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Abstract

We review a recent investigation of the effect of magnetic catalysis of mass generation in holographic Yang-

Mills theories. We aim at a self-contained and pedagogical form of the review. We provide a brief field theory

background and review the basics of holographic flavordynamics. The main part of the review investigates

the influence of external magnetic field on holographic gauge theories dual to the D3/D5– and D3/D7– brane

intersections. Among the observed phenomena are the spontaneous breaking of a global internal symmetry,

Zeeman splitting of the energy levels and the existence of pseudo Goldstone modes. An analytic derivation

of the Gell-Mann–Oaks–Renner relation for the D3/D7 set up is reviewed. In the D3/D5 case the pseudo

Goldstone modes satisfy non-relativistic dispersion relation. The studies reviewed confirm the universal nature

of the magnetic catalysis of mass generation.
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1 Introduction

An important concept in our attempt to describe the structure of our physical reality dating back to
Democritus is the atomic principle. Namely the idea that macroscopic bodies are build out of funda-
mental particles. In modern perspective we are interested in studying the basic interactions between
the building blocks of matter. It is experimentally well established that there are four fundamental
interactions: electromagnetic, strong and weak interactions as well as gravity. Despite the remarkable
success of the Standard Model of particle physics unifying the first four interactions it still remains
a challenge to come up with a consistent quantum theory of gravity. At present one of the most
promising directions towards a unified theory of the fundamental interactions lies in the framework of
string theory.

Historically, string theory emerged as an attempt to describe the strong interactions by what was
called dual resonance models. However, shortly after its discovery Quantum Chromodynamics (QCD)
which is a SU(3) Yang–Mills gauge theory, superseded it. The matter degrees of QCD consist of
quarks which are in the fundamental representation of the gauge group, while the interaction between
the fundamental fields is being mediated by the gluons which are the gauge fields of the theory thus
transforming in the adjoint representation of SU(3).

A remarkable property of QCD is the fact that it is asymptotically free, meaning that at large
energy scales, or equivalently at short distances, it has a vanishing coupling constant. This makes
QCD perturbatively accessible at ultraviolet. However, the low energy regime of the theory is quite
different. At low energy QCD is strongly coupled, the interaction force between the quarks grows
immensely and they are bound together, they form hadrons. This phenomenon is called confinement.
Additional property of the low energy dynamics of QCD is the formation of a quark condensate which
mixes the left and right degrees of the fundamental matter and leads to a breaking of their chiral
symmetry. It is extremely hard to examine the properties of the strongly coupled low energy regime
of QCD, since the usual perturbative techniques are not applicable.

The AdS/CFT correspondence [6], as we shall describe in details in Section 3.1 of this review, is
a powerful analytic tool providing a non–perturbative dual description of non–abelian gauge theories,
in terms of string theory defined on a proper gravitational background. An important extension of
the correspondence making it relevant to the description of flavored Yang-Mills theories was the intro-
duction of fundamental matter via the introduction of probe flavor branes [11]. The most understood
case is in the limit when the number of different flavors is much less than the number of colors. This
corresponds to the quenched approximation on gauge theory side and the probe approximation on
supergravity side of the correspondence. We will review more details about the way the AdS/CFT
dictionary works in Section 3.2.

Despite its great potential direct application of the AdS/CFT correspondence to realistic non-
abelian gauge theories such as QCD remains a challenge. A major limitation is that realistic field
theories do not seem to have simple holographic backgrounds. Furthermore there are indications that
most realistic gauge theories do not even poses exact holographically dual geometries. Nevertheless
applications of the AdS/CFT correspondence are still possible. One plausible direction is the inves-
tigation of non-abelian gauge theories exhibiting universal behaviour. Particularly interesting is to
analyze the phase structure of strongly coupled Yang-Mills theories. An example of such application
of the holographic approach is the study of properties of strongly coupled quark-gluon plasmas [10].

Another possible direction is the study of phenomena known to have a universal nature. An impor-
tant example is the phenomenon of mass generation in an external magnetic field. This phenomenon
has been extensively studied in the conventional field theory literature [25]-[29]. The effect was shown
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to be model independent and therefore insensitive to the microscopic physics underlying the low en-
ergy effective theory. The essence of this effect is the dimensional reduction D → D-2 (3+1 → 1+1) in
the dynamics of fermion pairing in a magnetic field. Magnetic catalysis of mass generation has been
demonstrated in various 1+2 and 1+3 dimensional field theories. Given the universal nature of this
effect it is natural to explore this phenomenon in the context of holographic gauge theories. In this
review we focus on such studies for holographic gauge theories dual to the Dp/Dq–brane intersection.

The structure of the review is as follows:
In Section 2 we provide a short field theory background. In the first subsection we describe the

properties of flavored SU(Nc) Yang-Mills theory focusing on the global symmetries of the lagrangian.
We remind the reader about some basics of the phenomenon of Chiral Symmetry breaking. We
describe the effective field theory approach to the of Chiral Symmetry breaking and provide a brief
derivation of the famous Gell-Mann-Oaks-Renner relation [44]. In the second subsection we review
the mechanism of the chiral symmetry breaking due to the presence of an external magnetic field [25].

Section 3 of this review is dedicated to the AdS/CFT correspondence and its extension to include
matter in the fundamental representation of the gauge group. In the first subsection we outline the
main ideas that lead to the formulation of the Maldacena’s conjecture [6]. We discuss some qualitative
and quantitative aspects of the correspondence and provide a brief description about the way the
AdS/CFT dictionary operates. The second subsection focuses on the addition of flavor degrees of
freedom to the correspondence. We review the approach of ref. [11] and provide some basic extracts
from the AdS/CFT dictionary, which will be important for the studies presented in Section 4.

Section 4 is the main part of the review. We present the studies of the influence of external magnetic
field on holographic gauge theories dual to the D3/D5 – and the D3/D7 –branes intersection performed
in refs. [22], [31], [32],[33]. In the case of the D3/D7 system we review the general properties of the
holographic set up and the way chiral symmetry breaking is realized as a separation of the color and
flavor branes in the infrared. We review the properties of the light meson spectrum of the theory and
uncover Zeeman splitting of the energy levels as well as the existence of Goldstone modes corresponding
to the spontaneously broken Chiral Symmetry. In the limit of small bare masses review the an analytic
derivation of the Gell-Mann-Oaks-Renner relation obtained in ref. [32] from dimensional reduction of
the eight dimensional effective action of the probe D7–brane. We also review the analogous studies
of the D3/D5–system. Again there are mass generation, Zeeman splitting and Goldstone modes.
Interestingly the broken Lorentz invariance in this case leads to non-relativistic dispersion relations.

We end with a brief summery of the presented material and a short discussion in the conclusion
section of the review.

2 Field Theory Preliminaries

In this section we provide a basic field theory background. Our goal is to remind the reader about
some of the properties of strongly coupled flavored Yang-Mills theories. In particular their global
symmetries and the corresponding spontaneous symmetry breaking. We outline the effective field
theory description of Chiral Symmetry breaking and provide a brief derivation of the Gell-Mann-
Oaks-Renner relation [44]. We also provide a short review of the effect of magnetic catalysis of mass
generation.
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2.1 Flavored Yang-Mills Theory and Chiral Symmetry Breaking

Flavored Yang-Mills Theory. The lagrangian of four dimensional pure SU(Nc) Yang-Mills theory
coupled to Nf flavors of fermionic fields is given by:

L = − 1

4g2YM
Tr[FµνF

µν ] +
θ

32π2
Tr[FµνF̃

µν ] +

Nf∑

i=1

ψ̄i(iγµDµ −mi)ψ
i , (2.1)

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]; Dµ = ∂µ − iAµ; F̃µν =
1

2
εµνρσFρσ;

The first term in equation (2.1) is a dynamical term for the gauge field Aµ. The second term (the so
called θ-term) is topological and is related to the Pontryagin index of Aµ. The parameter θ is ranges
from 0 to 2π and parametrizes topologically distinct sectors of the theory. The last term in (2.1)
describes the matter (fundamental) fields of the theory. Let us look closely at the last term. If one
defines the left and right fermionic fields ψL,R = 1/2(1± γ5)ψ it can be written as:

Lf =

Nf∑

i=1

(
ψ̄iLiγ

µDµψ
i
L + ψ̄iRiγ

µDµψ
i
R −mi(ψ̄

i
Lψ

i
R + ψ̄iRψ

i
L)
)
. (2.2)

It is clear that the mass of the matter fields mi can be interpreted as a coupling between the left and
right field ψL/R. Therefore at vanishing mi we have two distinct sets of Nf fermionic fields and at
classical level the theory has a global U(Nf )L×U(Nf )R symmetry. It is instructive to split the global
symmetry to:

U(Nf )L × U(Nf )R = SU(Nf )V × SU(Nf )A × U(1)V × U(1)A (2.3)

Let us focus first on the abelian symmetry. In infinitesimal form we have the transformations:

δψL = −iαψL; δψR = −iαψR; for U(1)V ; (2.4)

δψL = −iαψL; δψR = +iαψR; for U(1)A; (2.5)

Transformation (2.5) is just a rigid U(1)−gauge transformation and correspond to some quantum
number. We will not be interested in breaking gauge symmetries in these notes this is why we focus
on the transformation (2.5).

Anomalous Chiral Symmetry. In terms of the fields ψ, ψ̄ transformations (2.5) can be written
as:

δψ = −iαγ5ψ; δψ̄ = −iαψ̄γ5; (2.6)

The corresponding Noether current is given by:

jµ5 = ψ̄γµγ5ψ; (2.7)

and is conserved upon applying the equations of motion. Clearly a non-zero fermionic condensate
〈ψ̄ψ〉 would break the Chiral transformation (2.6). Naively one would expect the existence of a
corresponding Goldstone boson. This is the famous η′-meson in QCD. However it turns out that the
measure of the path integral has a non-zero Jacobian under the transformation (2.6) and the axial
current defined in equation (2.7) is anomalous. In fact one can show that the anomaly is given by2:

∂µj
µ5 = − 1

16π2
Tr[FµνF̃

µν ]; (2.8)

2look at ref. [23] pages 185-192 for a brief derivation
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and the chiral transformation can be absorbed into a redefinition of the theta angle of the theory
θ → θ−2α. this suggests that the mass of the η′-meson can be related to the topological susceptibility
of the theory χYM = ∂2Evac/∂2θ|Nf=0. For a canonically normalized η′-field one can obtain the
Witten-Veneziano formula [1, 2]:

m2
η′ =

4Nf

f2η′
χYM ∝ Nf

Nc
; , (2.9)

where we have used the Nc dependence of fη′ for large Nc, fη′ ∝
√
Nc [41].

The fact that m2
η′ ∝ Nf/Nc has an important consequences for the large Nc limit of the theory.

It suggests that if the number of flavors is Nf ≪ Nc (the so called quenched approximation) the
mass of the η′-meson is effectively zero and the anomalous U(1)A axial symmetry is restored. This
result is essential for the holographic studies that we will review in Section 4. In fact the holographic
supersymmetric gauge theory that we consider has an anomalous U(1) R-symmetry, which mimics the
anomalous U(1)A symmetry (2.6). It is the spontaneous breaking of this symmetry under external
magnetic field that has been explored in the holographic set up presented in Section 4.1.

Non Singlet Chiral Symmetry Let us now focus on the non-abelian part of the global sym-
metry (2.3). We will be interested in the dynamical breaking of this symmetry by a non vanishing
fundamental condensate 〈ψ̄ψ〉. Clearly only the axial SU(Nf )A is broken by the fundamental con-
densate. Goldstone theorem suggests the existence of N2

f − 1 goldstone fields. In Nf = 3 Quantum

Chromodynamics these are the π±, π0, K±, K0, K̄0 and η mesons.
An important extension of this discussion is the case when the mass of the fundamental fields is

not vanishing but is still a small parameter with respect to some relevant energy scale. In this case
the Chiral Symmetry is an approximate symmetry of the theory and the corresponding goldstone
particles (mesons) acquire small masses. At leading order there is an important relation between the
mass of the mesons, the bare mass of the fundamental fermions and the fundamental condensate,
namely the Gell-Mann-Oaks Renner relation [44]. Since we will be interested in verifying this relation
via holographic techniques in section 4, let us provide a brief derivation using an effective field theory
description.

Effective Chiral Lagrangian and the Gell-Mann-Oaks-Renner relation. In what follows we
will treat the fundamental condensate of the theory as an order parameter of dynamically broken
Chiral Symmetry along the lines of ref. [23]. Let us define a condensate matrix as:

Σij0 = 〈ψ̄iLψjR〉0 . (2.10)

Non-breaking of the vector symmetry implies that the matrix order parameter Σij can be brought
into the form:

Σij0 =
1

2
δijΣ0 (2.11)

by the group transformation (2.3). Here Σ0 is in general a complex scalar. Now fluctuations of the
order parameter (2.11) will be described by a unitary matrix U(x) ∈ SU(Nf )A:

Σ(x)ij =
1

2
Σ0U(x)ij (2.12)

6



as well as a fluctuations of the phase of Σ0 parametrized by elements of U(1)A. Let us focus on the
non-abelian case first. It is convenient to express U(x) as an exponential:

U(x) = exp

{
2iπa(x)ta

f2π

}
, (2.13)

where πa are the physical meson fields and fπ is a constant of dimension of mass (the pion’s decay
constant in Quantum Chromodynamics) and ta are the generators of SU(Nf )A. To fix the exact form
of the effective lagrangian note that there is a unique invariant structure involving two derivatives:

L(kin)
eff =

f2π
4
Tr[∂µU∂

µU †] . (2.14)

To leading order in πa we obtain:

L(2,kin)
eff =

1

2
∂µπ

a∂µπa + . . . (2.15)

and hence we have a canonically normalized bosonic field. In order to fix the mass term of our
pseudo-Goldstone fields let us note that in the mass term in equation (2.2) can be traded for:

Lmeff = −Re[Tr{MΣ(x)}] , (2.16)

where we have defined the mass matrix M = ||miδ
ij ||. Now using equations (2.12) and (2.13) one

arrives at:

Lmeff = const +
Re[Σ0]

f2π
(

Nf∑

i=1

mi)π
aπa +O

(
π3
)
, (2.17)

therefore to quadratic order our effective action is given by:

L(2)
eff =

1

2
∂µπ

a∂µπa +
Re[Σ0]

f2π
(

Nf∑

i=1

mi)π
aπa . (2.18)

Equation (2.18) implies the following expression for the mass of the meson fields πa:

M2
π = −2Re[Σ0]

f2π
(

Nf∑

i=1

mi) = −2〈ψ̄ψ〉
f2π

m , (2.19)

where in the last equality we have used that 〈ψ̄ψ〉 = NfRe[Σ0] and defined:

m =
1

Nf

Nf∑

i=1

mi; . (2.20)

Equation (2.19) is the famous Gell-Mann-Oaks-Renner relation [44]. Using similar arguments one can
obtain similar expression for the mass of the η′-meson corresponding to the spontaneous breaking of
the U(1)A Chiral Symmetry (which is non-anomalous in the quenched approximation Nf ≪ Nc).
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2.2 Magnetic Catalysis of Mass Generation in Field Theory

In this subsection we will review the mechanism of the chiral symmetry breaking due to the presence
of an external magnetic field. We will follow closely the outline provided in ref. [24].

To start with, let us make a few comments on the general properties of the chiral fermions in a
constant magnetic field turned on in x3 direction of the 4d spacetime. The lagrangian of a relativistic
fermion is of the standard form

L =
1

2

[
Ψ̄, (iγµDµ −m)Ψ

]
, (2.21)

where the covariant derivative is given by

Dµ = ∂µ − ieAextµ , Aextµ = −Bx2δµ,1. (2.22)

One of the most important characteristic of the system is its spectrum, or so called Landau levels,
which can be easily obtained from the above lagrangian

En(k3) = ±
√
m2 + 2|eB|n+ k23, n = 0, 1, 2, · · · . (2.23)

First of all, one can immediately see the degeneracy of the Landau levels. The energy is parametrized
by a continuous parameter k3, the momentum along the magnetic field, and a discrete parameter n
related to the finite dynamics in the plane orthogonal to the magnetic field. The number of states for
the lowest Landau level is different from the others - Landau degeneracy factor for the lowest level is
|eB|
2π while for the other is |eB|

π . Our purpose will be to show that the dynamics of the lowest Landau
level (LLL) is the one playing crucial role in the chiral symmetry breaking.

The dynamics of the chiral condensates in an external magnetic field has many interesting and
important features. To make conclusions for those which we will use in the next sections, let us start
with expressing the chiral condensate through the fermion propagator S(x, y)

〈0|Ψ̄ Ψ|0〉 = lim
x→y

tr S(x, y). (2.24)

Thus, the problem we are going to study is encoded in the properties, or more concretely the pole
structure of the fermion propagator S(x, y).

The fermion propagator is well known for long time and is usually defined as the matrix element

S(x, y) =
(
iγµDx

µ +m
)
〈x| −i

(γµDµ)2 +m2
|y〉

=
(
iγµDx

µ +m
)

∞∫

0

ds〈x|e−is[(γµDµ)2+m2]|y〉. (2.25)

To calculate the matrix element 〈x| exp(−is[(γµDµ)
2 + m2])|y〉 one can use the Schwinger’s proper

time approach, which gives

〈x|e−is[(γµDµ)2+m2]|y〉 = e−i
π
4

8(πs)
3
2

ei[Scl−sm
2]
(
eBs cot(eBs) + γ1γ2eBs

)
. (2.26)

In the above expression Scl is defined as

Scl = e

x∫

y

Aextν dxν − 1

4s
(x− y)ν

[
gνµ +

(
(F ext)2

)
νµ

B2
(1− eBs cot(eBs))

]
(x− y)µ, (2.27)
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where the integration is along a straight line connecting the two points since the result is path inde-
pendent.

Separating the phase factor containing the integration, the propagator can be represented in the
following convenient form

S(x, y) = e
ie

x
∫

y

Aext
ν dxν

S̃(x− y), (2.28)

where

S̃(x) = −i
∞∫

0

ds

16(πs)2
e−ism

2
e−

i
4s [(x

0)2−x2A(eBs) cot(eBs)−(x3)2]

.

(
m+

1

2s

[
γ0x0 − γAxA(eBs) cot(eBs)− γ3x3

]
− eB

2
ǫABγ

AxB
)

.
(
(eBs) cot(eBs)− γ2γ2(eBs)

)
, A = 1, 2, ǫ12 = +1. (2.29)

It is more convenient to consider the propagator in the Euclidean momentum space. Transforming to
the Euclidean momentum space (k0 → ik4, s→ −is), we get

〈0|Ψ̄Ψ|0〉 = −i
(2π)2

tr

∫
d4kS̃E(k)

=
4m

(2π)2

∫
d4k

∞∫

1/Λ

dse
−s

(

m2+k24+k
2
3+k

2
A

tanh(eBs)
eBs

)

=
eBm

(2π)2

∞∫

1/Λ

ds

s
e−sm

2
coth(eBs), (2.30)

where Λ is UV cutoff. It is instructive to look at the behavior of the condensate for the infinitesimal
m. The last expression in this limit takes the form

〈0|Ψ̄Ψ|0〉 m→0−→ −|eBs| m
4π2

(
log

Λ2

m2
+O(m0)

)
. (2.31)

It is clear that the logarithmic singularity is due to the contributions from large distances, i.e. for
large proper time s. The conclusion one can draw about the role of the magnetic field is that it
confines effectively the dynamics in only two dimensions, i.e. we arrive at 1 + 1 dynamical problem.
To uncover the nature of the logarithmic singularity let us take a closer look at the fermion propagator
in Euclidean signature

ŜE(k) = −i
∞∫

0

ds e−(m2+k24+k
2
3)s e−

k2
⊥

eB
tanh(eBs)

(
1 +

1

i
γ1γ2 tanh(eBs)

)

.

(
−kµ +m+

1

i
γAkBǫ

AB tanh(eBs)

)
. (2.32)

It is obvious that all the terms can be obtained by differentiating on parameters or integrating by
parts of the expression

I =

∞∫

0

ds e−ρ̃s e−
λ
2
tanh(eBs), (2.33)
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where λ =
k2
⊥

eB , ρ̃ = m2 + k23 + k24. The second exponent can be expanded over Laguerre polynomials
Lαn using the generating function (z = − exp(−2eBs))

e
λ
2 e

λ
2
. z−1
z+1 =

∞∑

n=0

cn(λ)z
n, cn(λ) = Ln(λ)− Ln−1(λ), |z| < 1. (2.34)

The final expression one can obtain after lengthy but straightforward calculations is

ŜE(k) = −ie−
k2
⊥

eB

∞∑

n=0

(−1)n
Dn(eB, k)

k24 + k23 +m2 + 2eBn
, (2.35)

where

Dn(eB, k) = 4(k1γ1 + k2γ2)L
1
n(2

k2⊥
eB

)

+ (m− k4γ4 − k3γ3)

[
(1− iγ1γ2)Ln(2

k2⊥
eB

)− (1 + iγ1γ2)Ln−1(2
k2⊥
eB

)

]
.

Thus, the poles of the propagator are located at the Landau levels! From this result one can draw
the following important conclusions. Analyzing the terms in the propagator one can see that the
logarithmic singularity in the condensate is due to the lowest Landau level. The second conclusion
is that the above expression explicitly shows the 1 + 1 nature of the lowest Landau level dynamics.
Thus, the dynamics of the fermion pairing in a magnetic field in 4d is 1+ 1 dimensional phenomenon.

Summarizing, we stress on the conclusion that the presence of a magnetic field drives spontaneous
chiral symmetry breaking even when the field strength is weak. The mechanism is fairly universal
since it catalyzes the fermion pairing at the lowest Landau level. The pairing dynamics is essentially
1+1 dimensional in the infrared region. Concluding this section, we note that the generation of
dynamical masses can be illustrated on the examples of concrete models described in the literature
(see for example [24, 25]).

3 Holographic Flavor Dynamics in a Nutshell

The idea of gauge/string duality is one of the most profound in the realm of fundamental interactions.
It influenced a lot both sides of the correspondence: since the first papers on the subject several new
important ideas and results have emerged in string and gauge theories.

A crucial milestone was the large N limit proposed by t’Hooft [3]. Instead of using SU(3) as a
gauge group, ’t Hooft proposed to consider SU(N) Yang-Mills theory and take the limit N ≫ 1,
while keeping the socalled ’t Hooft coupling fixed λ = Ng2YM . ’t Hooft proved that in this limit only
planar diagrams contribute to the partition function which makes the theory more tractable. On the
other side, the expansion in 1/N corrections of the QCD partition function and the genus expansion
of the string partition function exhibit the same qualitative behavior, suggesting that perhaps a dual
description of the large N limit of non-abelian gauge theories might be attainable in the frame work
of string theory.

In this section we will discuss some qualitative and quantitative aspects the holographic correspon-
dence between strings and gauge theories. Once the correspondennce is argued, our primary interest
will be focused on the introduction of favors and their dynamics.
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3.1 The AdS/CFT Correspondence

Let us make the above ideas more concrete introducing the basic ingredients of the so called AdS/CFT
correspondence. In our outline we will assume basic knowledge of the concepts of superstring theory
and the notion of D–branes.3

One can conceive of two basic types of strings. The first are the so-called closed strings, which
at any moment of time have the topology S1. It turns out that the closed strings define a consistent
perturbation theory in and of themselves, and that it is this case that leads to the type II supergravities
the equation of motion. One might also consider so-called open strings which, at any instant of time,
have the topology of an interval. In order for the dynamics of such strings to be well-defined, one must
specify boundary conditions at the ends. One possibility is to impose Neumannn boundary conditions
to describe the free ends. Another possibility is to impose Dirichlet boundary conditions requiring
the end points of the string to remain fixed at some point of the spacetime. One can also consider a
mixture of Dirichlet and Neumann boundary conditions, insisting that the end of the string remain
attached to some submanifold of spacetime, but otherwise leaving it free to roam around the surface.
Surfaces associated with such Dirichlet boundary conditions are known as Dirichlet submanifolds;
i.e. D-branes. To shorten the long discussion we just stress that it turns out that the Dirichlet
submanifolds are sources of the Ramond-Ramond gauge fields and of the gravitational field. That
is, they carry both stress-energy and Ramond-Ramond charges. Summarizing, one can say that in
many ways, the discovery of D-branes was a breakthrough for string theory. D-branes provide non-
perturbative solutions to the theory. They also couple naturally to both open strings, which have
gauge fields in their spectrum; and to closed strings, which have gravitons as vibration modes. This
complementary nature of D-branes makes for a powerful framework for further study of the ideas of
gauge/string duality.

The idea of the gauge/string duality passed though many controversal developments over few
decades. The early hints about a possible gauge/string duality came very close to reality with the
development of the concept of Dp-branes and their identification as the sources of the well-known black
p-brane solutions of type IIB supergravity. The key observation was that the low energy dynamics of a
stack of N coincident Dp–branes can be equally well described by a SU(N) supersymmetric Yang-Mills
theory in p+1 dimensions and an appropriate limit of a p-brane gravitational background. The first
gauge theory studied in this context is the large N N = 4 SU(N) supersymmetric Yang-Mills theory
in 1 + 3 dimensions which is a maximally supersymmetric conformal field theory. The corresponding
gravitational background is, as proposed by Maldacena [6], the near horizon limit of the extremal
3–brane solution of type IIB supergravity. This was the original formulation of the standard (by now)
AdS/CFT correspondence.

An important step was the understanding of the role of one of the additional coordinates (sup-
plementing the four usual ones) as a renormalization-group scale. The idea was further promoted
demonstrating the possibility of self-consistent account of the back reaction of the gravity on the
D–branes and vise versa. Further development of this idea lead to the formulation of the AdS/CFT
correspondence. We refer the reader to the extensive review [9] for a detailed historical overview and
a detailed list of references and focus on the physical aspects of the correspondence.

Low energy dynamics of D3-branes and the decoupling limit When there are N parallel
Dp–branes, their low energy dynamics is described by a reduction of the N = 1 supersymmetric ten
dimensional Yang-Mills theory of the gauge group U(N) to the p + 1 dimensional supersymmetric

3We refer the reader to ref. [18] for a comprehensive introduction to the subject.
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Yang-Mills higgsed theory. The physics of the supersymmetric Yang-Mills systems can be understood
by that of the D–brane dynamics and vice versa.

Let us consider a stack of N coincident D3–branes. This system has two different kinds of per-
turbative type IIB string theory excitations, namely open strings that begin and end on the stack of
branes and closed strings which are the excitations of empty space. Let us focus on the low energy
massless sector of the theory.

The first type of excitations corresponds to zero length strings that begin and end on the D3–
branes. The orientation of these strings is determined by the D3–brane that they start from and the
D3–brane that they end on. Thus, the states describing the spectrum of such strings are labeled by
λij , where i, j = 1, . . . , N . It can be shown that in the case of oriented strings [18] λij transform in the
adjoint representation of U(N). On the other side, the massless spectrum of the theory should form
a N = 4 supermultiplet in 1 + 3 dimensions. The possible form of the interacting theory (if we take
into account only interactions among the open strings) is thus completely fixed by the large amount of
supersymmetry that we have and is the N = 4 U(N) supersymmetric Yang–Mills theory. Note that
U(N) came from the transformation properties of λij . On the other side, U(N) can be thought of as
a direct product of U(1) and SU(N), geometrically the U(1) corresponds to the collective coordinates
of the stack of D3–branes. We will restrict ourselves to the case when those modes were not excited,
we refer the reader to ref. [9] for further discussion on this point.

The second kind of excitations is that of type IIB closed strings in flat space. The low energy
massless sector is thus a type IIB supergravity in 1 + 9 dimensions.

The complete action of the system is a sum of the actions of those two different sectors plus an
additional interaction term. This term can be arrived at by covariantizing the brane action after
introducing the background metric for the brane [19]. It can be shown [9] that in the α′ → 0 limit the
interaction term vanishes and the two sectors of the theory decouple.

To summarize: the low energy massless perturbative excitations of the stack of D3–branes are given
by two decoupled sectors, namely N = 4 SU(N) supersymmetric Yang–Mills theory and supergravity
in flat 1+ 9 space-time. Our next step is to consider an equivalent description of this system in terms
of effective supergravity solution.

Let us consider the extremal black 3–brane solution of type IIB supergravity. The corresponding
gravitational background is given by [18]:

ds2 = H
−1/2
3 ηµνdx

µdxν +H
1/2
3 dxidxi , (3.36)

e2Φ = g2s ,

C(4) = H−1
3 g−1

s dx0 ∧ · · · ∧ dx3 ,

where µ = 0, . . . , 3, i = 4, . . . , 9, and the harmonic (in six dimensions) function H3 is given by:

H3 = 1 +
4πg3Nα

′2

r4
. (3.37)

The integer number N quantizes the flux of the five-form field strength dC(4). It can also be interpreted
as the number of D3–branes sourcing the geometry. We note that the elementary D3–brane solutions
for small y have a warp factor describing a “throat” geometry. For very large y the throat opens into
a flat R1,4 space. Taking the near horizon limit of the geometry corresponds to sending α′ → 0 while
keeping the quantity u = r/α′ fixed. Such a limit serves two goals: first it enables one to zoom in
the geometry near the extremal horizon and second it corresponds to a low energy limit in the string
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theory defined on this background. After leaving only the leading terms in α′, one can obtain the
following metric [6]:

ds2 =
u2

R2
(−dx20 + dx21 + dx22 + dx23) +R2du

2

u2
+R2dΩ2

5 , (3.38)

C(4) =
1

gs

u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

eΦ = gs ,

R4 = 4πgsNcα
′2 ,

The background in equation (3.38) is that of an AdS5 × S5 space-time of radius R. Note that from
a point of view of an observer at r → ∞, the type IIB string theory excitations living in the near
horizon area, namely superstring theory on the background (3.38), will be redshifted by an infinite

factor of
√
gtt = H

−1/4
3 . Therefore, we conclude that type IIB superstring theory on the background of

AdS5×S5 should contribute to the low energy massless spectrum of the theory seen by an observer at
infinity. However, an observer at infinity has another type of low energy massless excitations of type
IIB string theory, namely type IIB supergravity on flat 1+ 9 space or gravitational waves. Those two
different types of excitations can be shown to decouple form each other. To verify this one can consider
the scattering amplitudes of incident gravitons of the core of the geometry (the near horizon area). It
can be shown that at low energies (ω ≪ 1/R) the absorption cross-section of such a scattering σabs
goes like [20, 21] σabs ∝ ω3R8. Therefore, one has that σabs → 0 and those two types of excitations
decouple in the low energy limit ω → 0.

Let us see what the decoupling limit means for the string sigma model in the D3-brane background.
We will concentrate here on the metric part, thereby ignoring the contributions from the five-form
field F5. We denote the D = 10 coordinates by xM ,M = 0, 1, · · · , 9, and the metric by GMN (x). We
choose the first 4 coordinates to coincide with xµ of the Poincaré invariant D3 worldvolume, while the
coordinates on the 5-sphere are xM for M = 5, · · · , 9 and the coordinate x4 = u. The full D3-brane
metric takes the form ds2 = GMNdx

MdxN = R2G̃MN (x;R)dx
MdxN , where the rescaled metric G̃MN

is given by

G̃MN (x;R)dx
MdxN =

(
1 +

R4

u4

) 1
2

(
du2

u2
+ dΩ2

5)

(
1 +

R4

u4

)− 1
2 ηij
u2
dxidxj (3.39)

Substituting this metric back into the non-linear sigma model, we obtain

SG =
1

4πα′

∫

Σ

√−γγmnGMN (x)∂mx
M∂nx

N =
R2

4πα′

∫

Σ

√−γγmnG̃MN (x)∂mx
M∂nx

N (3.40)

The overall coupling constant for the sigma model dynamics is given by

R2

4πα′
=

√
λ

4π
, λ ≡ gsN (3.41)

Keeping gs and N fixed but letting α′ → 0 implies that R→ 0. It is easy to see that under this limit
the sigma model action admits a smooth limit, given by

SG =

√
λ

4π

∫

Σ

√−γγmnG̃MN (x)∂mx
M∂nx

N (3.42)
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where the metric G̃MN (x; 0) is the metric on AdS5 × S5,

GMN (x;R)dx
MdxN =

ηij
u2
dxidxj +

du2

u2
+ dΩ2

5, (3.43)

rescaled to unit radius. More over, the coupling 1/
√
λ has taken over the role of α′ as the non-linear

sigma model coupling constant and the radius R has canceled out.

The AdS/CFT correspondence As we learned from the above, the massless sector of the low
energy dynamics of N coincident D3–branes allows two possible descriptions. Conjecturing that these
descriptions are equivalent is the core of Maldacena’s AdS/CFT correspondence [6]. Notice that in
both descriptions one part of the decoupled sectors is a type IIB supergravity in flat space. Thus, we
are naturally led to the conclusion that type IIB superstring theory on the background of AdS5 × S5

background is dual to N = 4 SU(N) supersymmetric Yang–Mills theory in 1+3 dimensions. We have
presented this statement in a diagrammatic way in Figure 1.

Figure 1: A diagrammatic statement of the AdS/CFT correspondence.

A further hint supporting the AdS/CFT correspondence is that the global symmetries of the
proposed dual theories match. Indeed, an AdS5 space-time of radius R can be embedded in a R

2,6

flat space. It can then be naturally described as a hyperboloid of radius R and thus has a group of
isometry SO(2, 6) which is also the group of rotations in 2 + 4 dimensions. On the other side, the S5

part of the geometry has a group of isometry SO(6) (the group of rotations in 6 dimensions). This
leads us to the conclusion that the total global symmetry of string theory on AdS5 × S5 gravitational
background is SO(2, 4) × SO(6). It is satisfying that the corresponding gauge theory has the same
global symmetry. Indeed, it is a well–known fact that the N = 4 supersymmetric Yang–Mills theory
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in 1 + 3 dimensions is a conformal field theory. As such it should has the global symmetry of the
conformal group in 1 + 3 dimensions, but this is precisely SO(2, 4). Actually, since the theory is
supersymmetric, the full global symmetry group is the superconformal group which includes an SU(4)
global R–symmetry. In particular this group rotates the gauginos of the super Yang–Mills theory.
However, it is well known that SU(4) ∼= SO(6), and therefore the global symmetry of the gauge
theory is indeed SO(2, 4)× SO(6)!

An important aspect of the correspondence is the regime of the validity of the dual description.
Depending on the precise way in which we are taking the α′ → 0 limit, there are two basic forms
of the AdS/CFT correspondence. The strongest form is that the string/gauge correspondence holds
for any N . Unfortunately, this strong form of the conjecture cannot be tested directly since it is not
known how to quantize superstring theory on a curved background in the presence of Ramond-Ramond
fluxes [12]. The second form of the conjecture holds in the t’Hooft limit when N → ∞ and the t’Hooft
coupling λ ∝ gsN is kept fixed. In this way on gauge side of the correspondence only planar diagrams
contribute to the partition function while on string side the required gs → 0 limit suggests semiclassical
limit of the superstring theory on AdS5 × S5. An important observation is that large λ≫ 1 suggests
large AdS radius R ∝ λ1/4 and hence small curvature of the AdS background. This implies that the
supergravity description is perturbative and thus provides an analytic tool for perturbative studies
of non–perturbative field theory phenomena. On the other side, if we are at weak t’Hooft coupling
(λ ≪ 1) we can perform perturbative studies on gauge side of the correspondence and transfer the
result to the perturbatively inaccessible regime of the supergravity description. Therefore, we conclude
that the AdS/CFT correspondence is a strong/weak duality. In this work we will concentrate solely
on the study of strongly coupled λ ≫ 1 Yang–Mills theories. Hence, we will perform the analysis on
the supergravity side of the AdS/CFT correspondence.

The AdS/CFT dictionary It did not take long until an explicit formulation of Maldacenas con-
jecture was found. Gubser, Klebanov and Polyakov [7] and Witten [8] independently proposed to
identify the classical on-shell supergravity action, expressed in terms of given boundary values, with
the effective action of super Yang-Mills theory, where the supergravity boundary values play the roles
of generating currents. Moreover, Witten suggested that via this identification any field theory action
on (d+1)-dimensional anti-de Sitter space gives rise to an effective action of a field theory on the
d-dimensional boundary of Anti-de Sitter space. Most importantly, this field theory on the boundary
must be a conformal field theory, because the AdS symmetries act as conformal symmetries on the
asymptotic boundary. This duality has since been called the AdS/CFT correspondence.

The general correspondence formula is [8]
∫

Ψ0

DΨe−IADS [Ψ] =

〈
exp

∫
ddxO(x)Ψ0(x)

〉
(3.44)

where the functional integral on the left hand side is over all fields Ψ whose asymptotic boundary
values are Ψ0, and O denotes the conformal operators of the boundary conformal field theory.

In the classical limit, which will be considered exclusively throughout this Chapter, the functional
integral on the left hand side of equation (3.44) becomes redundant, and the correspondence formula
can be given in the simple form [7, 8]

IADS [Ψ0] =WCFT [Ψ0] (3.45)

where IAdS is the classical on-shell action of an AdS field theory, expressed in terms of the field
boundary values Ψ0, and WCFT is the CFT effective action with generating currents, given by minus
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the logarithm of the right hand side of equation (3.44). However, one must expect IAdS to be divergent
as it stands, because of the divergence of the AdS metric on the AdS horizon, x0 = 0. Thus, in order
to extract the physically relevant information, the on-shell action has to be renormalized by adding
counter terms,which cancel the infinities. After defining the renormalized, finite action by

IADS,fin = IADS − Idiv (3.46)

where Idiv stands for the local counter terms, one identifies IAdS,fin with the CFT effective action.
Thus, the meaningful correspondence formula is

IADS,fin ≡WCFT (3.47)

Given a field theory action on AdS space and a suitable regularization method, it is straightforward
to calculate the renormalized on-shell action IAdS,fin. On the other hand, the CFT effective action

WCFT [Ψ0] = − ln

〈
exp

∫
ddxO(x)Ψ0(x)

〉
(3.48)

contains all information about the conformal field theory living on the AdS horizon, in that all cor-
relation functions of its operators can be obtained in a standard fashion. Thus, the AdS/CFT corre-
spondence formula (3.47) provides for the most amazing fact that the properties of certain conformal
field theories can be obtained from seemingly unrelated theories, namely field theories on AdS spaces.
Moreover, any field theory on AdS space, which includes gravity, has a corresponding counter part
CFT, whose action might not even be known. Thus, the AdS/CFT correspondence might be an in-
valuable tool for formulating non-trivial CFT’s in various dimensions, although studies of this aspect.

Let us focus on the precise way that the AdS/CFT correspondence is implemented on the example
of a scalar field φ. After a closer look at the geometry of the AdS5 × S5 background, we conclude
that it has five non–compact directions. Four of them are parallel to the D3–branes world volume and
correspond to the 1 + 3 directions of the dual gauge theory. The fifth non–compact direction is the
radial direction u (radial in the transverse, to the D3–branes, R6 space) and its interpretation in the
dual gauge theory is not obvious. To shed more light on it, let us consider the action of a free massless
scalar field in 1 + 3 dimensions [12]:

S =

∫
d4x(∂φ)2 . (3.49)

The corresponding field theory is conformal and thus has a global symmetry SO(2, 4) which is the
conformal group in 1+ 3 dimensions. Therefore, we can consider the transformation properties of the
scalar field φ under the action of the dilatation operator. One can verify that the transformation:

x→ eαx; φ→ e−αφ; (3.50)

leaves the action (3.49) invariant. Furthermore, we learn that the scalar field φ has a scaling dimension
one. On the other side, the SO(2, 4) group is the group of isometry of AdS5 and one can verify from
equation (3.38) that the transformation x→ eαx, suggests:

u→ e−αu . (3.51)

Therefore, we learn that the coordinate u scales as energy under dilations and thus has a natural
interpretation as an energy scale of the dual gauge theory.
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The further development of the AdS/CFT correspondence resulted in a map between gauge in-
variant operators in N = 4 super Yang -Mills in a particular irreducible representation of the SU(4)
R-symmetry group and supergravity fields in the isomorphic representation of the SO(6) global sym-
metry. These representations are obtained after Kaluza-Klein reduction of the supergravity fields on
the internal S5 sphere. Let us consider for simplicity the case of a scalar field of mass m, propagating
on the AdSd+1 background. The relevant action is [12]:

S =

∫
ddxdu

√−g(gab∂aφ∂bφ−m2φ2) . (3.52)

The solution of the corresponding equation of motion have the following asymptotic behavior at large
u:

φ(u, x) =

(
1

u

)4−∆

φ0(x) +

(
1

u

)∆

〈O(x)〉 , (3.53)

where

∆ =
d

2
+

√
d2

4
+R2m2 . (3.54)

Note that the supergravity field φ(u) is a scalar field and is thus invariant under the action of the
dilatation operator because the latter is one of the generators of the global symmetry SO(2, 4). There-
fore, we conclude that φ0 and 〈O(x)〉 carry scaling dimensions 4 − ∆ and ∆, respectively. In [7] it
was suggested that φ0 and 〈O(x)〉 correspond to the source and the vacuum expectation value of the
gauge invariant operator O(x). It is also worth noting that the expression:

∫
ddxφ0(x)〈O(x)〉 = inv. (3.55)

is invariant under the SO(2, 4) global symmetry. It was suggested that the exact form of the map is
given by the relation [7, 8]:

〈e
∫

ddxφ0(x)〈O(x)〉〉CFT = ZSugra[φ0(x)] , (3.56)

where
ZSugra[φ0(x)] = lim

ǫ→0
ZSugra[φ0(1/ǫ, x) = ǫd−∆φ0(x)] . (3.57)

i.e. the generating functional of the conformal field theory coincide with the generating functional
for tree level diagrams in supergravity. We refer the reader to the extensive review ref. [9] for more
subtleties on the precise way of taking the ǫ→ 0 limit in equation (3.57).

Formula (3.56) has been tested by comparing correlation functions of the N = 4 quantum field
theory with classical correlation functions in AdSd. Note that the tree level approximation on super-
gravity side is valid only at strong t’Hooft coupling and therefore the corresponding conformal field
theory is strongly coupled. This is why the correspondence was tested in this way only for correlation
functions which satisfy non–renormalization theorems and hence are independent on the coupling [12].
In particular it applies for the two- and three- point functions of 1/2 BPS operators [13, 14].

Further checks of the correspondence beyond the 1/2 BPS sector was started with the so–called
plane–wave string/gauge theory duality, where one takes appropriate plane–wave limit of the AdS5×S5

background [16]. Key point of this limit is that superstring theory on this background can be exactly
quantized. Recently a significant progress towards quantizing superstring theory on AdS5 × S5 has
been achieved using integrable spin chain models. We refer the reader to refs. [17, 15] for more details
on these vast subjects.
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3.2 Adding Flavors to the Correspondence

Direct consequence of the confining property of QCD is the fact that the low energy dynamics of the
theory is governed by color singlets, such as mesons, baryons and glueballs. Mesons and baryons are
bound states of quarks, the latter transform in the fundamental representation of SU(3). The fact
that at low energy QCD is strongly coupled suggests that it is not accessible for perturbative studies.
This is why it is important to come up with an alternative non–perturbative techniques describing
the strongly coupled regime of Yang–Mills theories and in particular Yang–Mills theories containing
matter in the fundamental representation of the gauge group, such as QCD.

Further need of alternative non–perturbative techniques applicable to the properties of the fun-
damental fields in the strongly coupled regime of non–abelian gauge theories is required by the very
recent discoveries of the properties of matter obtained in heavy ion collision experiments. More pre-
cisely the fact that the quark–gluon plasma which is the phase of matter of the fireballs obtained in
such experiments, is not the expected weakly coupled quark–gluon plasma predicted by the standard
perturbative QCD but is classified as a strongly coupled quark-gluon plasma. A novel phase of matter
that provides challenge for the society of theoretical physicists.

One of the purpose of the study of the AdS/CFT correspondence is to develop the above mentioned
analytic tools for the study of strongly coupled Yang–Mills theories. The original form of the conjecture
that we described in the previous section, focuses on a gauge theory with a huge amount of symmetry,
namely the N = 4 super Yang–Mills theory. On way to make the correspondence more applicable to
realistic gauge theories, such as QCD, is to reduce the amount of the supersymmetry of the theory by
introducing additional gauge invariant operators. This approach though fruitful still has the weakness
that the matter content of the dual gauge theory, more precisely the fermionic degrees of freedom,
transform in the adjoint representation of the gauge group. In other words there are no fundamental
fields in the theory. The reason is that both ends of the strings, producing the field content of the
gauge theory, are attached to the same stack of D3–branes and the corresponding states transform in
the adjoined representation of the gauge group. In order to introduce fundamental matter, one needs
to consider separate stack of D–branes.

The easiest way to introduce fundamental fields in the context of the AdS/CFT correspondence is
to consider an additional stack of Nf D7–branes [11]. (From now on we will use Nc as a notation for the
number of the D3–branes sourcing the gravitational background.) Since the D7–branes’ world volume
is higher dimensional and non–compact in the transverse to the D3–branes dimensions, the D7–branes
have infinite “internal” volume and thus their gauge coupling vanish making their gauge symmetry
group a global symmetry. In this way we introduce family of fundamental matter with global flavor
symmetry SU(Nf ). To be more precise let us consider two stacks of parallel Nc D3–branes and Nf

D7–branes embedded in the following way:

0 1 2 3 4 5 6 7 8 9

D3 - - - - · · · · · ·
D7 - - - - - - - - · ·

Table 1: Embedding of the flavor D7–branes.

The low energy spectrum of the strings stretched between the D3– and D7–branes directions give
rise to the N = 2 hypermultiplet containing two Weyl fermions of opposite chirality coming from
the light-cone modes of strings stretched along the NN and DD directions (2,3,8,9) and two complex
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scalars coming form strings stretched along the ND directions, namely 4,5,6,7. Now if we consider
Nf ≪ Nc and take the large Nc limit. We can substitute the stack of D3–branes with a AdS5 × S5

space and study the Nf D–branes in the probe limit using their Dirac–Born–Infeld action. On gauge
side this corresponds to working in the quenched approximation (Nf ≪ Nc) and taking the large Nc

t’Hooft limit. If the D3– and D7–branes are separated in their transverse (8,9)-plane, then the strings
stretched between them has a final length and hence final energy. It can be shown that [18] the mass
of the hypermultiplet is given by the energy of the string or the distance of separation L multiplied
by the string tension mq = L/(2πα′).

Let us study closer the symmetry of the set up. If the D3– and the D7–branes overlap the
hypermultiplet is massless (mq = 0). In this case the SO(6) rotational symmetry of the transverse R6

space is broken to the product SO(4) × SO(2), corresponding to rotations along the ND directions
(4,5,6,7) and the DD directions (8,9), respectively. This is equivalent to a SU(2)L × SU(2)R ×U(1)R
global symmetry, and suggests that the gauge theory has a R–symmetry group SO(2)R ×U(1)R [34],
which is indeed the case, when the hypermultiplet is massless. If the D3– and D7–branes are separated
it is known that the R–symmetry is just SU(2)R, which again fits that fact that the SO(2) rotational
symmetry in the (8,9)-plane is broken.

The dictionary of the probe brane Let us now focus on the precise way that the AdS/CFT
dictionary is implemented. The dynamics of the D7–brane probe is described by the Dirac–Born–
Infeld action including the Chern-Simons term [18]:

S

Nf
= −µ7

∫

M8

e−Φd8ξ
√

−det(P [Gab] + (2πα′)2Fab) +
(2πα′)2

2
µ7

∫

M8

P [C(4)] ∧ F ∧ F , (3.58)

where (2πα′)Fab = P [Bab] + (2πα′)Fab and µ7 = [(2π)7α′4]−1. It is convenient to introduce the
following coordinates:

ρ = u cos θ; L = u sin θ; (3.59)

and consider the ansatz:
L = L(ρ); φ = const . (3.60)

Then the lagrangian describing the D7–brane embedding is:

L ∝ ρ3
√
1 + L′(ρ)2 (3.61)

leading to the equation of motion:

L′(ρ) = − 2c√
ρ6 − 4c2

. (3.62)

At large ρ the solution has the behavior:

L(ρ) = m+
c

ρ2
+ . . . . (3.63)

Now if we introduce the field:

χ(u) =
L(ρ)

ρ2 + L(ρ)2
=

1

u
m+

1

u3
c+ . . . ; u2 = ρ2 + L(ρ)2 , (3.64)

we can see that χ(u) has the same behavior as the field φ(u, x) from equation (3.53). This is quite
suggesting. The asymptotic value of L(∞) = m is exactly the separation of the D3– and D7–branes
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and is thus related to the mass of the hypermultiplet via mq = m/(2πα′). Since the hypermultiplet
chiral fields are our quarks we will call mq the bare quark mass. Therefore, the coefficient c should
be proportional to the vev of the operator that couples to the bare quark mass but this is the quark
condensate! This is an example of the how the generalized AdS/CFT dictionary works at the level of
a D7–brane probing. Let us provide the exact relation between the quark condensate 〈Oq〉 and the
coefficient c:

〈Oq〉 = − Nf

(2πα′)3g2YM
c . (3.65)

We refer the reader to the appendix of Chapter 2 for more details on the last calculation and to ref. [38]
for an elegant presentation of the holographic renormalization of probe D–branes in AdS/CFT.

Now let us go back to equation (3.62) and note that in order for the D7–brane to close smoothly
in the bulk of the geometry, we need to impose L′(0) = 0. This is possible only for c = 0 and thus we
conclude that the condensate of the theory vanish. But the dual gauge theory is supersymmetric this
is why it is not surprising that the quark condensate is zero. Furthermore, since there is no potential
between the D3– and D7–branes (because of the unbroken supersymmetry), the D7–brane should not
bend at infinity and this is why the solution for the D7–brane embedding should be simply L ≡ m,
as it is.

Note that the analysis that led to equation (3.65) requires that the gravitational background be
only asymptotically AdS5×S5. In fact, in all cases that we are going to consider in this work, there will
be some sort of the deformation of the bulk physics, coming either from the gravitational background
or from the introduction of external fields. This will break the supersymmetry and will capacitate
the dual gauge theory to develop a quark condensate. In Section 4, we will use this approach to
provide a holographic description of magnetic catalysis of chiral symmetry breaking. Through the
rest of this review, the study of the quark condensate as a function of the bare quark mass will enable
us to explore the phase structure of the dual gauge theory and uncover a first order phase transition
associated to the melting of the light mesons of the theory.

4 Magnetic Catalysis of Mass Generation in Holographic Gauge

Theories.

The phenomenon of dynamical flavor symmetry breaking catalyzed by an arbitrarily weak magnetic
field is known from refs. [24, 25] and refs. [27, 28, 29]. This effect was shown to be model independent
and therefore insensitive to the microscopic physics underlying the low energy effective theory. In
particular the infra-red (IR) description of the Goldstone modes associated with the dynamically
broken symmetry should be universal. One therefore expects to be able to study this phenomenon
using the holographic formalism.

4.1 Mass Generation in the D3/D7 setup

There are various ways in which one can study the breaking of the chiral symmetry holographically.
This has been studied in the past by the deformation of AdS5 × S5 by a field corresponding to a
marginally irrelevant operator on the gauge theory side refs. [36, 35, 37]. In the present case however
we will stimulate the formation of a condensate by turning on the magnetic components of the U(1)
gauge field of the D7–branes Fαβ (equivalent to exciting a pure gauge B−field in the supergravity
background). This U(1) gauge field corresponds to the diagonal U(1) of the full U(Nf ) gauge symmetry
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of the stack of D7–branes. Since the D7–branes wrap an infinite internal volume, the dynamics of the
U(Nf ) gauge field is frozen in the four dimensional theory and the U(Nf ) gauge symmetry becomes
a global flavor symmetry U(Nf ) = U(1)B ×SU(Nf ). Therefore the U(1) gauge field that we consider
corresponds to the gauged U(1)B baryon symmetry and the magnetic field that we introduce couples
to the baryon charge of the fundamental fields [47].

4.1.1 Generalities

The problem thus boils down to studying embeddings of probe D7–branes in the AdS5×S5 background
parameterized as follows:

ds2 =
ρ2 + L2

R2
[−dx20 + dx21 + dx22 + dx23] +

R2

ρ2 + L2
[dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2] ,

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2, (4.66)

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3; eΦ = gs; R4 = 4πgsNcα

′2 ,

where ρ, ψ, β, γ and L, φ are polar coordinates in the transverse R
4 and R

2 planes respectively.
Here xa=1..3, ρ, ψ, β, γ parameterize the world volume of the D7–brane and the following ansatz is

considered for its embedding:

φ ≡ const , L ≡ L(ρ) ,

leading to the following induced metric on its worldvolume:

ds̃ =
ρ2 + L(ρ)2

R2
[−dx20 + dx21 + dx22 + dx23] +

R2

ρ2 + L(ρ)2
[(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3] . (4.67)

The D7–brane probe is described by the DBI action:

SDBI = −Nfµ7

∫

M8

d8ξe−Φ[−det(Gab +Bab + 2πα′Fab)]
1/2 . (4.68)

Here µ7 = [(2π)7α′4]−1 is the D7–brane tension, Gab and Bab are the induced metric and B-field
on the D7–brane’s world volume, while Fab is its world–volume gauge field. A simple way to introduce
a magnetic field is to consider a pure gauge B–field along the x2, x3 directions:

B(2) = Hdx2 ∧ dx3 . (4.69)

Since Bab and Fab appear on equal footing in the DBI action, the introduction of such a B-field is
equivalent to introducing an external magnetic field of magnitude H/(2πα′) to the dual gauge theory.

Though the full solution of the embedding can only be calculated numerically, the large ρ behaviour
(equivalently the ultraviolet (UV) regime in the gauge theory language) can be extracted analytically:

L(ρ) = m+
c

ρ2
+ · · · . (4.70)

As discussed in ref. [35], the parameters m (the asymptotic separation of the D7- and D3- branes)
and c (the degree of bending of the D7–brane in the large ρ region) are related to the bare quark
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mass mq = m/2πα′ and the fermionic condensate 〈ψ̄ψ〉 ∝ −c respectively. It should be noted that
the boundary behavior of L(r) really plays the role of source and vacuum expectation value (vev) for
the full N = 2 hypermultiplet of operators. In the present case, where supersymmetry is broken by
the gauge field configuration, we are only interested in the fermionic bilinears and this will refer only
to quarks, and not their supersymmetric counterparts.

At this point it is convenient to introduce dimensionless parameters c̃ = c/R3H3/2 and m̃ =
m/R

√
H. By performing a numerical shooting method from the infrared while varying the small ρ

boundary value, L(ρ→ 0) = LIR, we recover the parametric plot presented in figure 2, the main result
explored in ref. [22].

1 2 3 4 5
m
!

"0.1

"0.2

"0.3
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!m
!

"
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"

cr

Figure 2: Parametric plot of c̃ against m̃ for fundamental matter in the presence of an external magnetic field.
The lower (black) line represents the curve 1/m̃, fitting the large m̃ behavior. It is also evident that for the outer
branch of the spiral, for m̃ = 0 the condensate, 〈ψ̄ψ〉 is non-zero. The corresponding value of the condensate is
c̃cr = 0.226.

The lower (black) curve corresponds to the analytic behavior of c̃(m̃) = 1/m̃ for large m̃. The
most important observation is that at m̃ = 0 there is a non-zero fermionic condensate:

〈ψ̄ψ〉 = − NfNc

(2πα′)3λ
c = − NfNcc̃cr

(2π2)3/4λ1/4

(
H

2πα′

)3/2

. (4.71)

Where λ = g2YMNc is the ’t Hooft coupling and c̃cr ≈ 0.226 is a numerical constant corresponding
to the y-intercept of the outer spiral from figure 2. Equation (4.71) is telling us that the theory has

developed a negative condensate that scales as
(

H
2πα′

)3/2
. This is not surprising, since the theory is

conformal in the absence of the scale introduced by the external magnetic field. The energy scale

controlled by the magnetic field,
(

H
2πα′

)1/2
, leads to an energy density proportional to

(
H

2πα′

)2
. In

order to lower the energy, the theory responds to the magnetic field by developing a negative fermionic
condensate.

Another interesting feature of the theory is the discrete–self–similar structure of the equation of
state (c̃ vs. m̃) in the vicinity of the trivial m̃ = 0 embedding, namely the origin of the plot from
figure 2 presented in figure 3.

This double logarithmic structure has been analyzed in ref. [31], where a study of the meson
spectrum revealed that only the outer branch of the spiral is tachyon free and corresponds to a stable
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Figure 3: A magnification of figure 2 shows the spiral behavior near the origin of the (−c̃, m̃)-plane. The
second (left) spiral arm represents the (m̃,−c̃) → (−m̃, c̃) symmetry of the theory.

phase having spontaneously broken chiral symmetry. In ref. [32] it has been shown that an identical
structure is also present for the D3/D5 system and it has been demonstrated that this structure is a
universal feature of the magnetic catalysis of mass generation for gauge theories holographically dual
to Dp/Dq intersections.

A further result of refs. [22, 31, 33] was the detailed analysis of the light meson spectrum of
the theory. In ref. [22] it was shown that the introduction of an external magnetic field breaks the
degeneracy of the spectrum studied in ref. [34]. This manifests itself as Zeeman splitting of the energy
levels. In the limit of zero quark mass, the study also revealed the existence of a massless “η′ meson”
corresponding to the spontaneously broken U(1)R symmetry. In the next subsection we will review
the study of the meson spectrum of the theory.

4.1.2 Meson spectrum

General properties. To study the scalar meson spectrum one considers quadratic fluctuations [34]
of the embedding of the D7–brane in the transverse (L, φ)-plane. It can be shown that because of
the diagonal form of the metric the fluctuation modes along the φ coordinate decouple from the one
along L. However, because of the non–commutativity introduced by the B–field we may expect the
scalar fluctuations to couple to the vector fluctuations. This has been observed in ref. [39], where the
authors considered the geometric dual to non–commutative super Yang Mills as well as in the studies
performed in refs. [22, 31, 33].

Let us proceed with obtaining the action for the fluctuations. To obtain the contribution from the
DBI part of the action we consider the expansion:

L = L0(ρ) + 2πα′χ, φ = 0 + 2πα′ , (4.72)

where L0(ρ) is the classical embedding of the D7–brane solution to the equation of motion derived
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from the action (4.68). To second order in α′ we have the following expression:

Eab = E0
ab + 2πα′E1

ab + (2πα′)2E2
ab , (4.73)

where E0, E1, E2 are given by:

E0
ab = Gab(ρ, L0(ρ), ψ) +Bab, (4.74)

E1
ab =

R2L0
′

ρ2 + L2
0

(
∂aχδ

ρ
b + ∂bχδ

ρ
a

)
+ ∂L0Gabχ+ Fab

E2
ab =

R2

ρ2 + L2
0

(
∂aχ∂bχ+ L2

0∂aΦ∂bΦ
)
− 2R2L0L

′
0

(ρ2 + L2
0)

2

(
∂aχδ

ρ
b + ∂bχδ

ρ
a

)
χ+

1

2
∂2L0

Gabχ
2 .

Here Gab and Bab are the induced metric and B field on the D7–brane’s world volume. Now we can
substitute equation (4.75) into equation (4.68) and expand to second order in α′. It is convenient [39]
to introduce the following matrices:

||E0
ab||−1 = S + J, (4.75)

where S is diagonal and J is antisymmetric:

||Sab|| = diag{−G−1
11 , G

−1
11 ,

G11

G2
11 +H2

,
G11

G2
11 +H2

, G−1
ρρ , G

−1
ψψ, G

−1
αα, G

−1
ββ} , (4.76)

Jab =
H

G2
11 +H2

(δa3δ
b
2 − δb3δ

a
2) , (4.77)

G11 =
ρ2 + L0

2

R2
; Gρρ = R2 (1 + L′

0
2)

ρ2 + L2
0

; Gψψ =
R2ρ2

ρ2 + L2
0

;

Gαα = cos2 ψGψψ ; Gββ = sin2 ψGψψ . (4.78)

Now it is straightforward to get the effective action. At first order in α′ the action for the scalar
fluctuations is the first variation of the classical action (4.68) and is satisfied by the classical equations
of motion. Therefore we focus on the second order contribution from the DBI action.

After integrating by parts and taking advantage of the Bianchi identities for the gauge field, we
end up with the following terms [22]. For χ:

Lχ ∝ 1
2

√
−E0 R2

ρ2+L0
2

Sab

1+L′
0
2∂aχ∂bχ+

[
∂2L0

√
−E0 − ∂ρ

(
∂L0

√
−E0 L′

0

1+L′
0
2

)]
1
2χ

2 ,

(4.79)

and for F :

LF ∝ 1

4

√
−E0Saa

′

Sbb
′

FabFa′b′ , (4.80)

and the mixed χ–F terms:

LFχ ∝ sin 2ψ

2
fχF23 , (4.81)

and for Φ:

LΦ ∝ 1

2

√
−E0

R2L0
2

ρ2 + L2
0

Sab∂aΦ∂bΦ , (4.82)
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where the function f in (4.81) is given by:

f(ρ) = ∂ρ

(
g(ρ)

L′
0

1 + L0
′2J

23

)
+ J32∂L0g(ρ) + 2g(ρ)J23S22∂L0G11 , (4.83)

with g(ρ) =

√
−E0

sinψ cosψ
= ρ3

√
1 + L0

′2

√
1 +

R4H2

(ρ2 + L2
0)

2
.

As can be seen from equation (4.81) the A2, A3 components of the gauge field couple to the scalar
field χ via the function f . Note that since for ρ → ∞ and L → ∞, we see that J23 → 0, the mixing
of the scalar and vector field decouples asymptotically. In order to proceed with the analysis we need
to take into account the contribution from the Wess-Zumino part of the action. The relevant terms
to second order in α′ are [39]:

SWZ =
(2πα′)2

2
µ7

∫
F(2) ∧ F(2) ∧ C(4) + (2πα′)µ7

∫
F(2) ∧B(2) ∧ P̃ [C(4)] , (4.84)

where C(4) is the background R-R potential given in equation (4.66) and C̃(4) is the pull back of its
magnetic dual. One can show that:

C̃4 = − 1

gs

R4ρ4

(ρ2 + L2)2
sinψ cosψdψ ∧ dα ∧ dβ ∧ dφ . (4.85)

Writing φ = 2πα′Φ we write for the pull back P [C̃(4)]:

P [C̃(4)] = −2πα′

gs

sin 2ψ

2
K(ρ)∂aΦdψ ∧ dα ∧ dβ ∧ dxa, (4.86)

where we have defined:

K(ρ) =
R4ρ4

(ρ2 + L2
0)

2
(4.87)

Now note that the B–field has components only along x2 and x3, therefore dxa in equation (4.86) can
be only dρ, dx0 or dx1. This will determine the components of the gauge field which can mix with Φ.
However, after integrating by parts and using the Bianchi identities one can get the following simple
expression for the mixing term:

−(2πα′)2
µ7
gs

∫
d8ξ

sin 2ψ

2
H∂ρKΦF01 , (4.88)

resulting in the following contribution to the complete lagrangian:

LFΦ ∝ sin 2ψ

2
H∂ρKΦF01 . (4.89)

Note that this means that only the A0 and A1 components of the gauge field couple to the scalar field
Φ. Next the contribution from the first term in (4.84) is given by:

(2πα′)2
µ7
gs

∫
d8ξ

(ρ2 + L2
0)

2

8R4
FabFcdǫ

abcd , (4.90)

where the indices take values along the ρ, ψ, α, β directions of the world volume. This will contribute
to the equation of motion for Aρ, Aψ, Aα and Aβ which do not couple to the scalar fluctuations. In this
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section we will be interested in analyzing the spectrum of the scalar modes, therefore we will not be
interested in the components of the gauge field transverse to the D3–branes world volume. However,
although there are no sources for these components from the scalar fluctuations, they still couple to
the components along the D3–branes as a result setting them to zero will impose constraints on the
A0 . . . A3. Indeed, from the equation of motion for the gauge field along the transverse direction one
gets:

3∑

a=0

Saa∂b∂aAa = 0, b = ρ, ψ, α, β , (4.91)

(Here, no summation on repeated indices is intended.) However, the non–zero B–field explicitly breaks
the Lorentz symmetry along the D3–branes’ world volume. In particular we have:

S00 = −S11 , S22 = S33 6= S11 , (4.92)

which suggests that we should impose:

−∂0A0 + ∂1A1 = 0 , ∂2A2 + ∂3A3 = 0 . (4.93)

We will see that these constraints are consistent with the equations of motion for A0 . . . A3. Indeed,
with this constraint the equations of motion for χ, Φ and Aµ, µ = 0 . . . 3 are, for χ:

1 + L′
0
2

g
∂ρ

(
g∂ρχ

(1 + L′
0
2)2

)
+

∆Ω3χ

ρ2
+

R4

(ρ2 + L2
0)

2
�̃χ+ (4.94)

+
1 + L′

0
2

g

(
−∂ρ

(
∂g

∂L0

L′
0

1 + L′
0
2

)
+
∂2g

∂L2
0

)
χ+

1 + L′
0
2

g
fF23 = 0 ,

and for Φ:

1

g
∂ρ

(
gL2

0∂ρΦ

1 + L′
0
2

)
+
L2
0∆Ω3Φ

ρ2
+

R4L2
0

(ρ2 + L2
0)

2
�̃Φ− H∂ρK

g
F01 = 0 , (4.95)

and finally for Aa:

1

g
∂ρ

(
g∂ρA0

1 + L′
0
2

)
+

∆Ω3A0

ρ2
+

R4

(ρ2 + L2
0)

2
�̃A0 +

H∂ρK

g
∂1Φ = 0 , (4.96)

1

g
∂ρ

(
g∂ρA1

1 + L′
0
2

)
+

∆Ω3A1

ρ2
+

R4

(ρ2 + L2
0)

2
�̃A1 +

H∂ρK

g
∂0Φ = 0 ,

1

g
∂ρ


 g∂ρA2

(1 + L′
0
2)(1 + R4H2

(ρ2+L2
0)

2 )


+

R4

(ρ2 + L2
0)

2 +R4H2
�̃A2 +

∆Ω3A2

ρ2(1 + R4H2

(ρ2+L2
0)

2 )

−f
g
∂3χ = 0 ,

1

g
∂ρ


 g∂ρA3

(1 + L′
0
2)(1 + R4H2

(ρ2+L2
0)

2 )


+

R4

(ρ2 + L2
0)

2 +R4H2
�̃A3 +

∆Ω3A3

ρ2(1 + R4H2

(ρ2+L2
0)

2 )

+
f

g
∂2χ = 0 .
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We have defined:

�̃ = −∂20 + ∂21 +
∂22 + ∂23

1 + R4H2

(ρ2+L2
0)

2

. (4.97)

As one can see the spectrum splits into two independent components, namely the vector modes A0, A1

couple to the scalar fluctuations along Φ, while the vector modes A2, A3 couple to the scalar modes
along χ. However, it is possible to further simplify the equations of motion for the gauge field. Focusing
on the equations of motion for A0 and A1 in equation (4.96), it is possible to rewrite them as:

1

g
∂ρ

(
g∂ρF01

1 + L′
0
2

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 + L2
0)

2
�̃F01 −

H∂ρK

g
(−∂20 + ∂21)Φ = 0 (4.98)

1

g
∂ρ

(
g∂ρ(−∂0A0 + ∂1A1)

1 + L′
0
2

)
+

∆Ω3(−∂0A0 + ∂1A1)

ρ2
(4.99)

+
R4

(ρ2 + L2
0)

2
�̃(−∂0A0 + ∂1A1) = 0 .

Note that the first constraint in (4.93) trivially satisfies the second equation in (4.98). In this way we
are left with the first equation in (4.98). Similarly one can show that using the second constraint in
(4.93) the equations of motion in (4.96) for A2 and A3 boil down to a single equation for F23:

1

g
∂ρ


 g∂ρF23

(1 + L′
0
2)(1 + R4H2

(ρ2+L2
0)

2 )


 +

R4

(ρ2 + L2
0)

2 +R4H2
�̃F23

+
∆Ω3F23

ρ2(1 + R4H2

(ρ2+L2
0)

2 )
+
f

g
(∂22 + ∂23)χ = 0 . (4.100)

Now let us proceed with a study of the fluctuations along Φ.

Fluctuations along Φ for a weak magnetic field. To proceed, we have to take into account
the F01 component of the gauge field strength and solve the coupled equations of motion. Since the
classical solution for the embedding of the D7–brane is known only numerically we have to rely again
on numerics to study the meson spectrum. However, if we look at equation of motion derived from
(4.68) we can see that the terms responsible for the non–trivial embedding of the D7–branes are of
order H2 [22]. On the other hand, the mixing of the scalar and vector modes due to the term (4.89)
appear at first order in H. Therefore it is possible to extract some non–trivial properties of the meson
spectrum even at linear order in H and as it turns out [22], we can observe a Zeeman–like effect: A
splitting of states that is proportional to the magnitude of the magnetic field. Let us review the study
performed in ref. [22].

To first order in H the classical solution for the D7–brane profile is given by:

L0 = m+O(H2), (4.101)

where m is the asymptotic separation of the D3– and D7–branes and corresponds to the bare quark
mass. In this approximation the expressions for g(ρ) and ∂ρK(ρ), become:

g(ρ) = ρ3 , ∂ρK(ρ) =
4m2R4ρ3

(ρ2 +m2)3
,
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and the equations of motion for Φ and F01, equations (4.95) and (4.98), simplify to:

1

ρ3
(
ρ3m2∂ρΦ

)
+
m2∆Ω3

ρ2
Φ+

m2R4

(ρ2 +m2)2
�Φ− 4H

m2R4

(ρ2 +m2)3
F01 = 0 , (4.102)

1

ρ3
∂ρ
(
ρ3∂ρF01

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 +m2)2
�F01 − 4H

m2R4

(ρ2 +m2)3
P2Φ = 0 ,

where � = −∂20 + ∂21 + ∂22 + ∂23 , P2 = −∂20 + ∂21 .

This system has become similar to the system studied in ref. [39] and in order to decouple it we can
define the fields:

φ± = F01 ±mPΦ , (4.103)

where P =
√

−∂20 + ∂21 . The resulting equations of motion are:

1

ρ3
∂ρ(ρ

3∂ρφ±) +
∆Ω3

ρ2
φ± +

R4

(ρ2 +m2)2
�φ± ∓H

4R4m

(ρ2 +m2)3
Pφ± = 0 . (4.104)

Note that P2 is the Casimir operator in the (x0, x1) plane only, while � is the Casimir operator along
the D3–branes’ world volume. If we consider a plane wave eix.k then we can define:

�eix.k =M2eix.k, P2eix.k =M2
01e

ix.k ,

and we have the relation:
M2 =M2

01 − k22 − k23 . (4.105)

The corresponding spectrum of M2 is continuous in k2, k3. However, if we restrict ourselves to motion
in the (x0, x1)-plane the spectrum is discrete. Indeed, let us consider the ansatz:

φ± = η±(ρ)e
−ix0k0+ik1x1 . (4.106)

Then we can write:

1

ρ3
∂ρ(ρ

3∂ρη±) +
R4

(ρ2 +m2)2
M2

±η± ∓H
4R4m

(ρ2 +m2)3
M±η± = 0 , (4.107)

M± ≡M01± .

Let us analyze equation (4.107). It is convenient to introduce:

y = − ρ2

m2
; M̄± =

R2

m
M±; P±(y) = (1− y)α±η±; (4.108)

2α± = 1 +
√
1 + M̄2

±; ǫ = H
R2

m2
.

With this change of variables equation (4.107) is equivalent to:

y(1− y)P ′′
± + 2(1− (1− α±)y)P

′ − α±(α±−1)P± ± ǫ
M̄±

(1− y)2
P± = 0 . (4.109)

Next we can expand:

P± = P0 ± ǫP1 +O(ǫ2) ; α± = α0 ± ǫα1 +O(ǫ2) ; (4.110)

M̄± = M̄0 ± ǫα1
(4α0 + 2)

M̄0
+O(ǫ2) ; M̄0 = 2

√
α0(α0 + 1) .
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leading to the following equations for P0 and P1:

y(1− y)P ′′
0 + 2(1− (1− α0)y)P

′
0 − α0(α0 − 1)P0 = 0 , (4.111)

y(1− y)P ′′
1 + 2(1− (1− α0)y)P

′
1 − α0(α0 − 1)P1 = (α1(2α0 − 1)

− M̄0

(1− y)2
)P0 − 2α1yP

′
0 .

The first equation in (4.111) is the hypergeometric equation and corresponds to the fluctuations in
pure AdS5 × S5. It has the regular solution [34]:

P0(y) = F (−α0, 1− α0, 2, y) . (4.112)

Furthermore, regularity of the solution for η(ρ) at infinity requires [34] that α0 be discrete, and hence
the spectrum of M̄0:

1− α0 = −n, n = 0, 1, . . . (4.113)

M̄0 = 2
√
(n+ 1)(n+ 2) .

The second equation in (4.111) is an inhomogeneous hypergeometric equation. However, for the ground
state, namely n = 0, P0 = F (−1, 0, 2, y) = 1 and one can easily get the solution:

P1(y) =
M̄0

6
ln(1− y) + (6α1 − M̄0)(ln(−y) +

1

y
)− M̄0

4(1− y)
. (4.114)

On the other hand, using the definition of P±(y) in (4.108) to first order in ǫ we can write:

η± =
1

(1− y)α0

(
1∓ ǫ

α1

α0
ln(1− y)

)
(1± ǫP1(y)) , (4.115)

for the ground state α0 = 1 and we end up with the following expression for η±:

η± =
1

1− y
± ǫ

M̄0

4(1− y)2
± ǫ

1− y
(6α1 − M̄0)

(
ln(−y) + 1

y
− ln(1− y)

6

)
. (4.116)

Now if we require that our solution is regular at y = 0 and goes as 1/ρ2 ∝ 1/y at infinity, the last
term in (4.116) must vanish. Therefore we have:

α1 =
M̄0

6
. (4.117)

After substituting in (4.110) and (4.108) we end up with the following correction to the ground sate
[22]:

M± =M0 ±
H

m
. (4.118)

We observe how the introduction of an external magnetic field breaks the degeneracy of the spectrum
given by equation (4.113) and results in Zeeman splitting of the energy states, proportional to the
magnitude of H. Although equation (4.118) was derived using the ground state it is natural to expect
that the same effect takes place for higher excited states. To demonstrate this it is more convenient
to employ numerical techniques for solving equation (4.107) and use the methods described in ref. [36]
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Figure 4: Plot of M̄ =MR2/m vs. H/m for the first three states. The dashed black lines correspond
to the spectrum given by equation (4.113).

to extract the spectrum. The resulting plot is presented in Figure 4. As expected we observe Zeeman
splitting of the higher excited states. It is interesting that equation (4.118) describes well not only
the ground state, but also the first several excited states.

It turns out that one can easily generalize equation (4.118) to the case of non–zero momentum in
the (x2, x3)-plane. Indeed, if we start from equation (4.104) and proceed with the ansatz:

φ± = η̃±(ρ)e
−ix.k , (4.119)

we end up with:

1

ρ3
∂ρ(ρ

3∂ρη̃±) +
R4

(ρ2 +m2)2
M2

±η̃± ∓H
4R4m

(ρ2 +m2)3
M01±η̃± = 0 , (4.120)

M01± =
√
M2

± + k223; k23 ≡
√
k22 + k23 .

After going through the steps described in equations (4.108)-(4.116), equation (4.117) gets modified
to:

α1 =
M̄0

6

√
1 +

k223
M2

0

. (4.121)

Note that validity of the perturbative analysis suggests that α1 is of the order of α0 and therefore we
can trust the above expression as long as k23 is of the order of M0. Now it is straightforward to obtain
the correction to the spectrum [22]:

M± =M0 ±
H

m

√
1 +

k223
M2

0

. (4.122)

We see that the addition of momentum along the (x2 − x3)-plane enhances the splitting of the states.
Furthermore, the spectrum depends continuously on k23.
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Fluctuations along Φ for a strong magnetic field. For strong magnetic field we have to take
into account terms of order H2, which means that we no longer have an expression for L0(ρ) in a
closed form and we have to rely on numerical calculations. We consider the ansätz:

Φ = ei(k0x
0+k1x1)h(ρ); F01 = ei(k0x

0+k1x1)f(ρ) , (4.123)

and define:
M2 = k20 − k21 . (4.124)

The equations (4.95) and (4.98) simplify to:

1

g
∂ρ

(
gL2

0

1 + L′2
0

∂ρh

)
+

R4L2
0

(ρ2 + L2
0)

2
M2h− H∂ρK

g
f = 0 , (4.125)

1

g
∂ρ

(
g

1 + L′2
0

∂ρf

)
+

R4

(ρ2 + L2
0)

2
M2f − M2H∂ρK

g
h = 0 .

Note that for large bare masses m (and correspondingly large values of L) the term proportional to
the magnetic field is suppressed and the meson spectrum should approximate to the result for the
pure AdS5×S5 space-time case studied in ref. [34], where the authors obtained the following relation:

Mn =
2m

R2

√
(n+ 1)(n+ 2) , (4.126)

between the eigenvalue of the nth excited state ωn and the bare mass m. If one imposes the boundary
conditions:

h(ǫ) = 1; h′(ǫ) = 0; f(ǫ) = 1; f ′(ǫ) = 0 , (4.127)

the coupled system of differential equations can be solved numerically [32]. Then by requiring the
functions h(ρ) and f(ρ) to be regular at infinity one can quantize the spectrum of the fluctuations. It
is also convenient to define the following dimensionless parameter M̃ =MR/

√
H. The resulting plot

for the first three excited states is presented in figure 5 [32]. There is Zeeman splitting of the states
due to the magnetic field. (In the absence of the field there are three straight lines emanating from
the origin; these are split to form six curves.) Also, at zero bare quark mass there is indeed a massless
Goldstone mode, appearing at the end of the lowest curve. Furthermore the plot in figure 6 shows
that for small bare quark mass one can observe a characteristic M̃ ∝

√
m̃ dependence. In the next

section we will review the analysis of the Goldstone mode performed in ref. [32], where an analytic
proof of the Gell-Mann–Oakes–Renner relation [44]:

M2
π = −2〈ψ̄ψ〉

f2π
mq , (4.128)

in the spirit of ref. [35]. has been obtained.
Furthermore we will generalize the ansätz (4.123) to consider fluctuations depending on both the

momentum along the magnetic field ~k|| = (k1, 0, 0) and the transverse momentum ~k⊥ = (0, k2, k3) [32]:

Φ = ei(ωt+
~k.~x)h(ρ) ; F01 = ei(ωt+

~k.~x)f(ρ) . (4.129)

We also review the result of ref. [32] that for small ω = k0 and |~k| the following dispersion relation
holds:

ω(~k)2 =M2 + ~k2|| + γ~k2⊥ ; ω = k0 ; ~k|| = (k1, 0, 0) ; ~k⊥ = (0, k2, k3) , (4.130)

where γ is a constant that has been determined.
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 n=0

Figure 5: There is Zeeman splitting of the states due to the magnetic field. In the absence of the field there
are three straight lines emanating from the origin; these are split to form six curves. At zero bare quark mass
(the end of the lowest curve) there is indeed a massless Goldstone mode. The straight lines correspond to the
asymptotic AdS results.

The M2 ∝ m dependence. Using an approach similar to the one employed in ref. [35] the authors
of ref. [32] define:

Ψ2 =
gL2

0

1 + L′2
0

; ν = R4 1 + L′2
0

(ρ2 + L2
0)

2
; ν̃ = R4 1 + L′2

0

(ρ2 + L2
0)

2

1

1 + R4H2

(ρ2+L2
0)

2

, (4.131)

Ψ1 = Ψ/L0 ; ψ = hΨ ; ψ1 = fΨ1 .

The equations of motions (4.95) and (4.98) can then be written in the compact form:

ψ̈ − Ψ̈

Ψ
ψ = −(ω2 − ~k2||)νψ + ~k2⊥ν̃ψ +

H∂ρK

ΨΨ1
ψ1 , (4.132)

ψ̈1 −
Ψ̈1

Ψ1
ψ1 = −(ω2 − ~k2||)νψ1 + ~k2⊥ν̃ψ1 +

H∂ρK

ΨΨ1
(ω2 − ~k2||)ψ .

Let us remind the reader that for large ρ, L0(ρ) has the behavior:

L0 ∝ m+
c

ρ2
+ · · · , (4.133)

Let us denote by L̄0 the classical embedding corresponding to (m = 0, c = ccr). It is relatively easy to
verify that at m = 0, ~k⊥ = ~0 and correspondingly M2 = ω2 − ~k2|| = 0 the choice:

ψ = Ψ̄ ≡ Ψ|L̄0
; ψ1 = 0 , (4.134)

is a solution to the system (4.132). Next we consider embeddings corresponding to a small bare quark
mass δm. This will correspond to small nonzero values of M2 and ~k2⊥. It is then natural to consider
the following variations:

ψ = Ψ̄ + δψ , (4.135)

ψ1 = 0 + δψ1 ,

32



0.02 0.04 0.06 0.08 0.10
m�

0.05

0.10

0.15

0.20

0.25
M
�

M
�

=0.64 m� +0.097m� +1.17m� 3�2

Figure 6: There is a characteristic M̃ ∝
√
m̃ behavior at small bare quark mass.

where δψ and δψ1 are of order M2. Note that M corresponds to the mass of the ground state
at mq = δm/2πα′ and we are assuming that the variations of the wave functions δψ and δψ1 are
infinitesimal for infinitesimal mq. After expanding in equation (4.132) we get the following equations
of motion:

δψ̈ −
¨̄Ψ

Ψ̄
δψ − δ

(
Ψ̈

Ψ

)
Ψ̄ = −(ω2 − ~k2||)ν̄Ψ̄ + ~k2⊥ ¯̃vΨ̄ +

H∂ρK

Ψ̄1Ψ̄
δψ1 , (4.136)

Ψ̄1δψ̈1 − ¨̄Ψ1δψ1 = H∂ρK(ω2 − k2||) ,

where ν̄ = ν|L̄0
. The second equation in (4.136) can be integrated to give:

Ψ̄1δψ̇1 − ˙̄Ψ1δψ1 = HK(ω2 − k2||) + constant . (4.137)

From the boundary conditions that K|ρ=0 = 0 and Ψ̄1(0) = 0, ˙̄Ψ1(0) = 0 we see that the constant of
integration is zero and arrive at:

∂ρ

(
δψ1

Ψ̄1

)
=
HK(ω2 − k2||)

Ψ̄2
1

. (4.138)

Next we multiply the first equation in (4.136) by Ψ̄ and integrate along ρ to obtain:

(ω2 − ~k2||)

∞∫

0

dρν̄Ψ̄2 − ~k2⊥

∞∫

0

dρ¯̃νΨ̄2 = −
∞∫

0

(Ψ̄δψ̈ − ¨̄Ψδψ)dρ+

∞∫

0

Ψ̄2δ

(
Ψ̈

Ψ

)
dρ+ (4.139)

+H

∞∫

0

∂ρKδψ1

Ψ̄1
dρ = −(Ψ̄δψ̇ − ˙̄Ψδψ)

∣∣∣
∞

0
+ (Ψ̄δΨ̇− ˙̄ΨδΨ)

∣∣∣
∞

0
−H

∞∫

0

K∂ρ

(
δψ1

Ψ̄1

)
dρ ,

where the last term on the right-hand side of equation (4.139) has been integrated by parts using the
fact that δψ1 should be regular at infinity. From the definition of Ψ̄ it follows that Ψ̄ ∝ ρ3/2L0(0) as
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ρ→ 0 and Ψ̄ ∝ c/ρ1/2 as ρ→ ∞. This together with the requirement that ψ1 is regular at ρ = 0 and
vanishes at infinity, suggests that the first term on the right-hand side of equation (4.139) vanishes.
For the next term, we use the fact that:

δΨ = ρ3/2δ



1 + H2R4

(ρ2+L2
0)

2

1 + L′2
0




1/4

L0 + ρ3/2



1 + H2R4

(ρ2+L2
0)

2

1 + L′2
0




1/4

δL0 , (4.140)

and therefore obtain:

δΨ|0 = 0; δΨ̇|0 = 0 , (4.141)

δΨ|∞ ∝ ρ3/2δm ; δΨ̇|∞ ∝ 3

2

√
ρδm .

The second term in equation (4.139) then becomes:

(Ψ̄δΨ̇− ˙̄ΨδΨ)
∣∣∣
∞

0
= 2cδm . (4.142)

Finally using the equality in equation (4.138) we arrive at the result:

(ω2 − ~k2||)

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
− ~k2⊥

∞∫

0

dρ¯̃νΨ̄2 = 2cδm . (4.143)

Now we define [32]:

γ =




∞∫

0

dρ¯̃νΨ̄2


 /




∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
 , (4.144)

and solve for M2 from equation (4.130) to obtain:

M2

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
= 2cδm . (4.145)

Equation (4.145) suggests that the mass of the “pion” associated to the softly broken global U(1)
symmetry satisfies the Gell-Mann–Oakes–Renner relation [44]:

M2
π = −2〈ψ̄ψ〉

f2π
mq . (4.146)

In order to prove equation (4.146) we need to evaluate the effective coupling of the “pion” f2π . Noting
that δm ∝ mq and c ∝ −〈ψ̄ψ〉, we conclude that:

f2π ∝
∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (4.147)

To verify the consistency of their analysis the authors of ref. [32] compare the coefficient in equa-
tion (4.145) to the numerically determined coefficient 0.64 from the plot in figure 6. Indeed from
equation (4.145) it follows that:

M̃/
√
m̃ =


 1

2c̃cr

∞∫

0

dρ̃




¯̂ν
¯̂
Ψ

2
+

¯̂
K

2

¯̂
Ψ

2

1







−1/2

≈ 0.655 , (4.148)
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where the dimensionless quantities:

ν̂ = H2ν; Ψ̂2 = Ψ2/R5H5/2; Ψ̂2
1 = Ψ2

1/R
3H3/2; K̂ = K/R4 (4.149)

have been defined. There is excellent agreement with the fit from figure 6.
Next we will obtain an effective four dimensional action for the “pion” and from this derive an

exact expression for f2π .

Effective chiral action and f2π . In this section we will reduce the eight dimensional world-volume
action for the quadratic fluctuations of the D7–brane to an effective action for the massless “pion”
associated to the spontaneously broken global U(1) symmetry. As rigid rotations along φ correspond
to chiral rotations, (the asymptotic value of φ at infinity corresponds to the phase of the condensate
in the dual gauge theory) the spectrum of Φ at zero quark mass contains the Goldstone mode that we
are interested in. This is why we first integrate out the gauge field components A0 and A1 and then
dimensionally reduce to four dimensions [32].

Furthermore as mentioned earlier, because of the magnetic field the SO(1, 3) Lorentz symmetry
is broken down to SO(1, 1) × SO(2) symmetry. This is why in order to extract the value of f2π we
consider excitations of Φ depending only on the x0, x1 directions and read off the coefficient in front
of the kinetic term. The resulting on-shell effective action for Φ is [32]:

Seff = −N
∫
d4x

[
−(∂0Φ)

2 + (∂1Φ)
2
]
, (4.150)

where N is given by:

N = (2πα′)2
µ7
gs
Nfπ

2

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (4.151)

We refer the reader to the Appendix of ref. [32] for a detailed derivation of the 4D effective action Seff .
We have defined Φ via φ = (2πα′)Φ, where φ corresponds to rotations in the transverse R

2 plane
and is the angle of chiral rotation in the dual gauge theory. The chiral Lagrangian is then given by:

Seff = −(2πα′)2
f2π
4

∫
d4x∂µΦ∂

µΦ ; µ = 0 or 1 , (4.152)

and therefore:

f2π = Nf4π
2µ7
gs

∞∫

0

dρ

(
ν̄Ψ̄2 +

H2K2

Ψ̄2
1

)
. (4.153)

The D7–brane charge in equation (4.153) is given by µ7 = [(2π)7α′4]−1 and the overall prefactor in
equation (4.153) can be written as NfNc/2(2πα

′)4λ. Now, recalling the expressions for the fermionic
condensate, equation (4.71), and the bare quark mass, mq = m/2πα′, one can easily verify that
equation (4.145) is indeed the Gell-Mann–Oakes–Renner relation:

M2
π = −2〈ψ̄ψ〉

f2π
mq . (4.154)

It turns out that for small momenta ~k||, ~k⊥ and small mass M2
π one can obtain the following more

general effective 4D action (see Appendix A of ref. [32] for a detailed derivation):

Seff = −N
∫
d4x

{
[−(∂0Φ̃)

2 + (∂1Φ̃)
2] + γ[(∂2Φ̃)

2 + (∂3Φ̃)
2]− 2〈ψ̄ψ〉

f2π
mqΦ̃

2

}
+ · · · , (4.155)
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where γ is defined in equation (4.144). As one can see, the action (4.155) is the most general quadratic
action consistent with the SO(1, 1) × SO(2) symmetry and suggests that pseudo Goldstone bosons
satisfy the dispersion relation (4.130).

4.2 Mass Generation in the D3/D5 setup

In this section we review the results of ref. [32] providing a holographic description of the magnetic
catalysis of chiral symmetry breaking in 1+3 dimensional SU(Nc) N = 4 supersymmetric Yang-Mills
theory coupled to Nf N = 2 fundamental hypermultiplets confined to a 1 + 2 dimensional defect.
In ref. [32] it has been shown that the system develops a dynamically generated mass and negative
fermionic condensate leading to a spontaneous breaking of a global SO(3) symmetry down to a U(1)
symmetry. On the gravity side this symmetry corresponds to the rotational symmetry in the transverse
R
3. The authors of [32] had shown that the 1+2 dimensional nature of the defect theory leads to a

coupling of the transverse scalars corresponding to the coset generators and as a result there is only a
single Goldstone mode. It has also been shown that the characteristic Mπ ∝ √

m Gell-Mann–Oakes–
Renner relation is modified to a linear Mπ ∝ m behavior. These features has been understood from a
low energy effective theory point of view. Indeed in 1 + 2 dimensions the effect of the magnetic field
is to break the SO(1, 2) Lorentz symmetry down to SO(2) rotational symmetry and as a result the
theory is non-relativistic. A single time derivative chemical potential term is allowed. It is this term
that is responsible for the modified counting rule of the number of Goldstone bosons [45] and leads to
a quadratic dispersion relation as well as to the modified linear Gell-Mann–Oakes–Renner relation.

4.2.1 Generalities

Let us consider the AdS5 × S5 supergravity background (4.66) and introduce the following parame-
terization:

ds2 =
u2

R2
[−dx20 + dx21 + dx22 + dx23] +

R2

u2
[dr2 + r2dΩ2

2 + dl2 + l2dΩ̃2
2] , (4.156)

u2 = r2 + l2 ; dΩ2
2 = dα2 + cos2 αdβ2 ; dΩ̃2

2 = dψ2 + cos2 ψdφ2 .

We have split the transverse R6 to R
3×R

3 and introduced spherical coordinates r,Ω2 and l, Ω̃2 in the
first and second R

3 planes respectively. Next we introduce a stack of probe Nf D5–branes extended
along the x0, x1, x2 directions, and filling the R

3 part of the geometry parameterized by r,Ω2. As
mentioned above on the gauge theory side this corresponds to introducing Nf fundamental N = 2
hypermultiplets confined on a 1 + 2 dimensional defect. The asymptotic separation of the D3 and D5
–branes in the transverse R

3 space parameterized by l corresponds to the mass of the hypermultiplet.
In the following we will consider the following ansätz for a single D5–brane:

l = l(r) ; ψ = 0 ; φ = 0 . (4.157)

The asymptotic separation m = l(∞) is related to the bare mass of the fundamental fields via mq =
m/2πα′. If the D3 and D5 branes overlap, the fundamental fields in the gauge theory are massless
and the theory has a global SO(3) × SO(3) symmetry. Clearly a non-trivial profile of the D5–brane
l(r) in the transverse R

3 would break the global symmetry down to SO(3) × U(1), where U(1) is
the little group in the transverse R

3. If the asymptotic position of the D5–brane vanishes (m = 0)
this would correspond to a spontaneous symmetry breaking, the non-zero separation l(0) on the other
hand would naturally be interpreted as the dynamically generated mass of the theory.
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Note that the D3/D5 intersection is T–dual to the D3/D7 intersection from the previous section
and thus the system is supersymmetric. The D3 and D5 –branes are BPS objects and there is no
attractive potential for the D5–brane, hence the D5–brane has a trivial profile l ≡ const. However a
non-zero magnetic field will break the supersymmetry and as we are going to demonstrate, the D5–
brane will feel an effective repulsive potential that will lead to dynamical mass generation. In order to
introduce a magnetic field perpendicular to the plane of the defect, we consider a pure gauge B-field
in the x1, x2 plane given by:

B = Hdx1 ∧ dx2 . (4.158)

This is equivalent to turning on a non-zero value for the 0, 1 component of the gauge field on the
D5–brane. The magnetic field introduced into the dual gauge theory in this way has a magnitude
H/2πα′. The D5–brane embedding is determined by the DBI action:

SDBI = −Nfµ5

∫

M6

d6ξe−Φ[−det(Gab +Bab + 2πα′Fab)]
1/2 . (4.159)

Where Gab and Bab are the pull-back of the metric and the B-field respectively and Fab is the gauge
field on the D5–brane.

With the ansätz (4.157) the lagrangian is given by:

L ∝ r2
√
1 + l′2

√
1 +

R4H2

(r2 + l2)2
. (4.160)

From this it is trivial to solve the equation of motion for l(r) numerically, imposing l(0) = lin and l′(0)
as initial conditions. Clearly, at large r the lagrangian (4.160) asymptotes to that at zero magnetic
field and hence we have the asymptotic solution [46]:

l(r) = m+
c

r
+ · · · , (4.161)

where c ∝ 〈ψ̄ψ〉 the condensate of the fundamental fields.

Spontaneous symmetry breaking Before solving the equation of motion it is convenient to in-
troduce dimensionless variables:

r̃ = r/R
√
H ; l̃ = l/R

√
H ; m̃ = m/R

√
H ; c̃ = c/R2H . (4.162)

The lagrangian (4.160) can then be written as:

L ∝ r̃2
√
1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
. (4.163)

The corresponding equation of motion is:

∂r̃


 r̃2l′√

1 + l̃′2

√
1 + (r̃2 + l̃2)2

(r̃2 + l̃2)


 = −2

r̃2 l̃
√
1 + l̃′2

(r̃2 + l̃2)2
√
1 + (r̃2 + l̃2)2

. (4.164)
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Before solving equation (4.164) it will be useful to extract the asymptotic behavior of c̃(m̃) at large
m̃. To this end we use that at large m̃ the separation l̃(r̃) ≈ m̃ = const. The equation of motion then
simplifies to:

∂r̃(r̃
2 l̃′) = − 2r̃2m̃

(r̃2 + m̃2)3
, (4.165)

and hence:

r̃2 l̃′ = −2m̃

r̃∫

0

dr̃
r̃2

(r̃2 + m̃2)2
. (4.166)

Using the expansion (4.161) one can verify that:

lim
r̃→+∞

r̃2 l̃′ = c̃ = 2m̃

∞∫

0

dr̃
r̃2

(r̃2 + m̃2)3
=

π

8m̃2
. (4.167)

Equation (4.167) can thus be used as a check of the accuracy of our numerical results. Indeed the
numerically generated plot of −c̃ vs. m̃ is presented in figure 7. The most important observation is
that at zero bare mass m̃ the theory has developed a negative condensate 〈ψ̄ψ〉 ∝ −c̃cr ≈ −0.59. It
can also be seen that for large m̃ the numerically generated plot is in good agreement with equation
(4.167) represented by the lower (black) curve. Another interesting feature of the equation of state is
the spiral structure near the origin of the parameter space analogous to the one presented in figure 3
for the case of the D3/D7 system.

1 2 3 4
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Figure 7: A plot of −c̃ vs. m̃. At zero bare mass m̃ = 0 the theory has developed a negative condensate
〈ψ̄ψ〉 ∝ −c̃cr ≈ −0.59. For large m̃ there is excellent agreement with equation (4.167), as represented by the
lower (blue) curve.

In order to show that the global SO(3) symmetry is indeed spontaneously broken we need to study
the free energy of the theory. Indeed the existence of the spiral structure suggests that there is more
than one phase at zero bare mass, corresponding to the different y-intercepts of the −c̃ vs. m̃ plot.
We will demonstrate below that the lowest positive branch of the curve presented in figure 7 is the
stable one.

Following ref. [46] we will identify the regularized wick rotated on-shell action of the D5–brane with
the free energy of the theory. Let us introduce a cut-off at infinity, rmax, The wick rotated on-shell
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action is given by:

S = Nf
µ5
gs

4πV3R
3H3/2

r̃max∫

0

dr̃r̃2
√

1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
, (4.168)

where V3 =
∫
d3x and l̃(r̃) is the solution of equation (4.164). It is easy to verify, using the expansion

from equation (4.161), that the integral in equation (4.168) has the following behavior at large r̃max:

r̃max∫

0

dr̃r̃2
√
1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
=

1

3
r3max +O

(
1

rmax

)
. (4.169)

It is important that in these coordinates the divergent term is independent of the field l̃, it is therefore
possible to regularize the on-shell action by subtracting the free energy of the l̃ ≡ 0 embedding. The
resulting regularized expression for the free energy is:

F = Sreg = Nf
µ5
gs

4πV3R
3H3/2ĨD5 , (4.170)

where

ĨD5 =

∞∫

0

dr̃

[
r̃2
√
1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
−
√

1 + r̃4

]
. (4.171)

A plot of ĨD5 vs. |m̃| is presented in figure 8. The states from the lowest positive branch in figure 8
have the lowest free energy and correspond to the stable phase of the theory. Therefore there is a
spontaneous breaking of the global SO(3) symmetry and the theory at m̃ = 0 develops a negative
condensate proportional to −c̃cr ≈ −0.59. Note that only the absolute value of m̃ corresponds to the
bare mass of the fundamental fields. The states with negative m̃ correspond to D5–brane embeddings
that intercept the l̃ = 0 line in the l̃ vs. r̃ plane and as seen from figure 8 are unstable. It is to be
expected that the meson spectrum of the theory in such a phase would contain tachyons based on an
analogy with the meson spectrum of the D3/D7 system studied in ref. [31]. Before we proceed with
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Figure 8: The states corresponding to the lowest positive branch of the plot in figure 7 have the lowest free
energy and thus correspond to the stable phase of the theory.
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the analysis of the meson spectrum of the theory let us write an expression for the condensate of the
theory 〈ψ̄ψ〉 ∝ −ccr = R2Hc̃cr at zero bare quark mass. The coefficient of proportionality is given by
[43]:

〈ψ̄ψ〉 = −8π2α′µ5
gs
ccr = −16π3α′2µ5

gs
c̃crR

2(H/2πα′) . (4.172)

Note that the condensate is proportional to the magnitude of the magnetic field H/2πα′.

4.2.2 Meson spectrum and pseudo-Goldstone bosons

In this section we review the analysis of ref. [32] on the normal modes of the D5–brane. The authors of
ref. [32] had focused on the normal modes corresponding to the Goldstone bosons of the spontaneously
broken SO(3) symmetry and studied their spectrum as a function of the bare quark mass mq. The
study shows that the external magnetic field splits the degeneracy of the meson spectrum and gives
mass to one of the pions of the theory. It also modifies the standard M2

π ∝ m GMOR relation for the
remaining Goldstone mode to a linear relation Mπ ∝ m. It has been shown that these results are in
accord with the behavior expected from the effective chiral lagrangian of the theory.

In order to study the light meson spectrum of the theory one looks for the quadratic fluctuations
of the D5–brane embedding along the transverse directions parametrized by l, ψ, φ. To this end one
expands:

l = l̄ + 2πα′δl; ψ = 2πα′δψ; φ = 2πα′δφ , (4.173)

in the action (4.159) and leave only terms of order (2πα′)2. Note that fluctuations of the U(1) gauge
field Fαβ of the D5–brane will also contribute to the expansion. There is also an additional contribution
from the Wess-Zumino term of the D5–brane’s action:

SWZ = Nfµ5

∫

M6

∑

p

[Cp ∧ eF ]; F = B + 2πα′F . (4.174)

The relevant term is:

SWZ = Nfµ5

∫

M6

B ∧ P [C̃4] , (4.175)

where P [C̃4] is the pull-back of the magnetic dual, C̃4, to the background C4 R-R form. It is given by:

C̃4 =
1

gs

4r2l2

(r2 + l2)3
R4 sinψ(ldr − rdl) ∧ dΩ2 ∧ dφ . (4.176)

The action for the quadratic fluctuations along l is given by:

L(2)
ll ∝ 1

2

√
−EGll

Sαβ

1 + l′2
∂αδl∂βδl +

1

2

[
∂2l

√
−E − d

dr

(
l′

1 + l′2
∂l
√
−E
)]

δl2 , (4.177)

L(2)
lF ∝

√
−E

1 + l′2
(∂lJ

12 − ∂rJ
12l′)F21δl ,

L(2)
FF ∝ 1

4

√
−ESαβSγλFβγFαλ ,

and along φ and ψ:

L(2)
ψψ,φφ ∝ 1

2

√
−ESαβ(Gψψ∂αδψ∂βδψ +Gφφ∂αδφ∂βδφ) , (4.178)

L(2)
ψφ ∝ (cosα)PHδψ∂0δφ .
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Here Eαβ is the pull-back of the generalized metric on the classical D5–brane embedding:

Eαβ = ∂αX̄
µ∂βX̄

ν(Gµν +Bµν) , (4.179)

while Sαβ and Jαβ are the symmetric and anti-symmetric elements of the inverse generalized metric
Eαβ :

Eαβ = Sαβ + Jαβ . (4.180)

The determinant E and the function K = P are given by:

√
−E = (cosα)r2

√
1 + l′2

√
1 +

R4H2

(r2 + l2)2
≡ g(r) cosα , (4.181)

P =
4R4r2l2

(r2 + l2)3
(rl′ − l) . (4.182)

As one can see, the fluctuations along ψ and φ decouple from the fluctuations along l and the fluc-
tuations of the gauge field Aα. To study the pseudo-Goldstone modes of the dual theory one should
focus on the fluctuations along ψ and φ. The equations of motion derived from the quadratic action
(4.178) are the following:

∂r

(
g(r)l2

1 + l′2
∂rδψ

)
+
g(r)R4l2

(r2 + l2)2
�̃δψ +

g(r)l2

r2
∆(2)δψ − PH∂0δφ = 0 , (4.183)

∂r

(
g(r)l2

1 + l′2
∂rδφ

)
+
g(r)R4l2

(r2 + l2)2
�̃δφ+

g(r)l2

r2
∆(2)δφ+ PH∂0δψ = 0 ,

where

�̃ = −∂20 +
∂21 + ∂22

1 + R4H2

(r2+l2)2

. (4.184)

Note that the background magnetic field breaks the SO(1, 2) Lorentz symmetry to SO(2), which
manifests itself in the modified laplacian (4.184). Next one considers a plane-wave ansatz:

δφ = ei(ωt−
~k̇~x)η1(r); δψ = ei(ωt−

~k̇~x)η2(r) , (4.185)

using the ansätz (4.185) one gets:

∂r

(
g(r)l2

1 + l′2
η′1

)
+
g(r)R4l2

(r2 + l2)2
(ω2 −

~k2

1 + R4H2

(r2+l2)2

)η1 − iωPHη2 = 0 , (4.186)

∂r

(
g(r)l2

1 + l′2
η′2

)
+
g(r)R4l2

(r2 + l2)2
(ω2 −

~k2

1 + R4H2

(r2+l2)2

)η2 + iωPHη1 = 0 .

The equations of motion in (4.186) can be decoupled by the definition η± = η1 ± iη2. The result is:

∂r

(
g(r)l2

1 + l′2
η′+

)
+
g(r)R4l2

(r2 + l2)2
(ω2 −

~k2

1 + R4H2

(r2+l2)2

)η+ − ωPHη+ = 0 , (4.187)

∂r

(
g(r)l2

1 + l′2
η′−

)
+
g(r)R4l2

(r2 + l2)2
(ω2 −

~k2

1 + R4H2

(r2+l2)2

)η− + ωPHη− = 0 .
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Because of the broken Lorentz symmetry, the 1 + 2 dimensional mass M2 = ω2 − ~k2 depends on the
choice of frame. One can define the spectrum of excitations as the rest energy (consider the frame with
~k = 0). The spectrum is discrete. Furthermore just as in the D3/D7 case there is a Zeeman splitting of
the spectrum due to the external magnetic field. Interestingly, at low energy the splitting is breaking
the degeneracy of the lowest energy state and as a result there is only one pseudo-Goldstone boson.
This is not in contradiction with the Goldstone theorem because there is no Lorentz symmetry. This
opens the possibility of having two types of Goldstone modes: type I and type II satisfying odd and
even dispersion relations correspondingly. In this case there is a modified counting rule (ref. [45], see
also ref. [51]) which states that the number of GBs of type I plus twice the number of GBs of type
II is greater than or equal to the number of broken generators. As we are going to show below the
single Goldstone mode that we see satisfies a quadratic dispersion relation (hence is type II) and the
modified counting rule is not violated. Note also that for large bare masses m (and correspondingly
large values of l) the term proportional to the magnetic field is suppressed and the meson spectrum
should approximate to the result for the pure AdS5×S5 space-time case studied in refs. [40, 42], where
the authors obtained the following relation:

ωn =
2m

R2

√
(n+ 1/2)(n+ 3/2) , (4.188)

between the eigenvalue of the nth excited state ωn and the bare mass m.
In order to obtain the meson spectrum, one solves numerically the equations of motion (4.187) in

the rest frame (~k = 0). The quantization condition for the spectrum comes from imposing regularity
at infinity. More precisely one requires that η± ∼ 1/r at infinity (r → ∞). The results are summarized
in figure 9. It is convenient to define the dimensionless quantities m̃ = m/R

√
H and ω̃ = ωR/

√
H.

As one can see from figure 9, for large m̃ the spectrum asymptotes to that of pure AdS5 × S5, given
by equation (4.188). The Zeeman splitting of the spectrum is also evident. It is interesting that as a
result of the splitting of the ground state there is only a single pseudo-Goldstone mode. Furthermore,
as can be seen from figure 10, for small bare masses instead of the usual Gell-Mann–Oakes–Renner
relation there is a linear dependence ω̃ ∼ m̃. As we will review in the next subsection the slope is
given by the relation:

ω̃ =
4c̃cr
π
m̃ ≈ 0.736m̃ . (4.189)

It is also interesting to study the dispersion relation of the Goldstone mode. Since the Lorentz
symmetry is broken and only one pseudo-Goldstone mode is observed one anticipates a quadratic
dispersion relation (see refs. [51] and [52] for discussion).

In order to obtain the dispersion relation of the Goldstone mode the authors of ref. [32] numerically
solve equations (4.187) at very small bare mass m̃ ≈ 0.0007 and for a range of small momenta

~̃k = ~kR/
√
H. The result is presented in figure 11. There is indeed a quadratic dispersion relation. It

has been shown [32] that the dispersion relation is given by:

ω̃ = γ~̃k
2

+
4

π
c̃crm̃ , (4.190)

where:

γ =
4

π

∞∫

0

dr̃
r̃2 l̃2

√
1 + l̃′2

(r̃2 + l̃2)
√
1 + (r̃2 + l̃2)2

. (4.191)
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Figure 9: The meson spectrum of the first three excited states is plotted. There is Zeeman splitting of the
spectrum and the existence of a mass gap at m̃ = 0 as well as a single Goldstone boson mode. For large m̃ the
spectrum asymptotes to that of zero magnetic field given by equation (4.126) (straight lines).

For m̃ ≈ 0.0007 the relation (4.190) is given by:

ω̃ ≈ 0.232~̃k
2

+ 0.000515 , (4.192)

and is represented by the fitted curve in figure 11.

Low energy dispersion relation. In order to obtain the dispersion relation for the pseudo-
Goldstone mode one considers ref. [32] the limit of small ω in the first equation in (4.187) thus
leaving only the linear potential term in ω̃. In view of the observed quadratic dispersion relation
(4.190) one also keeps the ~k2 term in equation (4.187).

∂r

(
g(r)l2

1 + l′2
η′+

)
−
(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2
)
η+ = 0 . (4.193)

It is convenient to define the following variables:

Θ2 =
g(r)l2

1 + l′2
; ξ = η+Θ . (4.194)

Then equation (4.193) can be written as:

ξ̈ − Θ̈

Θ
ξ −

(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2
)

ξ

Θ2
= 0 . (4.195)

Where the overdots represent derivatives with respect to r. Now if one takes the limit m→ 0 one has
that ω → 0 and k → 0 and obtains that:

ξ = Θ|ω=0 ≡ Θ̄ , (4.196)

is a solution to equation (4.195). The next step is to consider small m and expand:

ξ = Θ̄ + δξ ; Θ = Θ̄ + δΘ , (4.197)
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Figure 10: Plot of the spectrum of the ground state from figure 9 for small bare masses. The dashed line
corresponds to the linear behavior from equation (4.189).

where the variations δξ and δΘ are vanishing in the m→ 0 limit. Then, to leading order in m (keeping
in mind that ω ∼ m and ~k2 ∼ m) one obtains:

δξ̈ −
¨̄Θ

Θ̄
δξ − δ

(
Θ̈

Θ

)
Θ̄−

(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2
)

1

Θ̄
= 0 . (4.198)

Now one multiplies equation (4.198) by Θ̄ and integrates along r. The result is:

(Θ̄δξ̇ − ˙̄Θδξ)
∣∣∣
∞

0
− (Θ̄δΘ̇− ˙̄ΘδΘ)

∣∣∣
∞

0
− ωH

∞∫

0

drP (r)− π

4
R5

√
Hγ~k2 = 0 . (4.199)

Using the definitions of Θ, P (r) and ξ and requiring regularity at infinity for η+, one can show that
the first term in equation (4.199) vanishes and that:

(Θ̄δΘ̇− ˙̄ΘδΘ)
∣∣∣
∞

0
= cδm ;

∞∫

0

drP (r) = −R4π/4 , (4.200)

and hence using the previous definitions, m̃ = m/R
√
H, c̃ = c/R2H, ω̃ = ωR/

√
H and ~̃k = ~kR/

√
H,

one obtains equation (4.190).

Effective chiral lagrangian. In order to obtain the 1 + 2 dimensional effective action describing
the pseudo-Goldstone mode one considers [32] the 1 + 5 dimensional action (4.178) for a classical
embedding in the vicinity of the critical embedding, namely that embedding corresponding to a very
small bare mass m̃. Next one takes the ansätz for the fields δφ and δψ:

δφ =
ξ1(r)

Θ(r)
χ1(x) ; δψ =

ξ2(r)

Θ(r)
χ2(x) . (4.201)
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Figure 11: Plot of the dispersion relation of the pseudo-Goldstone mode for m̃ ≈ 0.0007. The parabolic fit
corresponds to equation (4.192).

Since one is close to the critical embedding one considers the same expansion as in equation (4.197):

ξi = Θ̄ + δξi , i = 1or 2 ; Θ = Θ̄ + δΘ . (4.202)

By definition it follows that as m̃→ 0, δξi and δΘ vanish. Then to leading order one has that:

∂rδφ =
1

Θ̄2
[(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ1(x) ; ∂µδφ = ∂µχ1(x) ; µ = 0, 1, 2 , (4.203)

∂rδψ =
1

Θ̄2
[(Θ̄δξ̇2 − ˙̄Θδξ2) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ2t(x) ; ∂µδψ = ∂µχ2(x) ; µ = 0, 1, 2 .

Next one integrates equation (4.178) along r from 0,∞ and along the internal unit sphere Ω̃2. The
interesting term is the part of the kinetic term involving derivatives along r. After integration by
parts it boils down to a mass term for the 1 + 2 dimensional fields χ1, χ2. Explicitly:

∫
drdΩ̃2

1

2

g(r)l2

1 + l′2
∂rδφ∂rδφ = −

∫
drdΩ̃2

1

2
∂r

(
g(r)l2

1 + l′2
∂rδφ

)
δφ = (4.204)

= −4π[(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]
∣∣∣
∞

0

1

2
χ2
1 = 4πmc

1

2
χ2
1 .

Here the same arguments as in equation (4.199) have been used. It is clear that one can perform an
analogous calculation for the term involving ∂rδψ. The rest of the terms are dealt with straightfor-
wardly by integrating along r. The resulting action is:

Seff
(2πα′)2

=

∫
d3x

{
f2π||

4
∂0χ

∗∂0χ− f2π⊥
4
∂iχ

∗∂iχ− µ
i

2
(χ∂0χ

∗ − χ∗∂0χ) +
mq

2
〈Ψ̄Ψ〉0χ∗χ

}
, (4.205)

where the complex scalar field χ = χ1 + iχ2 has been defined. The constants in the effective action
are given by:

f2π||

4
=

N
2

∞∫

0

dr
g(r)R4l2

(r2 + l2)2
;

f2π⊥
4

=
N
2

∞∫

0

dr
g(r)R4l2

(r2 + l2)2 +R4H2
, (4.206)

µ =
N
8
πR4H; 〈ψ̄ψ〉 = −(2πα′)N ccr ; N = 4πNf

µ5
gs

; mq =
m

2πα′
.
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4.3 Summary

In this section we reviewed the studies of the influence of external magnetic field on holographic gauge
theories dual to the D3/D7– and the D3/D5– intersections.

In the case of the D3/D7–system we described the effect of mass generation realized as a separation
of the probe D7–branes and the background D3–branes in the interior of the geometry. The review
of the study of the meson spectrum revealed Zeeman splitting and the existence of Goldstone mode
associated to the spontaneously broken Chiral Symmetry. In the limit of small bare masses we reviewed
the analytic derivation of the effective chiral action obtained in ref. [32] after dimensional reduction
of the eight dimensional effective action of the probe D7–brane. As expected the mass of the pseudo-
Goldstone modes satisfies the Gell-Mann-Oaks–Renner relation. The effective action also suggests an
anisotropic relativistic dispersion relation consistent with the residual SO(1, 1) × SO(2) symmetry.
An integral expression for the parameter of anisotropy is also obtained. It would be particularly
interesting if one could obtain this parameter via alternative non-prturbative approach, such as lattice
simulation.

The D3/D5–system studied in subsection 4.2 exhibit properties similar to the D3/D7 system.
Again there is mass generation realized as separation of the color and flavor branes. The meson
spectrum also has Zeeman splitting and a Goldstone mode. There is however a crucial difference. Due
to the completely broken Lorentz symmetry the goldstone modes satisfy non-relativistic dispersion
relation and modified counting rule. An integral expression for the galilean mass in terms of the
parameter γ given in equation (4.191) has also been obtained. It would be nice if one can compare
this result with a result obtained via lattice simulation.

Overall the holographic studies that we presented in this section confirm the universal nature of
the phenomenon of magnetic catalysis of chiral symmetry breaking reviewed in section 2.2. It is also
somewhat satisfying that some of the results (such as the Gell-Mann–Oaks-Renner relation) presented
here have been obtained in a closed form and are consistent with the results derived via standard
chiral dynamics.

5 Conclusion

In this review we outlined a recent application of the AdS/CFT correspondence to study the effect
of magnetic catalysis of mass generation in holographic gauge theories dual to the D3/D5– and the
D3/D7–intersections. Our goal was to illustrate the potential of the correspondence to capture es-
sential properties of the strongly coupled regime of non–abelian gauge theories especially when the
investigated phenomenon is of a universal nature. We attempted to give the review a self-contained
and somewhat pedagogical form:

The purpose of Section 2 was to remind the reader about some basic properties of flavored Yang-
Mills theories as well as to provide the physical motivation for the holographic studies subject to our
investigation. We provided a brief description of the global symmetries of the theory with emphasis
on the anomalous and non-singlet Chiral Symmetries. We also outlined the effective chiral lagrangian
description of the effect of Chiral Symmetry breaking and provided a short derivation of the Gell–
Mann-Oaks–Renner relation. The second part of Section 2 describes the standard field theory approach
to studying the phenomenon of magnetic catalysis of mass generation.

In Section 3 of the review we outlined the basics of the AdS/CFT correspondence. We started with
a review of the general ideas that lead to its formulation and descried in details the physical justification
of the correspondence in the framework of string theory. We also provided a brief description of the

46



way the standard AdS/CFT dictionary operates. In the second part of Section 3 we focused on the
addition of flavor degrees to the correspondence. We reviewed the standard way [11] to introduce
quenched fundamental matter by adding probe flavor branes to the dual supergravity background.
We provided some basics extract from the generalized AdS/CFT dictionary which are implemented
in the holographic set up reviewed in Section 4.

Section 4 is the main part of the review. We reviewed the holographic study of the influence of
external magnetic field on holographic gauge theories dual to the D3/D5– and the D3/D7–intersections.
We reviewed the general properties of the holographic set up. We described how spontaneous symmetry
breaking is realized as a separation between the flavor and color branes in the bulk of the geometry.
Investigations of the meson spectrum revealed Zeeman splitting of the energy level as well as the
existence of Goldstone modes. In the case of the D3/D7–set up we reviewed the analytic derivation
of the Gell-Mann–Oaks–Renner relation performed in ref. [32]. We also investigated the dispersion
relations of the pseudo-Goldosten modes and verified that they are consistent with the residual space
time symmetry: SO(1, 1)×SO(2) in the D3/D7 set up and SO(2) in the D3/D5 set up. It is intriguing
that the D3/D5 system exhibits a non-relativistic dispersion relation.

The overall goal of the review was to review in a self-consistent way one of the many successful
applications of the AdS/CFT duality to the investigation of universal properties of strongly coupled
Yang-Mills theories. The results presented in Section 4 seems to be in perfect agreement with the
proposed universal nature of the effect of chiral symmetry breaking in an external magnetic field. We
hope that future investigations using alternative non–perturbative techniques such as lattice simu-
lations could confirm qualitatively the results presented in Section 4. Such studies could provide a
non-trivial check of the AdS/CFT correspondence in this essentially non–supersymmetric set up.
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