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We enumerate the number of rank-2 matroids, non-isomorphic rank-2 ma-
troids, connected rank-2 matroids and non-isomorphic connected rank-2 ma-
troids on a ground set of size n. A surprising connection between these ma-
troids, the Bell numbers and partitions of an integer is uncovered.
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1. INTRODUCTION

A matroid is a pair M (V,, B) such that V,, is a finite set of size n (called
the ground set) and B is a non-empty collection of subsets of V;, (called
the basis) such that,

Basis Ezchange Aziom: For X, Y € B we have that for all z € X\Y
there exists y, € Y\X such that X —z Uy, € B.

The rank of a matroid denotes the cardinality of the sets in its basis and it
is a consequence of the basis exchange axiom that all these sets have equal
cardinality. In this paper we deal with rank-2 matroids, namely those
matroids whose basis contains a collection of distinct pairs of ground set
elements.

The enumeration of non-isomorphic matroids on a finite set of size n,
denoted below by f(n), is still an open problem. First investigated by
Crapol[2], it led to a steady tightening of upper and lower bounds by Bol-
lobés[1], Knuth[3], Piff[5] and Welsh[7]. Figure 1 shows the table in Oxley’s
book[6] giving these numbers for ground sets containing up to 8 elements.

The numbers f,.(n) are the number of non-isomorphic matriods of rank-
r on a ground set of size n. We count those matroids of rank-2, namely
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r n|0 1 2 3 4 5 6 T 8
0 1111 1 1 1 1 1
1 1 23 4 5 6 7 8
2 1 3 7 13 23 37 58
3 1 4 13 38 108 325
4 1 5 23 108 940
5 1 6 37 32
6 1 7 58
7 18
8 1
fm) |1 2 4 8 17 38 98 306 1724

FIG. 1. Table showing the value of f,(n) for 0 < n < 8.

those entries in the third row of figure 1 and connected rank-2 matroids.
Alongside these structures we enumerate both in the non-isomorphic sense.

2. RANK-2 MATROIDS

Let My, be the set of all rank-2 matroids on the ground set V,,. Similarly,
let M, be the set of all rank-2 matroids strictly on the ground set V,, (by
strict we mean the union of the sets in the basis is ,,).

THEOREM 2.1. The number of non-isomorphic rank-2 matroids on a
ground set of size n is given by,

f2(n) =p(1) +p(2) +p(3) +--- +p(n) —n,

for all n > 2 and where p(n) is the number of partitions of the integer n.

Our proof of this result relies mainly on graph theory. We give a brief
introduction to those concepts which will be used.

Let G, be the set of all simple graphs (no loops or multiple edges) with
V, as the set of vertices and G,, C G, be the set of all graphs with no
isolated vertices. For 0 < j < 3 let gﬁf" be those graphs in G, which
contain no subgraph on three vertices isomorphic to the graph Hj.

For any G € Gy, write V(G) for the vertex set of G and E(G) for
the corresponding set of edges. We define the inverse graph of G to
be G~Y(V(G),E(G)) where E(G) = { (ab) | (ab) ¢ E(G) }. Given
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FIG. 2. The graphs H for 0 < j < 3.
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G(Vin, E) € GV, define the map 7 : %) — M,, by n(G) = M(V,,, E*(G))
where E*(G) = { {a,b} | (ab) € E }.

LEMMA 2.1. The function 7 is a bijection between the sets gg) and M,,.

Proof. We see that if we choose any graph G(V,,,E) € g,‘}’, then E
will not be the empty set since the graph may have no isolated vertices.
If G has one edge then it must be on two vertices only since none may be
isolated. This graph is then the complete graph on two vertices and maps
to the matroid M (Vs, B) where B = {a, b}.

Without loss of generality let us examine any two distinct edges of G,
say e; and ep. If these edges have a vertex a in common, e; = (ab) and
e = (ac), then we see the basis exchange axiom holds for the sets {a, b}
and {a,c}. Otherwise the edges have no vertex in common, e; = (ab) and
e2 = (cd). Since this graph is in 64" it must be the case that for the
graphs restricted to the points {a,b, ¢}, {a,b,d}, {a,c,d} and {b, ¢, d}, none
can have the configuration Hj.

All possible configurations of the subgraph of G restriced to the four
vertices {a,b,c,d} are shown in Figure 3 whose images under the map «
are;

(1) {{a,b},{a,c},{b,d},{c, d}},

(2) {{a,b},{a,d},{b,c},{c, d}},

(3) {{a,b},{a,c},{a,d}, {b,d},{c,d}},

(4) {{a,b},{a, c}, {b,c}, {b, d}, {c,d}},

(5) {{a,0},{a, ¢}, {a,d}, {b, c}, {b, d}, {c, d}},

respectively. We see that each of these collections fulfill the requirements as
specified by the basis exchange axiom to be sets in the basis of a matroid.

To show that this map is bijective we must firstly let us show that = is
injective. Suppose that we have G1(Vy, E1),G2(Vy, Es) € Gt such that
E1 75 EQ. Then 71'(G1) = Ml(Vn,E*(Gl)) and 7T(G2) = Mg(Vn,E*(GQ))
It follows that My = M, if and only if E*(G;) = E*(G2) which happens
if and only if E; = E». Clearly this cannot be the case for since Fy # E,
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there must exist some edge (ab) € Fi(resp. FE2) such that (ab) ¢ Fs(resp.
E,) and hence {a,b} € E*(G1)(resp. E*(G2)) but {a,b} & E*(G2)(resp.
E*(G1)). Thus M1(V,, E*(G1)) # Ms(V,, E*(G2)) and hence the map 7
is injective.

b a b a b a b a b
Id c><d c d l/[d c d

FIG. 3. The possible configurations for the subgraph of any G € gﬁf) with edges
(ab) and (cd).

o))

The map = is clearly surjective as well. Choose any M (V,,,B) € M,,.
Let us form the set E := { (ab) | {a,b} € B }. Since B satisfies the
basis exchange axiom and contains all elements of the ground set it resides
upon, we have that for any three elements of the ground set, a,b and ¢
say, there cannot exist the configuration {a,b},{c,d} for some element d
without some interplay between the two sets. If so, appealing to the basis
exchange axiom with X = {¢,d}, Y = {a,b}, z = d yields that B at least
contains either {a,c} or {b,c}. This shows that G must be in G, The
image of the graph G(V,,, E) under 7 is then M (V,,, E(G)) = M (V,,,B). 1

LEMMA 2.2. G € GSV if and only if G- € G2.

Proof. Given any G € gﬁf) each subgraph of G on 3 vertices must be
isomorphic to one of HY, H2 or H. The inverse G~ will then contain the
subgraph on those same 3 vertices isomorphic to Hj, Hi or HY respectively.
Thus G~! will contain no H§ subgraph and will be in 97(12). The converse
follows in a similar fashion. |

LEMMA 2.3. IfG € gﬁf) and G has connected components T'1,Ts,--- Ty,
where k > 1, then each of the graphs T'y,Ts,---T', are complete graphs on
their own vertices.

Proof. Let us suppose that there is some connected component I';
(on more than one vertex) such that there are two vertices a,b € V(I';)
and (a,b) ¢ E(T';). As T'; is connected we have that there exists a path
(a,a1),(a1,a2), -, (am,b) where m > 1. Then looking at the first two
edges in this path, (a,a1), (a1, a2) we see that the subgraph of G restricted
to the vertices a, a1, ay is isomorphic to Hi. This is false since G € 97(3)
and hence (a,a2) € E(T;).

Let us assume that (a,ar) € E(T;) for some 1 < k < m. Then as
(a,ar) € E(T;) we apply the argument in the previous paragraph to yield
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(a,ar41) € E(T;). It follows by induction that (a,b) € E(T';) and hence
I'; is a complete subgraph. |

Proof (of Theorem 2.1). From lemma 2.1 we see that rather than dealing
with rank-2 matroids we may enumerate the class of graphs in g,(ﬂ). It is not
the cardinality of g,‘}) we seek, but the number of non-isomorphic graphs in
it. The map 7 preserves isomorphims because two graphs are isomorphic is
there is a permutation of one vertex set to the other which is exactly how
isomorphisms are characterised in matroids, a permutation of the ground
set instead.

As the map « is a bijection and it preserves the isomorphisms counting
the non-isomorphic graphs in gﬁP is equivalent to counting the inverse
class of graphs, namely those in g,‘? as we see in lemma 2.2. We note that
graphs in gﬁﬂ) are isomorphic if and only if their inverses are isomorphic in

7(12). Lemma 2.3 tells us about the structure of those graphs in 97(12) and
from this it is easy to see that any graph G € gﬁf) may be characterised by
a partition of its vertices. Two graphs in gﬁf) are then isomorphic if they
have the same partition configurations, i.e. if there is some permutation of
the vertices of one graph which maps the vertices of one partition into the
other. Thus the isomorphisms are relegated once we look at the number of
partitions of the number of vertices. This is simply the number of partitions
of the integer n less one (as the complete graph in gﬁf) is not a matroid
since it forces B = ).) The number we seek is thus p(n) — 1 and so f2(n) =

p2) +p@B) +---+pn) - (n—-1) =p(1) +p(2) +---+pn) —n. |

From this proof it becomes apparent that all strict rank-2 matroids may
be uniquely characterised by a partition of their ground sets. To count the
number of strict rank-2 matroids mso(n) (i.e. including all those matroids
which are isomorphic to one another) then it is the number of partitions
of a set of size n less one. These partition numbers are known as the
Bell numbers, b(n), the exponential generating function(e.g.f.) is given in
Wilf[9] to be,

b(n o
E : ( ):L,n — ee 1
n!
n>0
and satisfies the recurrence;

bn+1)= Y (’;)b(i), n>0,b(0) = 1.

0<i<n
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Thus the e.g.f. of ma(n) will be,

ma(n) , b(n) -1 ,
P

n>2 ’ n>2
1 z"
— e —1 _ — PR
=e (1+12) Z p
n>=2
=e t—(14+2)—(e"-1-12)
= el ¢,

Let m(n) be the number of rank-2 matroids on a ground set of size n.

COROLLARY 2.2. The number of rank-2 matroids strictly on a ground
set of size n has the e.g.f.,

m(n) = Zmz(i), where Z ma(n) 2" = "l _ ot
i=2

n!
n>=2

3. CONNECTED RANK-2 MATROIDS

We now investigate the number of connected rank-2 matroids on V;, and
denote this number by ¢(n). The corresponding number of non-isomorphic
connected rank-2 matroids on V,, will be denoted by d(n). The condition
for connectedness for rank-2 matroids simplifies a great deal when looked
at graphically.

We say that a matroid is 2-connected (herein connected) if it can be
expressed as the sum of two matroids. More formally, given a matroid
M (S, B), we say that this matroid is connected if there do not exist ma-
troids M7(X,B;1) and M2(Sp,\X,Bs) such that B = { Ty U T, | Th €
By and T» € By }. If a matroid is not connected then it is disconnected
and we write M = M & M.

Let C,, be the set of connected rank-2 matroids strictly on the ground set
V., and denote its cardinality by c2(n). When connectedness is looked at as
regards rank-2 matroids, the condition reduces to M (V,,, B) is connected
if we cannot find a proper partition of V,, such that B = { {z,y} | = €
X and y € V,\X }.

THEOREM 3.1. For alln > 2,
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Proof. For any matroid M (V,,,B) € M,\C, we see that M (V,,B) =
My (Vi,By) & My(Vy—, B2) for some integer 0 < k < n. The collections
By and Bs contain one element subsets of V}, and V,,_j respectively. We
note that the elements in Vj, and V,,_j, are disjoint. Since the union of the
sets in By must be V}, we have that By is just the set of single elements of
Vi and similarly for B;. There are thus (}) ways of choosing Bi, and once
By has been chosen the collection B; is given for By is the set of all those

elements in V,, which are not in V. Hence the number of these is,

(?) *‘(Z)‘+"'+'(L§J)
i n odd,

= {2”_1 —-1- %(n%), n even.

Rearranging this expression and using the fact ¢(n) := c2(2) +¢c2(3)+-- -+
c2(n) gives the result as stated above. |

ma(n) — ca(n)

THEOREM 3.2. For alln > 2,
_ 2 0, n odd,
) = S = Lnf2l* = {0y o

Proof. The proof follows directly from the argument of the previous
proof. The number of non-isomorphic connected matroids of rank-2 strictly
on a ground set of size n is the number of non-isomorphic matroids of the
same rank strictly on a ground set of size n, i.e. fa(n), less the number
of non-isomorphic disconnected matroids strictly on a ground set of size
n. The point at which the latter are isomorphic is exactly when they
may be decomposed into matroids of rank-1 on ground sets of size k, n — k
respectively. Thus the number of such disconnected matroids will be |n/2].

dy(n) = p(n)—1—|n/2], for all n > 2.
= dn) = Yi,da(i)
= Yieep(n)—1-[n/2]
= fa(n) = iy n/2]
= faln) — |n/2)?, n odd,

= fon) = |n/2)? = [n/2), n even.



8 W.M.B. DUKES

4. OTHER RESULTS

It is interesting to see that there is a natural bijection between the class
of strict matroids of rank-2 on V;, and the class of finite set algebras on the
set V,, excluding the trivial set algebra. From Proposition I-2-1 of Neveu[4]
the collection of atoms in a finite set algebra is simply a partition of the set
V.. This leads to the correspondence between any strict rank-2 matroid
M(V,,,B) and the atoms of such an algebra in the following way. The set
{a,b} € Bif a and b reside in different atoms of the set algebra. Conversely,
if any two elements a,b € V,, are in the same atom of the set algebra then
{a,b} ¢ B.

From Welsh([8] we find that by duality, the number of non-isomorphic
rank-k matroids on a ground set of size n is equal to the number of non-
isomorphic rank-2 matroids on the same ground set. Thus f,—2(n) = fa(n)
for all n > 2.
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