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We present the analytical approach to scalar field theory on the fuzzy sphere
which has been developed in hep-th/0706.2493. This approach is based on con-
sidering a perturbative expansion of the kinetic term in the partition function.
After truncating this expansion at second order, one arrives at a multitrace
matrix model, which allows for an application of the saddle-point method.
The results are in agreement with the numerical findings in the literature.

1. Introduction

It seems quite natural to expect that as one approaches the Planck scale, one has to re-
place the smooth structure of spacetime by some form of quantized geometry. The usual
quantization procedure as well as string theory suggest that the first modifications that
should be encountered are noncommutative geometries with constant deformation param-
eters. Besides the well-known Moyal-plane ❘2

θ and its 2d-dimensional generalizations with
their quantized function algebras based on [x̂µ, x̂ν ] = iθµν , the so-called fuzzy geometries

have received more and more attention recently.
A fuzzy geometry is essentially a noncommutative deformation of a Riemannian man-

ifold which come with a Laplace operator with a discrete spectrum. Essentially, one
truncates this spectrum and deforms the algebra of the corresponding truncated set of
eigenfunctions to achieve closure under multiplication. The most prominent example of
such a space is the fuzzy sphere [2] with a quantized function algebra based on the relation
[x̂i, x̂j] ∼ θiεijkx̂

k.
Since fuzzy spaces are described by function algebras with finitely many degrees of

freedom, they might prove useful as regulators for quantum field theories. After calculat-
ing the path integral depending explicitly on the deformation parameter θ, one should be
able to recover the commutative path integral in a certain limit θ → 0. This regularization
procedure would have several advantages over the lattice approach as, for example, it pre-
serves a number of continuous symmetries and is not expected to suffer from the fermion
doubling problem. Furthermore, numerical simulations are easily performed within this
framework.

A possible obstacle to using fuzzy geometries as regulators has been pointed out by
various authors: the näıve application of this procedure yields the wrong commutative
limits in the case of fuzzy scalar field theory [3], as is also suggested by numerical studies
of the phase diagram [4]. However, modifications of the action of the theory have been

1Talk given by CS at the International Workshop “Supersymmetries and Quantum Symmetries”
(SQS’07), Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, July 30 – August 4 2007.
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proposed [5] and for scrutinizing them, an analytical handle on the partition function of
this theory is desirable. In [1], such an approach was developed and we will review the
approach and summarize the findings in the following.

2. The fuzzy sphere and further fuzzy geometries

To begin, let us briefly review the construction of a number of fuzzy geometries. First,
recall that the complex space ❈n ∼= ❘

2n is rendered noncommutative by replacing the
complex coordinates zα, z̄β with the creation and annihilation operators of n harmonic

oscillators satisfying the algebra [âα, â†
β] = δαβ. Functions become thus linear operators

on the infinite-dimensional Fock space F generated by the creation operators from the
vacuum |0〉. By normalizing the coordinates zα → zα/|z|, we descend from ❈

n to the
sphere S2n−1. To descend further to ❈P n−1, we can use the Hopf fibration

1 → U(1) → S2n−1 → ❈P n−1 → 1 , (2.1)

which tells us that functions on ❈P n−1 are obtained from the functions on S2n−1 by
factoring out a U(1)-action. We can take this action to be zα 7→ eiϕzα, and thus we see
that functions on ❈P n−1 are built from monomials containing an equal number of zα and
z̄α. As a basis for these functions, we use

zα1
. . . zαL

z̄β1
. . . z̄βL

, (2.2)

which under the above quantization prescription turns into the operator basis [6]

â†
α1

. . . â†
αL
|0〉〈0|âβ1

. . . âβL
. (2.3)

This basis spans the space of linear operators acting in the L-particle Hilbert space HL

of the above Fock space F . We have dim(HL) = (n−1)...(n+L)
L!

, and in particular, for the
sphere S2 ∼= ❈P 1, dim(HL) = L+1. Functions on the fuzzy sphere can thus be encoded in
(L+1)2-dimensional matrices; real functions correspond to hermitian matrices. Note that
this map between monomials and operators also gives a direct quantization prescription
for the function algebra of a projective algebraic variety as discussed in [7].

Note also that the quantization of ❈P n as described above corresponds to the geo-
metric quantization (Toeplitz quantization) of ❈P n with the quantum line bundle L =
O(1)⊗L ∼= O(L): Recall that this quantization procedure consists of replacing the alge-
bra of smooth functions on a projective algebraic variety, C∞(M), with the endomor-
phisms of sections End (Γ(M, L )) of the quantum line bundle L . As the set of sections
Γ(❈P 1,O(L)) is spanned by zα1

. . . zαL
, the quantized algebra is spanned by the operators

zα1
. . . zαL

∂
∂zβ1

. . . ∂
∂zβL

and it is thus equivalent to the operator basis (2.3).

To capture the topology of the space we are quantizing, it is crucial to specify an
additional structure, which is usually taken to be a Dirac operator in noncommutative
geometry. For our purposes, however, it is sufficient to define a Laplace operator. Its
definition is most easily gleaned from an alternative, group theoretic point of view.

Consider a finite dimensional, irreducible representation ρ of SU(n), extended to a rep-
resentation of U(n). Such a representation can be labeled by a Dynkin diagram endowed
with Dynkin labels a1, . . . , an−1:

✐ ✐ . . . ✐
a1 a2 an−1

U(1) U(1) U(1) U(1) U(1) (2.4)
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where we have arranged the Cartan generators of the maximal torus U(1)×n around the
corresponding roots ~αi corresponding to the Dynkin labels ai. To every simple root, we
have a pair of raising and lowering operators, E±

~αi
, and the Dynkin label indicates the

highest non-trivial action of the lowering operator on the highest weight state |µ〉 of this
representation:

(E−
~αi

)ai|µ〉 6= 0 = (E−
~αi

)ai+1|µ〉 . (2.5)

Putting Dynkin labels ai to zero enlarges the isotropy group of the highest weight state
|µ〉 in ρ, as the generators E±

~αi
now leave |µ〉 invariant and combine the neighboring

U(n) × U(m) in the diagram (2.4) to U(n + m). One can now show that there is a one-
to-one correspondence between points p on the coset space U(n)/(U(m1) × . . . × U(mk))
and coherent states |p〉 in a representation ρ in which the isotropy group of the highest
weight state |µ〉 is U(m1) × . . . × U(mk).

An obvious quantization prescription is now to associate an operator f̂ to a function
f(p) according to

f(p) = 〈p|f̂ |p〉 , (2.6)

where |p〉 is the coherent state in ρ corresponding to the point p. In this way, one can
find quantizations for all complex flagmanifolds and their supersymmetric extensions as
shown in [8].

Recall also that the Young diagram corresponding to the representation ρ(a1, . . . , an−1)
is given by

n − 1

{
a1+...+an−1

︷ ︸︸ ︷

(2.7)

which in the case of S2 ∼= ❈P 1 ∼= U(2)/(U(1) × U(1)) just becomes ρ(a1) with a1 = L or

L
︷ ︸︸ ︷ ∼= span( â†

α1
. . . â†

αL
|0〉 ) (2.8)

A function is therefore mapped via (2.6) to a linear operator,

f̂ ∈
L

︷ ︸︸ ︷

⊗
L

︷ ︸︸ ︷ ∼= span( â†
α1

. . . â†
αL
|0〉〈0|âβ1

. . . âβL
) , (2.9)

and we arrive again at the above quantization procedure.
The representation of the generators of the isometries on ❈P 1 ∼= SU(2)/U(1) on states

in ρ is the usual Schwinger representation, L̂i = â†
ασi

αβâβ. The Laplace operator is then
the square of this action on functions, which is also the second Casimir operator in ρ:

∆f → ∆̂f̂ := Ĉ2f̂ = [L̂i, [L̂i, f̂ ]] . (2.10)

The requirement that the measure involved in the integration procedure is invariant under
the isometries of ❈P 1 as well as the usual rule of partial integration (

∫

M
dα =

∫

∂M
α = 0,

as the spaces M under consideration are compact) and the volume formula on the sphere
force us to define integration according to

∫

S2 dA f → 4πR2

N
tr (f̂).

We have now a complete quantization of the space ❈P 1 at hand, and we can easily
translate a commutative scalar field theory to the noncommutative setting. From now on,
we will omit hats over operators for convenience. Also, in accordance with the standard
nomenclature of matrix models, we will label the size of the matrices encoding functions
by N = L + 1.
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3. Fuzzy scalar field theory

With the prescription of the last section, we immediately arrive at the following action
for scalar φ4-theory on the fuzzy sphere:

S = γ tr
( a

R2
ΦC2Φ + r Φ2 + g Φ4

)

= γ tr
(

− a

2R2
[Li, Φ][Li, Φ] + r Φ2 + g Φ4

)

, (3.1)

where we introduced the shorthand notation γ = 4πR2

N
. For simplicity, we will put R = 1

in the following. The partition function of the model reads as

Z =

∫

dµD(Φ) e−βS =

∫

dµD(Φ) e−βγ tr (−a
2
[Li,Φ][Li,Φ]+r Φ2+g Φ4) , (3.2)

where the measure dµD(Φ) denotes the Dyson measure on the set of hermitian matrices
of dimension N × N , dµD(Φ) :=

∏

i≤j dℜ(Φij)
∏

i<j dℑ(Φij).
It is well-known that the pure matrix model limit a = 0 of this model has a third

order phase transition in the large N limit at g = γ

4N
r2 = π

N2 r
2 for r ≤ 0. At this

parabola in the left half of the r-g-plane, the double well potential becomes sufficiently
deep for the support of the eigenvalue density to split into two disjoint pieces.

Numerical studies on the lattice [9] of the planar commutative limit of this model,

Z =

∫

Dφ e−
R

d2x 1

2
(∇φ)2+rφ2+gφ4

, (3.3)

indicate a second-order phase transition for g/r ≈ −10.24, i.e. at a line in the r-g-plane.
Interestingly, numerical studies [4] of the fuzzy scalar field theory (3.1) find a com-

bination of both phase transitions with a triple point at which the parabola meets the
line. This seems at least to suggest a contradiction to the idea that the fuzzy sphere can
be used as a regulator for scalar quantum field theory on the plane. After gaining an
analytical handle on the phase diagram, we will therefore apply our technique to study
modifications proposed to cure this problem and we will see that the triple point is shifted
off to infinity; this is an indication for an improved situation as the phase diagram turns
into the one of (3.3).

Let us briefly recall why scalar field theory on the fuzzy sphere is more difficult than
the more common matrix models. First, let us consider again the matrix model limit
a = 0, which is exactly solvable [10]. Using the decomposition Φ = ΩΛΩ†, where Λ =
diag(λ1, . . . , λN) and Ω is a unitary matrix, the dependence on Ω drops out from the
action due to cyclicity of the trace. The partition function (3.2) turns into the one of the
eigenvalue model

Za=0 =

∫

Dλ ∆2(Λ)

∫

dµH(Ω) e−βγ tr (r
P

i λ2

i +g
P

i λ4

i )

=

∫

Dλ e−2
P

i>j ln |λi−λj |−βγ(r
P

i λ2

i +g
P

i λ4

i ) ,

(3.4)

where Dλ :=
∏N

i=1 dλi, dµH(Ω) is the Haar measure on U(N) and ∆(Λ) is the Van-
dermonde determinant ∆(Λ) := det([λj−1

i ]ij) =
∏

i>j(λi − λj). From here, one can
continue with various techniques to evaluate Z, as, e.g., the saddle-point approximation
or the method of orthogonal polynomials. The latter even yields an exact result for Z at
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finite N . However, Ω does not commute with the external matrices Li appearing in our
model (3.1) and thus this method is not directly applicable in our case.

More generally, there is a solution for hermitian matrix models of the form S =
tr (V1(AΦ) + V2(Φ)) with a single external matrix A as shown in [11]: One can use a
character expansion together with the orthogonality relation for elements of U(N) in an
irreducible representations ρ,

∫

dµH(Ω)χρ(AΩ†ΛΩ) =
1

dim(ρ)
χρ(A)χρ(Λ) , (3.5)

to arrive at a closed formula for the partition function. Unfortunately, having three
external matrices as in our action (3.1) renders the character expansion so complicated
that it is essentially useless for our purposes.

4. Calculating the phase diagram

Before performing the perturbative calculation, we can employ symmetry arguments
to make some statements about the expected results. First of all, we recall that the
Dyson measure is invariant under the adjoint action by a unitary matrix Ω: dµD(Φ) =
dµD(ΩΦΩ†). This implies that we can replace the action (3.1), which is not invariant
under this action, by an effective action Seff with this invariance under the functional
integral:

∫

dµD(Φ) e−S =

∫

dµD(Φ) e−Seff , e−Seff [Φ] =
1

vol(U(N))

∫

dµH(Ω) e−S[ΩΦΩ†] . (4.1)

Because of this invariance, the effective action has to be of the form

Seff =
∑

n

sn tr (Φn) +
∑

n,m

snm tr (Φn) tr (Φm) +
∑

n,m,k

snmk tr (Φn) tr (Φm) tr (Φk) + . . . ,

(4.2)
which can now be trivially recast into an eigenvalue model Seff(Λ).

Furthermore, symmetry arguments severely restrict the form in which the kinetic term
can appear in the effective action Seff(Λ). Since C2✶ = 0, the kinetic term tr (ΦC2Φ)
can only depend on the difference of eigenvalues λi − λj. Because of the ❩2-symmetry
λi → −λi, we have to take this difference to an even power and the permutation symmetry
between the eigenvalues demands that we sum over all i > j. Altogether we arrive at

Seff(Λ) − V (Λ) =
∑

k,m1,n1,...,mk,nk

ξ(m1,n1)...(mk,nk)Ξ
n1

2m1
. . . Ξnk

2mk
, (4.3)

where
Ξn

2m :=
(
Ξ2m

)n
:=

( ∑

i>j

(λi − λj)
2m

)n

. (4.4)

The idea of treating the kinetic term perturbatively is known as the hopping parameter
or high-temperature expansion and this technique has been successfully used to analyze
two-dimensional scalar φ4-theory on the lattice, see e.g. [12] and references therein. In our
case, it will allow us to treat the partition function in principle exactly for any truncation
of the perturbative series.
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We will restrict our considerations to an expansion of the kinetic term up to second
order:

eβγaΦaKabΦ
b

= 1 + βγaΦaKabΦ
b +

β2γ2a2

2
ΦaKabΦ

b ΦcKcdΦ
d + O(a3) , (4.5)

where

Kab = tr ([Li, τa][Li, τb]) and Φ = Φµτµ = Φ0✶N

N
+ Φaτa (4.6)

and τa are the Gell-Mann matrices of SU(N) normalized according to tr (τaτb) = δab. To
integrate over the angular variables, we have to compute

∫

dµH(Ω)Kab tr (τaΩΛΩ†) tr (τ bΩΛΩ†) with Φa = tr (τaΩΛΩ†) . (4.7)

Having in mind the orthogonality relation (3.5), we rewrite

tr
(
(τaΩΛΩ†) ⊗ (τ bΩΛΩ†)

)
= tr

(
(τa ⊗ τ b)(Ω ⊗ Ω)(Λ ⊗ Λ)(Ω† ⊗ Ω†)

)
. (4.8)

Splitting the tensor product ⊗ into irreducible representations ρ, we arrive at the
formula ∫

dµH(Ω)KabΦ
aΦb = Kab

∑

ρ

1
dim(ρ)

tr ρ(τ
a ⊗ τ b) tr ρ(Λ ⊗ Λ) , (4.9)

where tr ρ denotes the trace in the irreducible representation specified by ρ. The explicit
expressions for tr ρ in all relevant representations are found in [1], and using these, one
straightforwardly computes that, in accordance with (4.3),

∫

dµH(Φ)KabΦ
aΦb =

N

2

∑

i>j

(λi − λj)
2 =

∫

dµH(Φ)N2

(

tr (Φ2) − 1

N
tr (Φ)2

)

.

At second order, we obtain after a more tedious but also straightforward calculation
a more complicated result, which is again of the form predicted in (4.3). Instead of pre-
senting it here, let us directly jump to the full large N limit of the model. For this, we
re-exponentiate the contributions found perturbatively into the effective action. Neglect-
ing terms which are subdominant in N , we arrive at the following eigenvalue model:

S = γ
∑

i

(
rλ2

i + gλ4
i

)
+ γ

∑

i>j

(

−a
2
N(λi − λj)

2 + γa2

4
N2(λi − λj)

4 − 2
γ

ln |λi − λj|
)

.

The transition to continuous variables is performed as usual by rescaling λi → λ( i
N

) =

λ(x) with 0 < x ≤ 1 and turning the sums into integrals:
∑N

i=1 → N
∫ 1

0
dx. Moreover, a

common power of N has to be factored out from every term in the action. This power is
determined by the logarithmic term to be N2 and yields a rescaling,

a = N θa ã , r = N θr r̃ , g = N θg g̃ and λ(x) = N θλλ̃(x) , (4.10)

with values for θg and θr which remarkably are found to be consistent with the
ones obtained numerically in [4]. Altogether, we have now the partition function Z =
∫

Dλ exp(−N2S̃) with

S̃ = 4π

∫ 1

0

dx
(

r̃λ̃2(x)+g̃λ̃4(x) +

∫ 1

0

dy
(

− ã
4
(λ̃(x) − λ̃(y))2

+ 4πã2

8
(λ̃(x) − λ̃(y))4 − 1

4π
ln |λ̃(x) − λ̃(y)|

))

,

(4.11)
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which we can evaluate using the saddle point approximation. For this, we introduce
as usual the eigenvalue density u(λ̃) = dx/dλ̃ and follow the canonical procedure for
determining u(λ̃) (see e.g. [10], cf. [13]), which yields in the single cut regime

u(λ̃) =
(

4r̃ − ã + 12πã2c2 + 4
(

g̃ + πã2

2

)

δ2 + 8
(

g̃ + πã2

2

)

λ̃2
) √

δ2 − λ̃2 . (4.12)

Here, c2, the second moment of u(λ̃), is determined by a self-consistency condition. This
solution enables us to locate a phase transition, i.e. a curve C in the r-g-plane, at which
the eigenvalue density u(λ̃) becomes negative. This curve is found to be given by

C± =
π

32

(

−63ã2 + 16r̃2 ± (4r̃ − ã)
√

16r̃2 − 8ãr̃ − 95ã2 − 8ãr̃
)

. (4.13)

Various arguments suggest to identify the turning point of this curve with the triple point
of the phase diagram predicted numerically. The location of this point for ã = 1, (r, g) ≈
(−2.7, 0.25), is in good agreement with the numerical result (r, g) = (−2.3±0.2, 0.52±0.02)
and justifies further this identification.

As mentioned in the introduction, modifications to the action of fuzzy scalar field
theory are necessary, if one wants to employ fuzzy spaces to regularize φ4-theory on the
plane. The modification proposed in [5] takes into account a wave function renormalization
and – in its simplest form – reads as

S̃ = γ tr
(
aΦ(C2 + κC2C2)Φ + r Φ2 + g Φ4

)
. (4.14)

This modification is readily treated in our formalism, as it amounts to

Kab → Ǩab := Kab + κKacKcb and a → ˜̌a = a(1 + 2
3
κ̃) . (4.15)

Increasing a now moves the turning point of C – and thus the triple point – off to infinity.
We thus confirmed that introducing κ has the desired effect.

5. Summary and future directions

Altogether, we achieved the following: We formulated a generalized character expansion
technique for the treatment of fuzzy scalar field theory. This technique yields exact
results at any order in a perturbative expansion of the kinetic term and can be evaluated
– in principle – straightforwardly. It is worth stressing that this approach is directly
applicable to field theories on the fuzzy sphere with more general potential and it is
readily adapted to scalar field theories on other fuzzy spaces. We used this expansion
technique to reformulate scalar field theory on the fuzzy sphere as a multitrace matrix
model. The results of the approximation look promising and motivate further studies.

An important task for future work will be to explore the full set of one- and two-cut
solutions as well as their rôle in the explanation of the phase diagram. The qualitative
effects of higher order corrections have to be taken into account, if the full analysis at
second order should not suffice to explain the phase structure. Obviously, our technique
should also be applied to the probably more interesting case of four dimensional theories.
Finally, one might wonder whether there is a connection between the multitrace matrix
model we found from fuzzy scalar field theory and the original motivation for studying
multitrace matrix models [13]: the definition of c > 1 string theories.
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