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Abstract

The Skyrme-Faddeev model is a (3 + 1)-dimensional model which has knotted,
string-like, soliton solutions. In this paper we investigate a Skyrme-Faddeev model
with an SO(3) symmetry breaking potential. We then rescale this model and take the
mass to infinity. This infinite mass model is found to have compact knotted solutions.
In all of the investigated massive models we find similar charged solutions as in the
usual, m = 0, model. We also find that their energies follow a similar E ∼ Q3/4 power
growth as the m = 0 model.
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1 Introduction.

The Skyrme-Faddeev model is a (3 + 1)-dimension modified O(3)-sigma model [1]. This
theory has finite-energy string-like solutions and has a potential application as a low energy
effective theory of QCD [2]. The theory usually has two components, a sigma term which is
a quadratic of derivatives and a Skyrme term which is quartic in derivatives. These are the
minimum terms required to provide a scale for Derricks theorem, [3], in (3 + 1)-dimensional
flat space. The theory is described by the Lagrangian

L =
1

32π2
√
2

∫
(

∂µφ · ∂µφ− 1

2
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)− 2m2V (|φ|)

)

d3x, (1.1)

where φ is a three component unit vector, φ = (φ1, φ2, φ3). At fixed time φ is the map
φ : R3 → S2. A condition for finite energy solutions of (1.1) is that the field must tend to
a constant value at spatial infinity, which we select to be φ(t, r = ∞) = (0, 0, 1) = e3 for all
time, t. This allows a one-point compactification of the domain, R3 ∪ {0} ∼ S3. So static,
finite-energy, solutions are a map

φ : S3 → S2. (1.2)

This map,(1.2), belongs to an equivalence class characterised by the homotopy group π3(S
2) =

Z. This shows that there is an integer topological invariant associated with φ, known as the
Hopf invariant. In this case we will refer to the Hopf invariant as the topological charge Q.
The topological charge can be found by firstly defining an area form ω on S2. Then we can
define g = φ∗ω, which is the pull-back of ω by φ. Due to the second cohomology group of
the three sphere being trivial, H2(S3) = 0, all closed forms on S3 are exact forms. Therefore,
we can now re-define the exact form g by the 1-form a as g = da. Therefore we can express
the topological charge, Q, as

Q =
1

4π

∫

S3

g ∧ a. (1.3)

This non-local definition of the topological charge, (1.3), is not particularly useful in this
context. Instead the topological charge of (1.2) can be found as the linking number of loops
in the domain. These loops are formed as preimages of two distinct points on the target
space. For example if we define the two curves Cp and Cq as the preimages of the points p
and q. If we then choose a smooth surface D, with a boundary Cp, the linking is defined as

link(Cp, Cq) =
∑

D∩Cq

±1,

where the ± refers to the relative orientations of D and Cq. This definition of the topological
invariant can be shown to be the same as (1.3), [4].
There is a well known lower bound on the energy, [5, 6, 7, 8], which is based on an involved
argument using Sobolev-type inequalities,

E ≥ c Q3/4 where c =

(

3

16

)3/8

. (1.4)
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The fractional power of (1.4) is proven to be optimal, but the value of c might not be. Ward,
[6], was motivated by his study of the Skyrme-Faddeev theory on a unit three-sphere to
propose that c = 1 might be a more optimal value.
The Hopfion location is commonly defined as the curve C = φ−1(0, 0,−1) ≡ φ−1e−3, which
is the antipodal value to the boundary vacuum value.
For m = 0 there have been many extensive and detailed investigations into the static mini-
mum energy solutions of (1.1), [1, 9, 10, 11, 12, 13]. For charges one to seven it is believed
their respective global minimum energy solutions have all been identified. It is known [14]
for topological charges one to three that the minimum energy solutions have a planar loop
location curve. Topological charges five and six have the minimum energy solutions of two
linked Hopfions [14]. For topological charge seven the minimum energy location curve is
a trefoil knot [14]. In [14] Sutcliffe devised a new knotted rational map ansatz as initial
conditions. These initial conditions were then energetically minimised to give new minimum
energy solution candidates for a large class of topological charges. We shall describe and
make use of this technique later.

2 m > 0.

The actual model of interest here is a modification of the usual Skyrme-Faddeev model. It
is modified by an additional potential term, so m > 0 in (1.1) and

V (φ) = (1− φ3). (2.1)

This choice of potential, (2.1), is not general but is one of the simplest choices. A potential
term, which breaks global SO(3) symmetry, is also generated on derivation of the theory
(1.1) as an infrared limit of (3 + 1)-dimensional SU(2) Yang-Mills theory [15]. If we restrict
ourself to the plane this model reduces to the old Baby Skyrmion model. Also this potential,
(2.1), meets the finite energy criteria for the chosen boundary condition; where the single
vacuum of V (φ) is also the chosen boundary value. The potential, (2.1), increases the
energy density along the location of the Hopfion. This is because the location curve, C =
φ−1(0, 0,−1), corresponds to the maximum of the potential (2.1). Therefore, we expect the
Hopfion location curve to become smaller in length for increasing m. We also expect the
Hopfion string to become finer with increasing m; as it is analogous with the Baby Skyrmion
model. This is best understood by an asymptotic analysis where we approximate the field
for large r as

φ = (ǫ1, ǫ2, 1− ǫ21 − ǫ22) +O(ǫ3a),

where a ∈ (0, 1). For large r we know that, due to finite energy criteria, |∂iǫa| < 1 therefore
the energy density associated with (1.1) becomes

E = (∂iǫa)
2 + 2m2ǫ2a +O

(

(∂iǫa)
4
)

.

Where ǫa is a solution of the partial differential equation

(∆− 2m2)ǫa = 0. (2.2)
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Separating ǫa into radial and angular components as ǫa = r−
1

2Ra(r)Θa(θ, ψ). Where Ra(r)
is a purely radial function, Θa is a spherical harmonic (∇s2Θa = −λ(λ+ 1)Θa) and (r, θ, ψ)
are the usual spherical polar coordinates. Then solving (2.2) we gain an asymptotic approx-
imation for Ra(r >> 1),

Ra(r >> 1) ∼ Ca

√

π

2
√
2mr

e−
√
2mr

(

1 +O
(

1√
2mr

))

.

Where Ca is a constant of integration. This shows that Hopfions become increasingly expo-
nentially located as m increases. Hence the Hopfions in this massive theory will have Yukawa
type asymptotic tails.

3 Initial conditions.

It is already well known that charged Hopfions can be knotted objects, [1, 9, 10, 11, 12, 13,
14]. One of the most effective ways to create non-trivial knotted initial conditions, to be
minimised, is to use the rational map ansatz technique described in [14]. Here the author
used a degree one spherically equivariant map to compactifiy R

3 → S3
Z1,Z0

⊂ C
2 by

(Z1, Z0) =

(

(x1 + ix2)

r
sin f, cos f +

ix3
r

sin f

)

, (3.1)

where f(0) = π, f(∞) = 0 and

S3

Z1,Z0

∼= {(Z1, Z0) ∈ C
2 | |Z1|2 + |Z0|2 = 1}. (3.2)

Using these complex coordinates an (a, b)-torus knot can be described as the intersection of
a complex curve q(Z1, Z0) with a unit three-sphere [16]. Hence we can formulate the rational
map ansatz

W =
φ1 + iφ2

1 + φ3

=
l(Z1, Z0)

q(Z1, Z0)
. (3.3)

The inverse stereographic projection of the curve q = 0 produces a φ3 = −1 closed curve
in R

3. The asymptotic value of l(Z1, Z0) in the rational map ansatz (3.3) is used to fix the
boundary conditions of φ. Therefore, we need l(r)|r→∞ = 0 so the inverse stereographic
projection gives φ = (0, 0, 1) at the spacial boundary of R3.

We can now formulate an axially symmetric Hopfion initial condition as

W =
Zn

1

Zp
1

, (3.4)

which has charge Q = np. These types of unlinked Hopfion are labelled An,p. Also a Hopfion,
with a position curve of an (a, b)-torus knot, can be formed by the rational map ansatz

W =
Z1

αZ0
β

Z1
a + Z0

b
(3.5)
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where α ∈ {x > 0|x ∈ Z} and β ∈ {x > 0|x ∈ Z}. This gives a closed curve that wraps
a and b times about the two circumferences of a torus, [16], and has topological charge
Q = αb + βa [14]. These tours knot configurations are labelled Ka,b. A torus knot with a
reducible denominator can produce linked Hopfions. For example a rational map

W =
Zn+1

1

Z2
1 − Z2

0

=
Zn

1

2(Z1 − Z0)
+

Zn
1

2(Z1 + Z0)
, (3.6)

forms two charged n Hopfions linked once. We label this type of configuration as L1,1
n,n.

This approach not only produces a non-trivial knotted location curve with an analytically
known topological charge, it also gives a smooth field with the correct boundary conditions.
To find static Hopf solitons we set φ̇ = 0 in the Skyrme term of (1.1). This gives a non-
relativistic theory which has the same static equations of motions as the those derived from
(1.1). This greatly simplifies the corresponding equations of motion by removing a numeri-
cally cumbersome matrix inversion. It also still facilitates time evolution by the second order
dynamics derived from the sigma term. The non-relativistic equation of motion can then
be numerically evolved on a discrete lattice using a fourth-order derivative approximation.
We also need an additional Lagrangian multiplier, λ, to constrain φ to take its value on S2.
If we periodically remove kinetic energy the potential energy will also become minimised;
this will yield minimum energy static solutions. This minimisation technique produces static
solutions and uses much less CPU time when compared to other similar minimisation al-
gorithms. A numerical grid of 250 × 250 × 250 points, with ∆x = 0.08, was found to be
large enough to contain the exponentially located Hopfion. On this lattice the Hopfion can
smoothly attain the vacuum value at the boundary without a noticeable expense of energy.
This lattice is also fine enough not to lose the fundamental topology. The definition of the
position of a Hopf soliton is sensible, but not useful for display purposes. Therefore, all the
images of Hopf solitons in this paper are plots of an isosurface of the preimage of the curve
φ3 = −0.85 in the domain. This gives a surface that is a fine tube in the physical space
and produces much clearer images. To show the linking number we also need to plot the
preimage of a second loop, but there is no unique loop to choose. In all the plots shown
we generate general loops on the target space by choosing a point, g = (

√

1− µ2, 0, µ), on
S2. We then find the distance on the surface of S2 between g and φ. This distance is then
normalised by the distance between g and the south pole of S2, e−3, as

dist(g,φ) =
cos−1(g · φ)
cos−1(g · e−3)

.

This gives many loops of constant radius on S2. The preimages, of these loops, are tubes of
varying thickness in the domain. Also, an isosurface of unitary value is known to intersect
with the position curve of a Hopf soliton. Throughout this paper we choose µ = −0.9 which
is an arbitrary choice for aesthetics.
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4 Q 6 4 trivial knots.

A Hopfion initial condition, where the position curve is contained completely on a plane,
can be formed by the rational map ansatz (3.4). So if we set n = p = 1 in (3.4) this gives
the initial condition of a topological charge one Hopf soliton which is located along a planar
loop. Using this initial condition, and the above minimisation procedure, we can find the
minimum energy configurations for m = (0, 1, 2, 4, 5), as shown in Figure 1.

Figure 1: Minimum energy topological charge one Hopfions, all on the same scale.
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Figure 2: φ3 for masses m = 0, 1, 2, 4, 5.
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Mass, m E
0 1.236
1 1.421
2 1.668
4 2.017
5 2.170

Table 1: Minimum energies for m = (0, 1, 2, 4, 5) topological charge one Hopfions.

Figure 1 shows as expected that the larger m is the smaller the Hopfion is. This is due to
the potential term creating an energy penalty where φ = (0, 0,−1), which corresponds to the
maximum value for the potential. Thus the minimum energy Hopfion location loop becomes
smaller with growing m. The energy for m = 0 is 1.236, this is within 2% of the previously
accepted result [14]. This similarity is a nice validation of our numerical procedure and the
small difference can be attributed to the different choice of lattice spacing. As shown in
Figure 2 for larger values of mass the field φ3 is increasingly symmetric about the Hopfion
location. Due to this we have decided to perform the remaining analysis with the relatively
large m = 5. This choice of mass is arbitrary, we could have chosen m > 5, but this choice
gives sharply located Hopfions which are still large enough so the topology is not lost by the
numerical lattice. We find the minimum energy Q = 1 Hopfion to be E1 = 2.17.
Using (3.4) with (n, p) = (2, 1) this again gives a planar loop Hopfion location, but with
topological charge Q = 2. Minimising this configuration we find the minimum energy
E2 = 3.45, with a planar Hopfion location curve. We can construct a Q = 3 Hopfion
by setting (n = 3, p = 1) in (3.4) or (α = β = b = 1, a = 2) in (3.5). The latter configuration
produces a Hopfion which is located along an unknotted twisted loop. Minimisation of these
two configurations produces similar configurations with similar energy, E3 = 4.74, located
on a twisted unknotted loop.

A topological charge Q = 4 Hopfion initial condition can be made using (3.5) with either
(α = a = 2, β = b = 1) or (α = a = 4, b = 1, β = 0). This gives Hopfion location curves
K2,1 and K4,1 respectively. Minimising both of these configurations give a Ã4,1 (twisted A4,1)
Hopfion location curve, with energy E4 = 6.051. We can also generate Q = 4 axial initial
conditions using (3.4) with (n = p = 2) and (n = 4, p = 1). This gives A2,2 and A4,1 planar
curves respectively. Minimisation of the A2,2 configuration remains as an A2,2, with an energy
∼ 0.6% larger than the Ã4,1. This is within numerical accuracy of our minimisation scheme.
Therefore we are not able to define which of these two configuration is the lower energy. The
A4,1 configuration also minimises to a planar curve described by A4,1. This seems to show
that twisting the loop slightly reduces the energy. The Q = 4 planar loops are most likely
long lived saddle point solutions, preserved by symmetry.
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Figure 3: Minimum energies for m = 5, Hopfions.

5 Q > 5 knotted/linked Hopfions.

For a select few simulations Figure 4 and 5 show a plot of minimum energy Hopfion locations.
Also Figure 4 and 5 show the linking of the initial rational map ansatz and the linking of the
corresponding minimum energy Hopfion curve. For topological charges Q 6 4, both in the
massive case and in the normal massless case, the Hopfion location curves are all found to
be unknot solutions. For topological charges Q > 5 we find the minimum energy Hopfions
have either a linked or knotted location curves, as shown in Figure 5. The minimum energy
solutions presented have very similar qualitative features with the massless model [14]. The
minimum energy Hopfion location curves for each charge sector have comparable linking form
hence, due to the computational intensity, we have restricted our analysis to the presented
charges.
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7K5,2 → K3,2 7K4,3 → K2,3 7A7,1 → A7,1

6K3,2 → A3,2 6K2,2 → L
1,1
2,2 6L

1,1
3,1 → L

3,1
1,1

6K5,1 → K5,1 6K4,2 → L
2,2
1,1

5L
1,1
2,1 → L

1,1
2,1 5K3,2 → L

1,1
1,2 5K4,1 → A5,1

Figure 4: Position curves for m = 5 Hopfions of charge 5 ≤ Q ≤ 7. Showing their charge
and linking form.
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16L
1,1
7,7 → K4,3

L
3,3,3,3
1,1,1,1 → K4,3 16K4,3 → K4,3

15K5,3 → L
6,3
4,2 15K4,3 → K4,3 15K3,2 → L

3,3
7,2

12K4,3 → L
2,2,2
2,2,2 12K5,3 → L

2,2,2
2,2,2 12L

1,1
5,5 → L

1,1
5,5

8K3,4 → Ã2,2 8K3,2 → Ã4,4 8L
1,1
3,3 → L

1,1
3,3

Figure 5: Position curves for m = 5 Hopfions of charge Q = (8, 12, 15, 16). Showing their
charge and linking form.
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E E/Q3/4

Q = 4

K2,1 → Ã4,1 6.05 2.14

K4,1 → Ã4,1 6.05 2.14
A4,1 → A4,1 6.07 2.15
A2,2 → A2,2 6.09 2.15

L1,1
1,1 → L1,1

1,1 7.17 2.53

Q = 5

L1,1
2,1 → L1,1

1,2 6.23 1.86

K3,2 → L1,1
1,2 7.17 2.14

K4,1 → A5,1 7.43 2.22
Q = 6

K3,2 → A3,2 8.01 2.09

K2,2 → L1,1
2,2 8.19 2.14

L1,1
3,1 → L1,1

3,1 8.41 2.19
K5,1 → K5,1 8.60 2.24

K4,2 → L2,2
1,1 9.07 2.37

Q = 7
K5,2 → K3,2 9.19 2.14
K3,2 → K3,2 9.20 2.14
K4,3 → K2,3 9.64 2.24
A7,1 → A7,1 10.18 2.37
Q = 8

L2,2
2,2 → Ã4,2 9.86 2.07

K3,2 → A4,2 9.88 2.08

K3,4 → Ã4,2 9.88 2.08
K5,2 → A4,2 9.97 2.10

L1,1
3,3 → L1,1

3,3 10.45 2.20

Q = 12

K4,3 → L2,2,2
2,2,2 13.77 2.16

K5,3 → L2,2,2
2,2,2 13.77 2.16

L1,1
5,5 → L1,1

5,5 15.30 2.37

Q = 15

K5,3 → L6,3
4,2 16.17 2.12

K4,3 → K4,3 16.56 2.17

K3,2 → L3,3
7,2 17.11 2.25

Q = 16

L3,3,3,3
1,1,1,1 → K̃4,3 17.07 2.13
K4,3 → K4,3 17.12 2.14
K3,2 → K4,3 17.25 2.17

Table 2: m = 5 Hopfions initial and final configurations, with their respective energies.
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One main difference between our results and those of [14] is that we are presenting po-
tentially new energetic local minimum or saddle point solutions. As shown in Figure 5 we
have new linked topological charges Q = 8, 12, 15 excited solutions.

Also our topological charge eight and six minimum energy solutions seem to have similar
linking structure as in the m = 0 case. But in the m = 5 case the links seem to be almost on
top of each other. The minimum energy location curve of the topological charge 15 Hopfion
is topologically similar to that found in [14], but it is qualitatively different. Figure 7 shows
that the energy, as a function of topological charge, has a similar growth to the m = 0 case
[14].

6 Infinite mass, m→ ∞.

Rescaling the Lagrangian density (1.1) by x 7→ √
mx gives

L(√mx)√
m

=
L2

m
+ L4 + L0.

Where La refers to the ath order derivative in the Lagrangian density. We can then define

Lm→∞ = lim
m→∞

L(√mx)√
m

= L4 + L0. (6.1)

A model comprising only of a Skyrme term and a potential term has been addressed before
[17]. In [17] this model was derived by setting a constant to zero. This effectively removes the
sigma term in the Skyrme-Faddeev with a potential model. Soliton solutions of this model
are commonly referred to as compactons [17]. This is because they reach their vacuum value
in finite distance and therefore have no asymptotic tails. Hence they are effectively BPS
for large separation. In order to numerically find minimum energy solutions of (6.1) it is
computationally easier to work with a modified model of the form

LModified =
∂0φ · ∂0φ
32π2

√
2

+ Lm→∞|
∂tφ=0

. (6.2)

This modified model can be simulated by a trivial extension of the previous Skyrme-Faddeev
model. The equation of motion and the energy density of (6.2) will converge with the infinite
mass case, (6.1), in the static limit. This model, (6.2), also allows for time evolution by the
second order dynamics of the purely kinetic sigma term. Again we use the rational map
ansatz, (3.5), to give non-trivial knotted initial conditions. For this infinite mass compacton
model, (6.1), we find the topological charge-specific minimum energy candidates in Table 3.
The numerical scheme is fundamentally the same as the one used in the finite mass case.
But now due to this model having a different scale we found ∆x = 0.1 to be a suitable lattice
spacing. The results and initial conditions of this investigation are shown in Table 3. Also,
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for topological charge 1 6 Q 6 5 the Hopfion location curves are shown in Figure 6. We
found that the minimum energy solutions for 1 6 Q 6 5 are similar to the m = 5 and m = 0
models. The compact nature of this model can be seen in Figure 8; which show φ3 along a
radius that is in the same plane as the planar Q = 1 Hopfion. This shows how the compact
Hopfion field attains the vacuum value in finite distance. This shows that in the m = ∞
model two well-separated static Hopfions do not attract or repel each other. This is due
to there being no overlap of the Hopfion tails. Therefore, the string self-interaction of this
m = ∞ model is much less than in the finite mass model. Also the shape of φ3, in Figure 8,
is more symmetric about its minimum than the plots of φ3 in the finite mass model, Figure
2. This shows that in the m = ∞ limit the string cross-section is much more symmetric.
Again, in this infinite mass case, we have found new local minimum energy solutions for
Q = 4; both of which have location curves described as a very twisted A4,1. A point worth
noting is that for these solutions the boundary of the numerical lattice is very far from the
Hopfion.

E E/Q3/4

Q = 1
A1,1 → A1,1 0.86 0.86
Q = 2

A2,1 → A2,1 1.37 0.82
Q = 3

K2,1 → Ã3,1 1.90 0.83
A3,1 → A3,1 2.02 0.90
Q = 4

A2,2 → A2,2 2.50 0.88
A4,1 → A4,1 2.56 0.91

K2,1 → Ã4,1 3.19 1.13

L1,1
1,1 → L1,1

1,1 3.38 1.20 (not shown)
K4,1 → A4,1 4.22 1.50
Q = 5

L1,1
2,1 → L1,1

2,1 3.00 0.90
A5,1 → A5,1, 3.23 0.97
K3,2 → K3,2 3.88 1.16
Q = 7

k3,2 → K3,2 3.97 0.92

Table 3: Infinite mass Hopfion initial and final configurations, with their respective energies.
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5L
1,1
2,1 → L

1,1
2,1 5A5,1 → A5,1 5K3,2 → K3,2

4A2,2 → A2,2 4A4,1 → A4,1 4K2,1 → Ã4,1

4K4,1 → Ã4,1 3K2,1 → Ã3,1 3A3,1 → A3,1

2A2,1 → A2,1 1A1,1 → A1,1

Figure 6: Position curves for m = ∞ Hopfions of charge 1 6 Q 6 5. Showing their charge
and linking form.

Table 3 shows that in this m = ∞ model the initial and final minimised location curves
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E
/E

Q
=

1

Q

m=0
m=5
m=∞

Figure 7: The ratio of the energy to the topological charge one Hopfion, as a function of
topological charge Q for the three models.

rarely differ. A good example of this is the Q = 5 K3,2 trefoil knot which under minimization
remains as a K3,2 trefoil knot, but in the m = 5 and m = 0 models minimises to a L1,1

2,1.

The Q = 5, L1,1
2,1, is also a lower energy solution for this m = ∞ model. This reluctance

to deform from one location curve to another is due to the reduced self interaction of this
compact Hopfion model.
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Figure 8: φ3 along a radius of a Q = 1 Hopfion, in the infinite mass case.

We have also found a topological charge seven trefoil knot, in the m = ∞ model, which
is shown in Figure 9. For the range of topological charges we have investigated, in this
m = ∞ model, we have found that the charge-specific lowest energy solutions are similar to
the m = 0 and m = 5 models. But as in the m = 5 model we have discovered more local
minima or saddle point solutions. Again, as shown in Figure 7, the energy per-unit charge
scales with a similar E ∼ Q3/4 grows as the m = 0 [14] and m = 5 models.
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Figure 9: The Q = 7 trefoil knot minimum energy solution, for the m = ∞ model.

7 Concluding remarks.

We have explored the Skyrme-Faddeev model with a potential term included. We found
that including a potential in the model makes the Hopf solitons exponentially decay to their
vacuum value. Increasing the mass makes the Hopf solitons string cross-section increasingly
exponentially localized. We found for m = 5 the minimum energy solutions are described
by similar linking curves as the m = 0 Skyrme-Faddeev model [14].
Using a spatial rescaling we were able to formulate an infinite mass model. This infinite mass
model is known to yield compact Hopfions [17]. For this infinite mass compact model we have
presented a number of topologically charged solutions. We showed that the minimum en-
ergy compact solutions have similar location curves as in the usual, m = 0, Skyrme-Faddeev
model and the m = 5 massive model. In both the m = 5 and m = ∞ models we found
new local minimum, or stationary point energetic solutions. The increasing localization of
the strings in the two massive models reduces the string self interaction. Therefore, it is not
surprising that these models possess solutions stabilised by symmetry.
In Figure 7 we showed that the m = 5 and the m = ∞ models charge-specific energies
seem to grow with a similar E ∼ Q3/4 trend as the m = 0 case. Therefore, approximating
Hopfions as Kirchhoff rods [18] could also be successful in the massive model.
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