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Abstract
In three-dimensional QED, a quantum Hall effect occurs in the absence of any magnetic field. We

give a simple and transparent explanation. In solid-state physics, the Hall conductivity for rational

magnetic flux is expected to be given by a Chern number. In our field-free situation, however,

the conductivity is ±1/2 in natural units. We explain why the integrality of the conductivity

breaks down and explain its quantization geometrically. For quasi-periodic boundary conditions,

we calculate the finite size correction to the Hall conductivity. Our paper establishes an explicit

connection between quantum fied theory and solid-state physics.
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I. INTRODUCTION

The quantum Hall effect (QHE) in graphene (graphite monolayers) is a promising can-
didate for applications in nanoelectronics. Its quasiparticle excitations can be described
approximately by a two-dimensional relativistic electron system [1]. Some modifications of
graphene with suitable internal magnetic fields might make the application of strong exter-
nal fields unnecessary [2].
In this paper we investigate a Hall effect of three-dimensional quantum electrodynamics
(QED) which occurs in the absence of any magnetic field. The corresponding off-diagonal
conductivity is ±1/2 in natural units. We will derive and discuss the result for the Dirac
vacuum state of a non-interacting electron system.
The history of this result goes back at least to the articles by Redlich [3] and Jackiw [4],
which focused on massless non-abelian gauge theory in 2+1 dimensions, but included dis-
cussions of QED with a mass term. The Hall conductivity for a homogeneous external
electromagnetic field is implied by their calculations. An initial normalization error by a
factor of 1/2 disappeared in [5]. The half-integrality of the result required the resolution of
a paradox, since general arguments suggest integral values [2, 6]. It was stated that when
spin is included, the conductivity is doubled [4], but the corresponding Zeeman term may
induce more complicated changes [2]. The result for zero magnetic field has been stated
explicitely only in [7]. However, this derivation is purely computational and unnecessarily
complicated and does not give any insight into the half integral nature of the result. In par-
ticular, a straightforward geometrical interpretation of the fractional value does not exist
in the literature. A clear explanation should prevent the common errors by factors of 2 in
QHE calculations.
Our starting point is the massive (m 6= 0) Dirac equation

[−i(∂µ + ieAµ)γµ +m]ψ = 0, (1)

where e is the electron charge and A denotes an abelian external electromagnetic field.
We use the convention γµ := σ3σµ, for µ = 0, 1, 2, where σµ is the µ-th Pauli matrix,
and {γµγν} = 2gµν for gµν = diag(1,−1,−1). In a homogeneous background field F µν ≡
∂µAν − ∂νAµ, the ground state current is [5, 8]

〈jµ〉 =
1

8π
sgn(m) εµνη(eF

νη). (2)

When µ = 1, 2, this equation becomes the Ohm-Hall law with Hall conductivity σH :=
σ21/e

2 = 1
2
sgn(m) 1

h
. The crucial observation is that by (2), σH is independent of the mag-

netic field strength F 12, which reveals a zero-field Hall effect [9]. From the point of view
of solid state physics this is uncommon, since usually a magnetic field perpendicular to the
plane is necessary in order to obtain a nonzero σH . If the Hamiltonian is the Schrödinger
operator with U(1) gauge field ~A, then σH vanishes indeed if ~A does [10]. However, a time
reversal breaking term may in general suffice to produce a nonzero Hall conductivity [2].
Several attempts have been made to find a solid state analog of (2+1)-dimensional elec-
trodynamics. In the planar honeycomb lattice introduced by Semenoff [11], the generation
mechanism of a Hall current fails only due to fermion doubling. The addition of a local
magnetic flux density normal to the plane results in σH 6= 0 [2]. Though a magnetic field
is again necessary, the sophisticated model yields a zero net magnetic flux through the unit
cell. More recently, the nonmagnetic Dirac operator of a nearest neighbour discretization
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was shown to project down onto two Schrödinger operators with magnetic fluxes π and −π,
respectively, in a tight-binding model. Here the mass term is the obstruction for a vanishing
of σH in the double-layer system [12].
These models will be of considerable practical relevance, when a zero-field Hall effect can
be produced in modified carbon monolayers, as envisaged in [11, 13]. At present, a strong
external magnetic field is indispensable for the experimental realization of quantum Hall
phenomena in graphite [14, 15]. Very recent results on graphene can be found in [16].
In our context it is sufficient to consider a relativistic electron gas without interaction be-
tween the electrons, since higher loop terms do not contribute [17]. In particular, the ground
state is not degenerate. In solid state physics, this is the decisive argument for predicting
the integrality of 2πσH (when ~=̇1). Its actual deviation from being integral needs to be
explained.
Our result does not contradict this general property. A single relativistic fermion cannot ap-
proximate the behaviour of a system with a finite number of degrees of freedom per volume.
Indeed, the use of such systems in lattice gauge theory always produces an even number
of relativistic fermions. The presence of spectator fermions [7, 18] reestablishes an integer
QHE. When a band gap closes and reopens, the change in the Hall conductivity remains
integral [19, 20].
In the first section of this paper the geometric nature of the half-integral value of 2πσH is
discussed. In the second part, the Kubo formula is used in the context of three-dimensional
QED. In particular, this yields the corrections to σH in a finite area with periodic boundary
conditions. Moreover, we shall see that for our system the old time-ordered perturbation
methods are equivalent to the relativistically covariant ones, but more efficient. This is very
useful for systems with boundaries, where Lorentz invariance does anyhow not apply [21].
The Hamiltonian of the Dirac equation (1) is given by

HA := −i(~∇ + ie ~A) · ~σ + σ3m+ A0, (3)

acting on the smooth functions in H := L2(R2,∆2), where ∆2 = C
2 is the spinor space. Time

inversion is implemented by the anti-unitary operator UT : H → H, defined by UT (ψ) :=
σ2ψ̄. Here ψ̄ is the complex conjugate of ψ. In absence of an external magnetic field, (3)
reduces to

H := −i~∇ · ~σ +mσ3. (4)

The key observation is that the mass term of (4) breaks time reversal symmetry: UT ◦H ◦

U−1
T = −i~∇ · ~σ − σ3m 6= H.

II. GEOMETRY OF THE ZERO-FIELD HALL EFFECT

To calculate the Hall conductivity for the the nonmagnetic Dirac operator (4), we restrict
to wave functions on a finite torus T = R

2/Λ, for some lattice Λ ∼= Z
2. This leads to the

direct integral decomposition of H over the dual torus T ∗ := R
2/Λ∗ (here Λ∗ := { ~K ∈

R
2 | ~K · ~R ∈ 2πZ, ∀~R ∈ Λ} is the dual lattice), where T ∗ parametrizes the quasi-periodic

boundary conditions. Thus wave functions for ~k ∈ T ∗ decompose as ψ(~x) = ei~k·~xu(~x)

with u ∈ H′ := L2(T,C2) acted upon by H(~k), the conjugate of H by e−i~k·~x. Fourier

transformation maps H′ onto ℓ2(~k+Λ∗)⊗C
2, transformingH(~k) into ⊕ ~K∈Λ∗((~k+ ~K)·~σ+mσ3).
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The contribution of the positive resp. negative energies of H(~k) to the conductivity σµν(~k)
is given by

σ
(±)
21 (~k) = ie2

∑

~K∈Λ∗

TrC2

(
P̂

(±)
~k+ ~K

[
∂k1

P̂
(±)
~k+ ~K

, ∂k2
P̂

(±)
~k+ ~K

])
(5)

= ∓
e2

2

∑

~K∈Λ∗

m

[(~k + ~K)2 +m2]3/2
. (6)

Here P̂
(±)
~k+ ~K

denotes the spectral projector to the energy E
(±)
~K

(~k) := ±[(~k+ ~K)2 +m2]1/2 (the

hat referring to Fourier space). Using Poisson summation, we obtain

σ
(±)
21 (~k) = ∓

e2

4π
sgn(m)

∑

~R∈Λ

e−|m||~R|−i~k·~R.

The Hall conductivity on the infinite plane can be obtained either by taking Λ → ∞ (i.e.,
all lattice periods large) or by averaging over the boundary conditions, which yields

2πσ
(±)
H =

1

2π

∫

T ∗

σ
(±)
H (~k) d2k = ∓

1

2
sgn(m). (7)

We want to understand the geometric origin of this result. Averaging over the boundary
conditions in (5) results in replacing the sum in (6) by an integral over R

2, with an additional

factor of (2π)−2. We extend to R
3 by writing Ĥ(k) = k · σ for σ := (σj)

3
j=1 and k ∈ Fm :=

{k ∈ R
3|k3 = m} ∼= R

2. By (6), the two-form (2π)−1σ
(±)
H (~k) dk1 ∧ dk2 generalizes naturally

to

η(±) := ∓
1

8π
εαβγ kαdkβ ∧ dkγ

|k|3
,

which is rotationally invariant. By homogeneity of η(±) and the fact that
∫

S2 η
(+) = −1, we

obtain ∫

Fm⊂R3

η(+) =

∫

F̃m⊂S2

η(+) = −
1

2
sgn(m).

Here F̃m ⊂ S2 denotes for m > 0 and m < 0 the open upper and lower half-sphere,
respectively, onto which the hypersurface Fm projects homeomorphically. This proves (7)

geometrically, describing σ
(±)
H as a solid angle. The half-spheres are orbits of the Lorentz

group, so that the quantization of 2πσ
(±)
H follows from Lorentz invariance.

We assume, as for the rest of this paper, that the Fermi energy lies in a spectral
gap and that the temperature is zero. In this situation, the Hall conductivity is classically
an integer. Namely, the one-particle states ideally form a line bundle of eigenspaces of the
Hamiltonian over T ∗, and the corresponding contribution to the Hall conductivity is the
Chern number of this bundle [6, 22, 23], which is an integer. In our system, the one-particle
states under consideration cannot be separated into such line bundles, since degeneracies
occur over T ∗. Therefore, the argument doesn’t apply.
Another way to understand the deviation from integrality is from the point of view of

multi-particle states. Here the argument is more subtle. If we take P ≡ P̂
(−)
~k

to be the
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projector onto the multi-fermion ground state, which we assume again to be non-degenerate,
then

σ
(−)
H (~k) = iTr(P [∂k1

P, ∂k2
P ])

is the curvature of the adiabatic connection P ◦ ∇~k as long as the particle number is finite,
and its integral yields a topological number [2, 11]. In QED3, non-degeneracy is assured by
the Pauli exclusion principle. But our example shows that the argument breaks down for
an infinite number of particles. Indeed, one can construct easily examples with arbitrary
σH by changing the solid angle discussed above. Of course, this procedure breaks Lorentz
invariance.
In solid state physics, when a one-particle description is possible, the set of momenta forms
a closed surface in momentum space, which can be described as a union of half-spheres of
the type considered above. Thus our calculation is consistent with the integer result in [2],
due to fermion doubling.

The Dirac see ground state cannot quite be described as a line bundle over T ∗. If, for ~k ∈ T ∗,

|~k+ ~K〉 ∈ H′ denotes the eigenfunction of (~k+ ~K) · ~σ+mσ3 to energy E ~K(~k) < 0, then the

multi-particle ground state is |0(~k)〉 ≡ ∧ ~K∈Λ∗|~k + ~K〉. Here the order of the wedge factors
cannot be fixed in a consistent way: The energy crossings over T ∗ give rise to an infinite

number of pairwise interchanges of wedge factors when ~k runs around a period. This yields
a sign ambiguity, so that only by taking the square, we obtain a line bundle. The latter is
trivial, since obviously it possesses a nowhere vanishing global section. Note that the sign
ambiguity does not affect P and the formula for σH .

III. THE KUBO FORMULA IN QED3

In solid-state physics, the Hall conductivity σH(x) (at a fixed time) is derived by “old-
fashioned”perturbation theory in the Schrödinger picture. We have seen that this approach
is very convenient for our system, too. For more general problems in QED3, e.g. non-
homogeneous external fields, it is instructive to relate the resulting Kubo formula to the
standard relativistically invariant treatment. In first order perturbation theory one has

δ〈0|jµ(x)|0〉 = 〈0|jµ(x)(E0 −H)−1(P|0〉)
⊥δH|0〉 + c.c., (8)

where P|0〉 denotes the projector onto the ground state. In a finite volume with quasiperiodic

boundary conditions the vacuum state can be written as a wedge product over ~K ∈ Λ∗ of

one-particle ground states |~k + ~K〉 in H′ = L2(T,C2), as discussed above in Fourier space.
For δH(~x) |H′ := −ex1E

1, variation of (8) w.r.t. the electric field gives, after division by e2,
the Kubo-formula for the Hall-conductivity at zero temperature

σH(x, ~k) = −2

∫

R2

∑

E ~K
<0

∑

E ~N
>0

ℑ

(
〈~k + ~K|v2(x, ~k)|~k + ~N〉〈~k + ~N |v1(~x

′, ~k)|~k + ~K〉

[E ~K(~k) − E ~N(~k)]2

)
d2x′,

where vµ = e−1jµ is the velocity operator. Note that, by the Pauli exclusion principle, the
interior sum runs over positive energies only, and symmetry of the spectrum is considered
in our notation.
For a better understanding of the Kubo-formula in QED, and a result for σH(x), we have to
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rewrite the r.h.s. of equat. (8) as an integral over the entire space-time. The Dirac operator
(4) does not depend on time, and changing from Schrödinger into Heisenberg picture,

δ〈0|jµ(x)|0〉 = −i

∫ ∞

−∞

〈0|T
[
jµ(x)(P|0〉)

⊥δH(t)
]
|0〉 dt

= −iδe

(∫

R3

〈0|T [jµ(x)Φ(x′)]|0〉 d3x′
)

regul.

= δe

(∫

R3

〈0|jµ(x)Φ(x′)|0〉Euclid. d
3x′
)

regul.

, (9)

using Wick rotation in (9). Here Φ(x) = Aν(x)jν(x) is the multi-particle operator with
A0(x) = −ex1E

1 and Aj ≡ const. for j = 1, 2. (9) is the relativistically invariant version
of the quantum mechanical Kubo formula in three-dimensional QED. To obtain the Hall
conductivity, one needs [8, form. (2.5)]

[〈0|jµ(x)jν(x′)|0〉Euclid.]regul. ∼ sgn(m) εµην ∂

∂xη
δ(3)(x − x

′).

Note that the sgn(m) factor on the r.h.s. is necessary, since a change in space-time orientation
can be compensated by a sign change of m. Using

〈jµ(x)〉 :=
δSeff[A]

eδAµ(x)
,

the regularized effective action turns out to be, to order O(e3), the Chern-Simons action [5]

SCS[A] = sgn(m)
e2

8π
εµνη

∫

R3

(∂µAν)Aη d
3x.

This proves (2) and in particular the result in (7).

IV. CONCLUSION

The Hall effect for relativistic massive fermions is important both for quantum field
theory and condensed matter physics. It can be treated by the same formalism in both
contexts, which allows to visualize both the close analogies and the profound differences of
the two physical systems. The corresponding half integral value of of the Hall conductivity
has an elegant geometric interpretation. Integrality breaks down since the quantum field
theory does not allow for the existence of a global Hilbert space which is independent of
the boundary conditions. This is analogous to the situation in Haag’s theorem (for Lorentz
invariant theories): There is no natural way to identify the Hilbert spaces of quantum
field theories with different physical parameters. Currently, relevant experimental results
are restricted to graphene, where reflection invariance requires the use of strong external
magnetic fields. In suitable non-symmetric materials, however, the effect may not need
such a field.
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