

no longer have well defined spin factors as a result.

It turns out that there are 6 non-confined fields, which have

precisely the conformal weights and fusion rules of the chi-

ral three state Potts model, or equivalently of the 6 fields in-

volved in the non-diagonal modular invariant for the M(6, 5)
minimal model. Hence, we have reproduced the topological

data of this maverick coset, using precisely the same quantum

group symmetry breaking formalism as for standard cosets.

SU(3)2/SU(2)8

d h

(1, 0) 1 0

(6, 0) 1 2

3

(6̄, 0) 1 2

3

(1, 42)
1+

√
5

2

2

5

(6, 42)
1+

√
5

2

1

15

(6̄, 42)
1+

√
5

2

1

15

TABLE XVI: Spins and quantum dimensions for the coset

SU(3)2/SU(2)8 as obtained from quantum group symmetry break-

ing. The result matches the spins and quantum dimensions for the chiral

three state Potts model.

B. Conformal embeddings revisited

Since conformal embeddings Hk′ ⊂ Gk conserve the cen-

tral charge, the cosets Gk/Hk′ coming from these embed-

dings have conformal central charge c = 0 and must be trivial.

Still, confirming the triviality of these cosets using the iden-

tification group may not be so trivial, because the procedure

can involve resolution of fixed points and even dealing with

more complicated issues like those which occur for the (non-

trivial) maverick cosets. From the quantum group symmetry

breaking perspective, conformal embeddings are in fact just

mavericks for which the coset happens to come out trivial.

The quantum group symmetry breaking perspective on



22

these cosets adds information to the usual treatment, because,

while the effective theory for the non-confined excitations of

the coset is of course trivial, the symmetry breaking approach

also gives a description of the confined excitations, which

we can view as boundary excitations between a phase with

Gk ⊗ Hk′ topological order and a topologically trivial phase.

This boundary theory will be nontrivial. In fact, one may ex-

pect that the boundary theory is the same as the boundary the-

ory for a boundary between Gk and Hk′ phases. The reason

for this is that the Gk ⊗Hk′ theory can be thought of as a two

layer theory, where a piece of material with Hk′ topological

order has been folded under a piece with Gk topological order.

This ‘folding’ converts the boundary between the region with

Gk order and the region with Hk′ order into a boundary be-

tween a region with Gk ⊗ Hk′ topological order and a region

with trivial topological order. However, since folding is just

a geometric deformation of the medium it should not change

the topological order on the boundary and so we expect the

two boundary theories to be the same.

We will now demonstrate triviality of the coset, as well

as this correspondence of boundary theories for our favourite

example, SU(3)1/SU(2)4. Forming the product SU(3)1 ⊗
SU(2)4, we see that there are three nontrivial bosons, labeled

(1, 4), (3, 2) and (3̄, 2) in our usual labeling conventions for

SU(3)1 and SU(2)4. Only the field (1, 4) is a simple cur-

rent and, as with the maverick SU(3)2/SU(2)8, we find that

condensing only this simple current does not give the desired

result, that is, the effective theory after breaking and confine-

ment is still nontrivial. However, if we condense all bosonic

fields, we find that we do obtain the correct (trivial) coset the-

ory, as in the case of the maverick. We give the results of the

symmetry breaking calculation in table XVII. After symme-

try breaking, there are 4 sectors left, the vacuum sector and

the restrictions of (3, 0), (3̄, 0) and (1, 1). The fields (1, 4),
(3, 2) and (3̄, 2) branch to the vacuum, so they are indeed con-

densed. Also, it is easy to check, using the weights of SU(2)4
and of SU(3)1 (see tables I and IV), that all nontrivial broken

sectors are confined, leaving just the vacuum sector and hence

confirming that the coset is trivial. Finally, the 4 sectors of the

boundary theory have quantum dimensions 1, 1, 1 and
√

3,

which fixes the fusion rules and indeed, we see that there is a

one to one correspondence with the boundary theory between

SU(2)4 and SU(3)1 given in table XVII, as expected.

SU(3)1 × SU(2)4 broken

(1, 0), (1, 4) → (1, 0) ≡ 1 (1, 2) → (3, 0) + (3̄, 0)

(3, 0), (3, 4) → (3, 0) (3, 2) → (1, 0) + (3̄, 0)

(3̄, 0), (3̄, 4) → (3̄, 0) (3̄, 2) → (1, 0) + (3, 0)

(1, 1), (3, 1), (3̄, 1), (1, 3), (3, 3), (3̄, 3) → (1, 1)

TABLE XVII: Branching rules for SU(3)1 × SU(2)4 after condensation

of all bosons.

IX. DISCRETE GAUGE THEORY AND ORBIFOLDS

In section III we saw that many examples of anyon models

with bosons can be obtained either from Kitaev’s toric code

construction1 or from gauge theories by breaking the gauge

group to a discrete subgroup55–59. These theories can also be

realized as conformal field theories, namely as orbifolds of

topologically trivial CFTs94. All the topological information

in these models can be described using the representation the-

ory of the quantum doubles of finite groups95. Probably the

simplest example which allows for non-Abelian braiding is

the model based on the quantum double D(D3) of the smallest

non-Abelian group D3, the symmetry group of the regular tri-

angle, or equivalently, the permutation group of three objects.

This model has been shown to allow for universal quantum

computation, if some measurements are allowed as operations

in addition to braiding96. An implementation of this model

using Josephson junctions has been proposed in Refs. 97–99.

There are 8 topological sectors in the model, each labeled as

described in section III, by a conjugacy class of D3 and a rep-

resentation of the centralizer group of one of the elements in

that conjugacy class (the elements all have isomorphic central-

izer groups). D3 has three conjugacy classes, the class of the

trivial element e, a class we denote r, containing the nontrivial

rotations of the triangle (three-cycles as permutations) and a

class called s which contains the reflections (exchanges). The

trivial class has all of D3 as its centralizer, leading to three

particle sectors Πe
1,Πe

J and Πe
α corresponding to the three ir-

reducible representations 1, J and α of D3. Here 1 denotes

the trivial representation, making Πe
1 the vacuum sector, and J

and α denote the nontrivial one dimensional and two dimen-

sional irreducible representations respectively. The centralizer

of r is the Z3 generated by the rotations, giving sectors Πr
0, Π

r
1

and Πr
2 and the centralizer of s is a Z2 giving two sectors Πs

1

and Πs
γ . The spin factors and quantum dimensions of these

sectors are given in table XVIII. The fusion rules of the ir-

Πe
1 ≡ 1 Πe

J Πe
α Πr

l Πs
1 Πs

γ

dA
α 1 1 2 2 3 3

θA
α 1 1 1 e

2πil
3 1 −1

TABLE XVIII: dimensions and spin factors for the irreps of D(D3)

reps of D(D2m+1) have been worked out in Ref. 100. For

D(D3), we have of course Πe
1 × ΠA

α = ΠA
α (for all (A, α))

and furthermore

Πe
J × Πe

J = 1

Πe
J × Πe

α = Πe
α Πe

α × Πe
α = 1 + Πe

J + Πe
α

Πe
J × Πr

l = Πr
l Πe

α × Πr
l = Πr

m + Πr
n (l, m, n distinct)

Πe
J × Πs

1 = Πs
γ Πe

α × Πs
1 = Πs

1 + Πs
γ

Πe
J × Πs

γ = Πs
1 Πe

α × Πs
γ = Πs

1 + Πs
γ .

(39)
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For the fusion rules of the Πr
l , we have

Πr
l × Πr

l = 1 + Πe
J + Πr

l

Πr
l × Πr

m = Πe
α + Πr

n (l, m, n distinct)

Πr
l × Πs

1 = Πr
l × Πs

γ = Πs
1 + Πs

γ .

(40)

Finally, we have

Πs
1 × Πs

1 = 1 + Πe
α + Πr

1 + Πr
2 + Πr

3

Πs
γ × Πs

γ = 1 + Πe
α + Πr

1 + Πr
2 + Πr

3

Πs
1 × Πs

γ = Πe
J + Πe

α + Πr
1 + Πr

2 + Πr
3. (41)

A look at the spin factors and fusion rules confirms immedi-

ately that there is a wealth of bosons in the theory. For the odd

dihedral groups (including D3), we have analyzed all possible

choices of condensate using our earlier quantum group based

approach17 and we will not repeat that exercise here. How-

ever, it will be good to check in an example that we can actu-

ally reproduce the results obtained there. This will also serve

to illustrate some of the more interesting things that may hap-

pen on condensation. In particular, we will see an example

with non-Abelian fusion rules after symmetry breaking (but

before confinement).

We will investigate what happens when an excitation in

the Πe
α sector condenses. In our earlier treatment of quan-

tum group symmetry breaking, there were two non-equivalent

ways of condensing this sector, because we could choose dif-

ferent (non gauge equivalent) internal states of the Πe
α parti-

cles to form the condensate; note that since all quantum di-

mensions are integers here, it makes sense to talk about inter-

nal Hilbert spaces for single particles. We will find that our

current methods produce the same two unconfined theories.

However at the level of the broken theory including confined

excitations, we find one extra solution to the requirements set

out in this paper, in addition to the two solutions produced by

our previous methods. The extra solution is almost certainly

spurious and due to the fact that the requirements we give here

are not completely sufficient to determine the broken theory

(before confinement) in this case. It is not surprising that this

can sometimes happen, since we have restricted our attention

to a relatively crude level of description of topological order

in this paper, looking only at fusion rules and spin factors. For

theories with only integer quantum dimensions our old meth-

ods allow an approach to the problem which makes full use of

the underlying Hopf algebra theory. Also, theories with many

integer quantum dimensions can be relatively complicated to

handle with the methods of this paper because integers allow

for so many different splittings into smaller integers.

Now let us sketch the calculations which lead to the above

results. Given that Πe
α condenses, we know that Πe

α branches

to the vacuum sector and some other one dimensional sector.

Since Πe
J × Πe

α = Πe
α, it follows that in fact Πe

α branches to

1 plus the restriction of Πe
J . Now we have two possibilities:

either Πe
J restricts to the vacuum or it does not. Both possi-

bilities cases lead to a consistent theory for the confined and

non-confined excitations.

Let us first assume that Πe
J does not branch to the vacuum,

but rather to some nontrivial sector which we will still call Πe
J .

Then Πe
α → 1+Πe

J . Comparing Πe
α×Πr

i with (1+Πe
J)×Πr

i ,

we see immediately that all Πr
i must branch to the same new

sector, which we will simply call Πr. We also see that Πe
α

appears on the right hand side of the fusion rules for the fields

Πs
1 and Πs

γ , so these must both split. After completing the cal-

culation, we find the branching given in table XIX. The un-

confined fields are the vacuum, Πe
J , Πs

11 and Πs
γ1. These have

spins 1, 1, 1 and −1 respectively and Z2 × Z2 fusion rules,

which fixes the topological order to be that of the Z2 discrete

gauge theory or toric code model. In the discrete gauge the-

ory, we can interpret the transition as a Higgs effect which has

broken the D3 gauge group down to a Z2 subgroup. On the

CFT side it looks like we are describing a transition to a CFT

where only the Z2 subgroup of the D3 is orbifolded. This

could be interpreted as due to extension of the orbifold con-

formal algebra by some of the chiral primaries for the twisted

sectors.

D(D3) broken

Πe
J → Πe

J de
J = 1

Πe
α → 1 + Πe

J dr = 2

Πr
l → Πr ds

11 = 1

Πs
1 → Πs

11 + Πs
12 ds

12 = 2

Πs
γ → Πs

γ1 + Πs
12 ds

γ1 = 1

Πe
J × Πe

J = 1

Πe
J × Πr = Πr Πr × Πr = 1 + Πe

J + Πr

Πe
J × Πs

11 = Πs
γ1 Πr × Πs

11 = Πs
11 + Πs

γ1

Πe
J × Πs

γ1 = Πs
11 Πr × Πs

γ1 = Πs
11 + Πs

γ1

Πe
J × Πs

12 = Πs
12 Πr × Πs

12 = 2Πs
12

Πs
11 × Πs

11 = 1

Πs
11 × Πs

γ1 = Πe
J Πs

γ1 × Πs
γ1 = 1

Πs
11 × Πs

12 = Πr Πs
γ1 × Πs

12 = Πr Πs
12 × Πs

12 = 1 + Πe
J + Πr

TABLE XIX: Branching rules, quantum dimensions and nontrivial fusion

rules for D(D3) after condensation in the Πe
α-sector, with Πe

J not con-

densed. The four unconfined sectors have the fusion rules and spins of a

D(Z2) theory.

Now let us consider the possibility that not only Πe
α, but

also Πe
J condenses. In this case the entire electric part of the

spectrum becomes trivial, or in other words, the gauge sym-

metry is fully broken. As before, we note that the restrictions

of the Πr
i must all be equal and now because Πs

γ = Πe
J ×Πs

1,

we see that the restrictions of Πs
γ and Πs

1 also equal each other.

In the fusion rules Πr
i × Πr

i , we see that Πe
J ≡ 1 appears on

the right hand side, implying that the Πr
i split into two parts

of quantum dimension 1. Similarly, from Πs
1 × Πs

1, we see

that Πs
1 and Πs

γ split into three parts, also of quantum dimen-

sion 1. We note that none of the Πr
i can branch to the vacuum

because not all the Πr
i have trivial spin and they all have the

same restriction. Similarly Πs
γ (and hence Πs

1) cannot branch

to the vacuum. Since all sectors after breaking are simple cur-

rents, they form a group under fusion. Moreover, one sees

easily that the components of the Πr
i , together with the vac-

uum 1, form a subgroup. If the components of the restriction

of Πr
i were equal, this would have to be a Z2 subgroup, but

this is inconsistent with the fusion rules of the Πr
i , so there

must be two different components in the restriction of Πr
i and
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with the vacuum, these form the group Z3 under fusion. From

the fusion rules for Πs
1 and Πs

γ we now read off that the three

components of the restriction of these fields must also be dis-

tinct. This means in particular that at least one of them is a

component that does not occur in the Z3 that we already un-

covered. But since we are looking for a group with a Z3 sub-

group that has at least 4 and most 6 elements, we now have

only two possibilities left for the entire group of fields of the

broken theory: it is isomorphic either to Z6 or to D3 itself. In

the first case, the Z3 would be the subgroup of even elements

of Z6 and in the second case, it would be the Z3 subgroup of

rotations (or three-cycles in the permutation representation of

D3). It turns out that both options are fully consistent with

the fusion rules of the original theory. Also, both lead to the

same unconfined theory, namely the trivial theory with one

sector (in other words, all sectors of the broken theory save

the vacuum sector are confined). However, from basic intu-

ition about discrete gauge theory or toric code models, as well

as from our formalism for theories with integer quantum di-

mensions based on Hopf algebra theory17, we know that the

correct broken (but confined) theory should be the one whose

sectors fuse according to the group multiplication of D3. In

other words, the Z6 is the spurious solution to the require-

ments posed in this paper that we already announced. The fact

that we find a theory with fusion rules described by the group

multiplication of D3 is also interesting in itself, since it shows

that our formalism can produce boundary theories which have

non-Abelian fusion rules.

Looking at the situation from a CFT perspective, we note

that the final theory is again topologically trivial and in this

case, quantum group symmetry has apparently brought us

back to a theory where the D3 symmetry is not orbifolded

at all. One might be tempted to generalize from here and

conjecture that quantum group symmetry breaking provides

some sort of partial inverse to the orbifold construction. How-

ever, even for the restricted class of orbifolds we deal with

here, namely those which are obtained from topologically triv-

ial CFTs, more complicated behavior than we have shown is

possible. For example, on condensation of a purely magnetic

particle with charge of the form ΠA
1 , we will end up with a

theory described by the quantum double of a quotient group

of G, rather than a subgroup of G17. Even more complicated

phenomena emerge when one starts from orbifolds of topo-

logically nontrivial CFTs.

X. OTHER CONSTRUCTIONS

One may envision many constructions of new topologi-

cal field theories and corresponding conformal field theories

based on the principle of quantum group symmetry breaking.

Perhaps the simplest thing one may do is tensor a number of

known TQFTs or CFTs together in such a way that the tensor

product theory has some bosonic sectors and then condense

some or all of these bosonic sectors. The coset construction is

of course a special case of such a construction, but more gen-

erally we don’t have to require that the tensor product is of the

form Gk ⊗ Hk′ with Hk′ ⊂ Gk. It is not difficult to come up

with simple examples of such theories which are not cosets.

An example of potential interest in the quantum-Hall con-

text corresponds to the product Ising × M(4, 5), where

M(4, 5) is the unitary minimal model at c = 7/10. Af-

ter condensation of the single nontrivial simple current in

this theory we obtain precisely the spins and fusion rules

of the SU(3)2 parafermions. This may be connected with

the interface or transition between the spin-polarized Moore-

Read state, which is based on the Ising model, and a non-

abelian spin singlet state (NASS) proposed by Schoutens and

Ardonne101, based on the SU(3)2 parafermionic CFT102. We

will return to this in detail elsewhere44.

There are many other examples one can think of, e.g. one

may take SU(2)k ⊗ SU(2)k+2 and condense the bosonic

simple current (k, k + 2), or alternatively, one may take

SU(2)k+4 ⊗ SU(2)k and condense the bosonic simple cur-

rent (k + 4, k). It is often not at all obvious what the confor-

mal field theories corresponding to these constructions should

look like. For example the case SU(2)6⊗SU(2)2 yields topo-

logical central charge c = 3
4 , but if there is a corrresponding

unitary CFT, then its conformal central charge cannot be equal

to 3
4 , since there is no unitary minimal model with this central

charge, and it must differ from 3
4 by some multiple of 8. On

the other hand, we do expect, in analogy to the Chern-Simons

description of coset theories63, that the topological data for

such theories should be described by a Chern-Simons theory

whose gauge group is a quotient of the product of the groups

appearing in the construction, with Chern-Simons terms for

these groups at the appropriate levels. The quotient would be

by a finite group characterizing the simple currents which are

condensed (for situations where the condensed sectors are not

all simple currents, the situation may be more complicated).

If this conjectured Chern Simons description is correct, then

this suggests that a CFT with the same topological order can

be obtained as a boundary theory of this Chern-Simons theory.

A. Doubled Chern-Simons theories

Many constructions of this type could start from products

of the form Gk ⊗ Gk, which are just doubled Chern-Simons

theories, or more generally from products A ⊗ A where A
represents a TQFT which is not of the Gk type. Such theories

are important in the description of string net condensates50

and picture TQFTs103. As we discussed in section III, these

theories all have bosons, namely the ‘diagonal’ sectors with

labels of the form (Λ, Λ). We should be able to produce many

new theories by condensing some of these bosons.

If we condense all diagonal fields, then we should expect

that the broken phase is topologically trivial, while the bound-

ary between the broken and unbroken phases will be described

by Gk (or more generally A) itself. We give an intuitive argu-

ment for this first and then sketch a proof.

Intuitively, condensing all bosons in the theory should im-

plement the coset construction which in this case gives the

completely trivial theory. The boundary between the com-

pletely trivial theory and the A⊗A theory should be described

by an A or an A theory according to the ‘folding’ principle for
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boundaries that we introduced in section VIII B. That is, we

can think of the A ⊗ A-theory as just a A-theory on a plane

which has been folded over to give two layers. The bound-

ary between this folded plane and empty space is not really a

boundary on the plane before folding and so it should have the

same excitations as the plane itself, in other words, it should

be described by an A theory or an A theory. The A and A the-

ories of course have the same fusion rules but opposite spins.

The ambiguity in the spins explains the complete confinement

of these boundary excitations. One might expect less severe

confinement if the A theory itself has bosons.

Now let us give an argument that comes closer to a proof.

First of all consider the fusions (Λ, 0) × (0, Λ) = (Λ, Λ).
Since the right hand side has the vacuum in its restriction,

we see that the restriction of (0,Λ) must be identified with

the restriction of (Λ̄, 0). Now more generally, we have that

(Λ1, Λ2) = (Λ1, 0) × (0, Λ2) ≡ (Λ1 × Λ2, 0) and hence the

restrictions of all sectors can be written in terms of the re-

strictions of the sectors (Λ, 0) alone, confirming that the bro-

ken theory before confinement is simply a single copy of the

A theory itself. Now let us consider confinement. In order

for the restriction of (Λ, 0) to be unconfined, we must have

θΛ = θ(Λ,0) = θ(0,Λ̄) = θ̄Λ. Hence unconfined particles

have trivial spin. In fact, unconfined particles should satisfy

much more stringent conditions. If (Λ, 0) is not confined,

then for any Λ1, Λ2 such that Λ ∈ Λ1 × Λ2, we must have

θΛ1
θ̄Λ2

= θΛ = 1. However, from this, it follows also that for

any Λ1, Λ2 such that Λ2 ∈ Λ × Λ1, we have θΛθΛ1
θ̄Λ2

= 1
and using the ribbon equation, we see that Λ must have totally

trivial monodromy with all other fields in the A theory. How-

ever, this can only happen if the tensor category describing A
is not modular (see Ref. 23, section E.5), so we have argued

that there is indeed complete confinement if A is modular.

Perhaps the simplest example of condensation in a doubled

theory which does not lead to complete confinement occurs

in the doubled Ising model. We label the sectors of the Ising

model in the usal way by 1, σ and ǫ. Their spins and quantum

dimensions are given in table XII. The Ising × Ising theory

has three bosonic fields, the vacuum (1, 1) and the diagonal

fields (σ, σ) and (ǫ, ǫ). It is possible to have condensation of

(ǫ, ǫ) without condensing (σ, σ). This leads to the branching

in table XX. The broken theory has 6 sectors and its fusion

is the same as that of an Ising ⊗ Z2 tensor product theory.

There are four simple currents, (1, 1), (ǫ, 1) and the two com-

ponents of the restriction of (σ, σ). These are also the uncon-

fined fields and they form a Z2 ×Z2 group under fusion. This

is actually not completely straightforward to derive since the

requirements for symmetry breaking we have stated in this pa-

per would also be consistent with Z4 fusion rules. However,

one may check that the values of the spins of these fields are

consistent only with Z2 × Z2 fusion rules and in fact, from

the spins and the fusion we see that the unconfined theory has

precisely the topological order of a Z2 discrete gauge theory

or toric code model.

This suggests that in any local model which realizes the

doubled Ising model one might expect a transition to an

Abelian topological phase of Z2 × Z2 type. Loop gases

with ground states reflecting topological order of doubled

Ising × Ising broken

(1, 1), (ǫ, ǫ) → (1, 1) (σ, ǫ), (σ, 1) → (σ, 1)

(1, ǫ), (ǫ, 1) → (ǫ, 1) (1, σ), (ǫ, σ) → (1, σ)

(σ, σ) → (σ, σ)1 + (σ, σ)2

TABLE XX: Branching rules for Ising × Ising after condensation in the

(ǫ, ǫ)-sector. The fusion rules for the broken theory are of Ising × Z2 type.

The unconfined fields are (1, 1), (ǫ, 1), (σ, σ)1 and (σ, σ)2. The unbroken

theory has the same topological order as the Z2 discrete gauge theory or the

Z2 toric code model.

Ising type have been constructed52,53, but it has been shown

recently104 that these loop states cannot be ground states of a

gapped local Hamiltonian109. They are in fact associated with

gapless critical points and it is possible to drive the models

away from these critical points and into in a gapped Abelian

topological phase with the same topological order as the Z2

toric code or Z2 discrete gauge theory. It would be interesting

to study if this can be viewed as due to the condensation of

bosonic excitations of (ǫ, ǫ) type.

XI. SUMMARY AND OUTLOOK

We have given some simple principles and requirements re-

lating the spectra and topological interactions of topological

phases that may be obtained from one another by condensa-

tion of a bosonic quasiparticle, based on the the idea of quan-

tum group symmetry breaking. These turn out to be surpris-

ingly powerful and practical tools in determining the topo-

logical field theory describing the condensed phase from the

TQFT that describes the phase without condensate and also

in describing the boundaries between condensed and uncon-

densed topological phases. We have worked out a number of

examples in detail and shown connections between our quan-

tum group symmetry breaking scheme and various construc-

tions in conformal field theory.

Future developments should include

• More detailed study of systems which are or may soon

be accessible by experiment, notably the various pro-

posed non-Abelian fractional quantum Hall states.

• Explicit realization of the predictions on phase transi-

tions in topological models that we make here in lo-

cal models that exhibit topological phases. One aspect

of this would be the introduction of (necessarily non-

local) order parameters which signal a non-zero con-

densate density105. String-net condensed phases would

be a good laboratory for this.

• A more mathematically rigorous treatment of the mate-

rial presented here. This would hopefully allow for the

systematic construction of the full unitary braided ten-

sor category describing the condensed theory. Also one

would like to prove some of the observations on c and

D in section V C.
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• More in-depth treatment of the relation between quan-

tum group symmetry breaking and chiral algebra exten-

sion, i.e. explicit investigation of the action of the chiral

algebra on the Hilbert space of the CFT before and af-

ter condensation. Conformal embeddings would be the

obvious place to start such a program, but it would be

especially interesting if one could find a natural CFT

counterpart for some of the TQFT constructions men-

tioned in section X.
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