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Abstract
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I. INTRODUCTION

The problem of determining the classical information-carrying capacity of a quantum

channel is one which has not been fully resolved to date. In the case where the input to

the channel is prepared in the form of non-entangled states, the classical capacity can be

determined using a simple formula. However, if entanglement between multiple uses of the

channel is permitted, then the channel capacity can only be determined asymptotically. We

now discuss these concepts in detail.

Using product-state encoding, i.e. when a message is encoded into a tensor product of n

quantum states on a finite-dimensional Hilbert space H, this state can then be transmitted

over a quantum channel given by a completely positive trace-preserving map (CPT) Φ(n)

on B(H⊗n). The associated capacity is known as the product-state capacity of the channel.

If Φ(n) = Φ⊗n is a memoryless channel, then the product-state capacity is given by the

supremum of the Holevo χ-quantity given by the right-hand side of (1), evaluated over all

possible input state ensembles. This is also known as the Holevo capacity χ∗(Φ) of the

channel.

On the other hand, a block of input states could be permitted to be entangled over n

channel uses. The classical capacity is defined as the limit of the capacity for such n-fold

entangled states divided by n, as n tends to infinity. If the Holevo capacity of a memoryless

channel is additive, then it is equal to the classical capacity of that channel and there is

no advantage to using entangled input state codewords. The additivity conjecture for the

Holevo capacity of most classes of memoryless channel remains open. However, the classical

capacity of certain memoryless quantum channels have been shown to be additive: see [1],

[2], [3], for example. On the other hand, there now exists an example of a memoryless

channel for which the conjecture does not hold: see [4].

We remark that, Shor [5] (see also Fukuda [6]) proved that the additivity conjectures

involving the entanglement of formation [7], the minimum output entropy [8], the strong

superadditivity and the Holevo capacity [9], [10] are in fact equivalent.

In this article we consider the classical capacity of two particular channels with mem-

ory consisting of depolarizing channel branches, namely a periodic channel and a convex

combination of memoryless channels.

In [11] Datta and Dorlas derived a general expression for the classical capacity of a quan-

2



tum channel with arbitrary Markovian correlated noise. We consider two special cases of

this channel, that is, a periodic channel with depolarizing channel branches and a convex

combination of memoryless channels, and we prove that the corresponding capacities are

additive in the sense that they are equal to the product-state capacities. A convex com-

bination of memoryless channels was discussed in [12] and can be described by a Markov

chain which is aperiodic but not irreducible. Both channels are examples of a channel with

long-term memory.

The article is organized as follows. The objectives as discussed above are formalized in

Section IA. In Section 2 we introduce the periodic channel and investigate the product state

capacity of the channel with depolarizing channel branches. We derive a result based on

the invariance of the maximizing ensemble of the depolarizing channel, which enables us to

prove that the capacity of such a periodic channel is additive. This is shown in Section 3.

In Section 4 the additivity of the classical capacity of a convex combination of depolarizing

channels is proved. The is done independently of the result derived in Section 2 and can

therefore be generalized to a class of other quantum channels.

A. Preliminaries

A quantum state is described by a positive operator of unit trace ρ ∈ B (H), where B (H)

denotes the algebra of linear operators acting on a finite dimensional Hilbert space H. The

transmission of classical information over a quantum channel is achieved by encoding the

information as quantum states. To accomplish this, a set of possible input states ρj ∈ B (H)

with probabilities pj are prepared, describing the ensemble {pj, ρj}. The average input state

to the channel is expressed as ρ =
∑

j pjρj . For a channel given by a completely positive

trace preserving map Φ : B(H) → B(K), the average output state is ρ̃ =
∑

j pjΦ(ρj).

When a state is sent though a noisy quantum channel, the amount of information about

the input state that can be inferred from the output state is called the accessible information.

The Holevo bound, [13], provides an upper bound on the accessible information and is given

by,

H (X : Y ) ≤ S

(

∑

j

pj ρj

)

−
∑

j

pj S (ρj) , (1)

where S(ρ) = −tr (ρ log ρ) is the von Neumann entropy. Here X is the random variable
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representing the classical input to the channel. The possible values xj are mapped to states

ρj which are transformed to Φ(ρj) by the channel. Then, a generalized measurement with

corresponding POVM {Ej} allows the determination of the output random variable Y with

conditional probability distribution given by

P(Y = xk |X = xj) = tr (Φ(ρj)Ek). (2)

The right hand side of equation (1) is called the Holevo-χ-quantity, usually denoted

χ ({pj, Φ(ρj)}). Holevo [9] and Schumacher and Westmoreland [10] proved independently

that for a memoryless channel, the upper bound on H (X : Y ) is asymptotically achievable.

Using product-state coding as described above, the input message to the channel is encoded

into a product state codeword of length n and is transmitted over n copies of the channel.

The Holevo Schumacher Westmoreland (HSW) Theorem states that the product state ca-

pacity of that channel is given by the supremum, over all input ensembles, of the Holevo

quantity of that channel, where each input state is prepared as a product state codeword.

In other words, the rate at which classical information can be sent over a quantum channel,

where each input codeword is a product state comprised of states belonging to an ensemble

is given by the following “single-letter” formula,

χ∗ (Φ) = sup
{pj ,ρj}

[

S

(

Φ

(

∑

j

pjρj

))

−
∑

j

pjS (Φ(ρj))

]

(3)

where S is the von Neumann entropy. An ensemble which maximizes the Holevo quantity

χ of a channel is known as a maximizing or optimal ensemble.

It was first shown in [14] that for some channels, it is possible to gain a higher rate

of transmission by sending entangled states across multiple copies of a quantum channel.

In general, allowing both entangled input states and output measurements and with an

unlimited number of copies of the channel, the classical capacity of Φ is given by [15]

C (Φ) = lim
n→∞

1

n
χ∗
(

Φ(n)
)

, (4)

where

χ∗(Φ(n)) = sup
{p

(n)
j

,ρ
(n)
j

}

[

S

(

Φ(n)

(

∑

j

p
(n)
j ρ

(n)
j

))

−
∑

j

p
(n)
j S

(

Φ(n)
(

ρ
(n)
j

))

]

(5)
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denotes the Holevo capacity of the channel Φ(n) with an n-fold input state ensemble.

The Holevo capacity of a channel Φ is said to be additive if the following holds for an

arbitrary channel Ψ:

χ∗ (Φ ⊗ Ψ) = χ∗ (Φ) + χ∗ (Ψ) . (6)

In particular, if we can prove that the Holevo capacity of a particular channel is additive

then

χ∗
(

Φ⊗n
)

= n χ∗ (Φ) , (7)

which implies that the classical capacity of that channel is equal to the product state capacity,

that is,

C (Φ) = χ∗ (Φ) . (8)

This will imply that the classical capacity of that channel cannot be increased by entangling

inputs across two or more uses of the channel. Additivity has been proved for unital qubit

channels [1], entanglement-breaking channels [2], and the depolarizing channel [3]. Here we

use the latter result to prove equation (8) for a periodic channel with depolarizing channel

branches and for a convex combination of depolarizing channels.

II. THE PERIODIC CHANNEL

A periodic channel acting on an n-fold density operator has the form

Ω(n)
(

ρ(n)
)

=
1

L

L−1
∑

i=0

(Ωi ⊗ Ωi+1 ⊗ · · · ⊗ Ωi+n−1)
(

ρ(n)
)

, (9)

where Ωi are CPT maps and the index is cyclic modulo the period L.

We denote the Holevo quantity for the i-th branch of the channel by χi({pj, ρj}), i.e.

χi({pj , ρj}) = S

(

∑

j

pjΩi (ρj)

)

−
∑

j

pjS (Ωi(ρj)) . (10)

Since there is a correlation between the noise affecting successive input states to the pe-

riodic channel (9), the channel is considered to have memory and the product state capacity
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of the channel is no longer given by the supremum of the Holevo quantity. Instead, the

product state capacity of this channel is given by the following expression

Cp (Ω) =
1

L
sup

{pj ,ρj}

L−1
∑

i=0

χi({pj , ρj}). (11)

Next, we introduce the depolarizing channel and investigate the product state capacity of a

periodic channel with depolarizing channel branches.

A. A periodic channel with depolarizing channel branches

The quantum depolarizing channel can be written as follows

∆λ (ρ) = λρ +
1 − λ

d
I (12)

where ρ ∈ B (H) and I is the d × d identity matrix. Note that in order for the channel to

be completely positive the parameter λ must lie within the range

−
1

d2 − 1
≤ λ ≤ 1. (13)

Output states from this channel have eigenvalues
(

λ + 1−λ
d

)

with multiplicity 1 and
(

1−λ
d

)

with multiplicity d − 1.

The minimum output entropy of a channel Φ is defined by

Smin (Φ) = inf
ρ

S (Φ (ρ)) . (14)

It is easy to see that the product capacity of the depolarizing channel is given by

χ∗ (∆λ) = log (d) − Smin (∆λ) , (15)

where the minimum entropy is attained for any set of orthonormal vector states, and is given

by

Smin (∆λ) = −

(

λ +
1 − λ

d

)

log

(

λ +
1 − λ

d

)

− (d − 1)

(

1 − λ

d

)

log

(

1 − λ

d

)

. (16)

Next we show that the product state capacity of a periodic channel with L depolarizing

channel branches is given by the sum of the maximum of the Holevo quantities of the
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individual depolarizing channels, in other words we show that

1

L
sup

{pj ,ρj}

L−1
∑

i=0

χi({pj, ρj}) =
1

L

L−1
∑

i=0

sup
{pj ,ρj}

χi({pj, ρj}). (17)

Let ∆λ1 , ∆λ2 , · · · , ∆λL
denote d-dimensional depolarizing channels with respective error pa-

rameters λ1, λ2, · · · , λL. Using the capacity given by equation (15) and since every de-

polarizing channel can be maximized using a single ensemble of orthogonal pure states

independently of the error parameter, the right-hand side of equation (17) can be written as

1

L

L−1
∑

i=0

sup
{pj ,ρj}

χi({pj , ρj}) = 1 −
1

L
Smin (∆λ1) + · · ·

+
1

L
Smin (∆λL

) . (18)

Clearly, the left-hand side of equation (17) is bounded above by the right-hand side. On

the other hand, choosing the ensemble to be an orthogonal basis of states with uniform

probabilities, we have

1

L

L−1
∑

i=0

χi({pj , ρj}) = 1 −
1

L

L−1
∑

i=0

Smin (∆λi
) . (19)

We can now conclude that equation (17) holds for a periodic channel with L depolarizing

branches of arbitrary dimension.

B. The classical capacity of a periodic channel

We now consider the classical capacity of the periodic channel, Ωper given by equation

(9), where Ωi = ∆λi
are depolarizing channels with dimension d. Denote by Ψ

(n)
0 , . . . , Ψ

(n)
L−1

the following product channels

Ψ
(n)
i = ∆λi

⊗ · · · ⊗ ∆λi+n−1
, (20)

where the index is taken modulo L.

We define a single use of the periodic channel, Ωper, to be the application of one of the

depolarizing maps ∆λi
. If n copies of the channel are available, then with probability 1

L
one

of the product branches Ψ
(n)
i will be applied to an n-fold input state.

We aim to prove the following theorem.
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Theorem 1. The classical capacity of the periodic channel Ωper with depolarizing channel

branches is equal to its product state capacity,

C (Ωper) = Cp (Ωper) = 1 −
1

L

L−1
∑

i=0

Smin(∆λi
).

To prove Theorem 1 we first need a relationship between the supremum of the Holevo

quantity χ∗ and the channel branches Ψ
(n)
i . King [3] proved that the supremum of the Holevo

quantity of the product channel ∆λ ⊗Ψ is additive, where ∆λ is a depolarizing channel and

Ψ is a completely arbitrary channel, i.e.,

χ∗ (∆λ ⊗ Ψ) = χ∗ (∆λ) + χ∗ (Ψ) . (21)

It follows immediately that

χ∗
(

Ψ
(n)
i

)

= χ∗ (∆λi
) + χ∗

(

Ψ
(n−1)
i+1

)

=

L−1
∑

i=0

χ∗ (∆λi
) + χ∗

(

Ψ
(n−L)
i

)

. (22)

Next, we use this result to prove Theorem 1.

Proof. The classical capacity of an arbitrary quantum channel Ω is given by

C (Ω) = lim
n→∞

1

n
sup

{p
(n)
j , ρ

(n)
j }

χ
(

{pj, Ω
(n)
(

ρ
(n)
j

)

}
)

. (23)

In Section IIA we showed that the product state capacity of the periodic channel Ωper can

be written as

Cp (Ωper) =
1

L

L−1
∑

i=0

χ∗ (∆λi
) . (24)

Using the product channels Ψ
(n)
i

(

ρ
(n)
j

)

defined by equations (20), the periodic channel Ωper

can be written as

Ω(n)
per

(

ρ
(n)
j

)

=
1

L

L−1
∑

i=0

Ψ
(n)
i

(

ρ
(n)
j

)

. (25)

Since it is clear that

C (Ωper) ≥ Cp (Ωper) , (26)

we concentrate on proving the inequality in the other direction.
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First suppose that

C (Ωper) ≥
1

L

L−1
∑

i=0

χ∗ (∆λi
) + ǫ, (27)

for some ǫ > 0. Then ∃n0 such that if n ≥ n0, then

1

n
sup

{p
(n)
j , ρ

(n)
j }

χ
(

Ω(n)
per

(

ρ
(n)
j

))

≥
1

L

L−1
∑

i=0

χ∗ (∆λi
) +

ǫ

2
. (28)

The supremum in equation (23) is taken over all possible input ensembles {ρ
(n)
j , p

(n)
j }. There-

fore, for n ≥ n0, there exists an ensemble {ρ
(n)
j , p

(n)
j } such that

1

n
χ
({

pj , Ω
(n)
per

(

ρ
(n)
j

)})

≥
1

L

L−1
∑

i=0

χ∗ (∆λi
) +

ǫ

2
. (29)

The Holevo quantity can be expressed as the average of the relative entropy of the average

ensemble state with respect to members of the ensemble

χ ({pk, ρk}) =
∑

k

pk S

(

ρk,
∣

∣

∣

∣

∑

k

pk ρk

)

, (30)

where, S (A ||B) = tr (A log A) − tr (A log B), represents the relative entropy of A with

respect to B. (Vedral [16] has argued that the distinguishability of quantum states can be

measured by the quantum relative entropy.) Since the relative entropy is jointly convex in

its arguments [17], it follows that the Holevo quantity of the periodic channel ΩDep is also

convex.

Therefore, by (25),

χ
({

p
(n)
j , Ω(n)

per

(

ρ
(n)
j

)})

≤
1

L

L−1
∑

i=0

χ
({

p
(n)
j , Ψ

(n)
i

(

ρ
(n)
j

)})

. (31)

Using equation (29) we thus have

1

L

L−1
∑

i=0

χ∗ (∆λi
) +

ǫ

2
≤

1

nL

L−1
∑

i=0

χ
({

p
(n)
j , Ψ

(n)
i

(

ρ
(n)
j

)})

. (32)

It follows that there is an index i such that

1

L

L−1
∑

i=0

χ∗ (∆λi
) +

ǫ

2
≤

1

n
χ
({

p
(n)
j , Ψ

(n)
i

(

ρ
(n)
j

)})

. (33)

But equation (22) implies that

χ
({

p
(n)
j , Ψ

(n)
i

(

ρ
(n)
j

)})

≤
n

L

L−1
∑

i=0

χ∗ (∆λi
) . (34)
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Therefore the inequalities (33) and hence the assumption made in equation (27) cannot hold,

and

C (Ωper) ≤ Cp (Ωper) . (35)

Putting the above equation together with equation (26) yields the required result.

III. THE CLASSICAL CAPACITY OF A CONVEX COMBINATION OF MEM-

ORYLESS CHANNELS

In [12] the product state capacity of a convex combination of memoryless channels was

determined. Given a finite collection of memoryless channels Φ1, . . . , ΦM with common

input Hilbert space H and output Hilbert space K, a convex combination of these channels

is defined by the map

Φ(n)
(

ρ(n)
)

=
M
∑

i=1

γi Φ
⊗n
i (ρ(n)), (36)

where γi, (i = 1, . . . , M) is a probability distribution over the channels Φ1, . . . , ΦM . Thus, a

given input state ρ(n) ∈ B(H⊗n) is sent down one of the memoryless channels with probability

γi. This introduces long-term memory, and as a result the (product-state) capacity of the

channel Φ(n) is no longer given by the supremum of the Holevo quantity. Instead, it was

proved in [12] that the product-state capacity is given by

Cp(Φ) = sup
{pj ,ρj}

[

M
∧

i=1

χ({pj, Φi(ρj)})

]

. (37)

Let ∆λi
be depolarizing channels with parameters λi as above, and Φrand denote the

channel whose memoryless channel branches are given by Λ
(n)
i where

Λ
(n)
i = ∆⊗n

λi
. (38)

Since the capacity of the depolarizing channel decreases with the error parameter the product

state capacity of Φrand is given by

Cp(Φrand) =
M
∧

i=1

χ∗(∆λi
) = χ∗

(

M
∨

i=1

λi

)

. (39)

We aim to prove the following theorem.
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Theorem 2. The classical capacity of a convex combination of depolarizing channels is equal

to its product state capacity

C (Φrand) = Cp (Φrand) .

Proof. According to [12] the classical capacity of this channel can be written as follows

C (Φrand) = lim
n→∞

1

n
sup

{p
(n)
j

,ρ
(n)
j

}

M
∧

i=1

χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

. (40)

Suppose that

C (Φrand) ≥

M
∧

i=1

χ∗(∆λi
) + ǫ, (41)

for some ǫ > 0.

Then ∃n0, such that if n ≥ n0, then

1

n
sup

{p
(n)
j ,ρ

(n)
j }

M
∧

i=1

χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

≥
M
∧

i=1

χ∗(∆λi
)

+ ǫ. (42)

Hence, for n ≥ n0 there exists an ensemble {p
(n)
j , ρ

(n)
j } such that

1

n

M
∧

i=1

χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

≥

M
∧

i=1

χ∗(∆λi
) + ǫ. (43)

But King [3] proved that the product state capacity of the depolarizing channel is equal to

its classical capacity, therefore

χ∗
(

Λ
(n)
i

)

= n χ∗ (∆λi
) . (44)

In other words, χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

is bounded above by χ∗ (∆λi
). Now, if i0 is such

that
M
∧

i=1

χ∗(∆λi
) = χ∗(∆λi0

), (45)

then

1

n

M
∧

i=1

χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

≤ χ
({

p
(n)
j , Λ

(n)
i0

(

ρ
(n)
j

)})

≤ χ∗(∆λi0
). (46)
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Therefore
1

n

M
∧

i=1

χ
({

p
(n)
j , Λ

(n)
i

(

ρ
(n)
j

)})

≤
M
∧

i=1

χ∗(∆λi
). (47)

This contradicts the assumption made by equation (41) and therefore

C (Φrand) ≤

M
∧

i=1

χ∗(∆λi
) = Cp (Φrand) . (48)

On the other hand, it is clear that C (Φrand) ≥ Cp (Φrand) , and therefore C (Φrand) =

Cp (Φrand) .

Remark. Note that, in contrast to the proof of Theorem 1, the proof above does not rely

on the invariance of the maximizing ensemble of the depolarizing channel. The proof uses

the additivity of the Holevo quantity of the depolarizing channel (see Eqn. (44)) and the

result can therefore be generalized to channels for which the additivity of the Holevo capacity

has been proved.
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