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Abstract: We propose a string dual to the SU(Nc) N = 4 SYM coupled to Nf massless funda-
mental flavors in an external magnetic field. The flavors are introduced by homogeneously smeared
Nf D7–branes and the external magnetic field via a non-trivial Kalb-Ramond B–field. Our solution
is perturbative in a parameter that counts the number of internal flavor loops. In the limit of
vanishing B–field the background reduces to the supersymmetric one obtained in hep-th/0612118.
We introduce an additional probe D7–brane and in the supersymmetric limit of vanishing B–field
perform a holographic renormalization of its “on-shell” action. We consider also non-supersymmet-
ric probes with fixed worldvolume gauge field corresponding to a magnetic field coupled only to the
fundamental fields of the probe brane. We study the influence of the backreacted flavors on the
effect of dynamical mass generation. Qualitatively the physical picture remains unchanged. In the
next step we consider the case when the magnetic field couples to both the backreacted and the
probe fundamental degrees of freedom. At sufficiently strong magnetic field the meson spectrum
signals an instability of the probe D7–brane, which we interpret as reflecting an instability of the
supergravity background.
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1. Introduction

In recent years an exciting area of theoretical physics has been unveiled through the discovery
of the AdS/ CFT correspondence and its numerous generalizations, [1]. Holographic techniques
have proven a powerful analytic tool in studying the qualitative properties of strongly interacting
physical systems with applications ranging from describing the physics of strongly interacting quark
gluon plasmas to modeling collective condensed matter phenomena such as superconductivity and
superfluidity.
Despite the success of the AdS/CFT correspondence in studying holographic gauge theories, namely
field theories with known dual supergravity backgrounds, there are many realistic theories of great
phenomenological importance, such as QCD, which do not have an explicit holographic dual. This
is the main reason of the limited direct quantitative applications of the correspondence. However, it
turns out that under extreme external control parameters, such as: temperature, chemical potential
and external electromagnetic fields, different gauge theories exhibit similar properties. Therefore it
is natural to apply holographic techniques to study phenomena which are known to be of universal
nature.
One such phenomenon is the magnetic catalysis of mass generation. At weak coupling it has been
extensively studied using the conventional perturbative field theoretic techniques [2]. A holographic
study of this effect has been performed in [3], where the case of flavoredN = 4 Yang-Mills theory has
been explored. Further holographic studies of this phenomenon have been addressed by numerous
authors 1 (for a comprehensive review of the literature look at ref. [4]). At present all such studies
are in the limit of the so called “quenched” approximation when the number of fundamental fields
Nf is much smaller than the number of color degrees of freedom Nc. On the gravity side this
corresponds to the probe limit for the flavor D7-branes.
In this paper we undertake first steps towards a holographic description of the phenomenon of
magnetic catalysis of mass generation beyond the “quenched” approximation. This suggests the
construction of a supergravity background with a fully backreacted set of flavor branes coupled to
a non-vanishing B-field. This construction amounts to a non-supersymmetric background.
Ideally such a background would correspond to a set of fully localized flavor branes. The gravity dual
of a field theory with unquenched flavor is coming through the solution of the equations of motion
with brane sources. It is the presence of these sources which typically modify the Bianchi identities
and through their contribution to the energy-momentum tensor, the Einstein equations also. If
the flavor branes are localized, the sources contain Dirac delta functions and, as a consequence,
solving the equations of motion is, in general, a difficult task. In the context of the AdS/CFT
correspondence, the search for localized solutions was initiated in [6], where the D3-D7 intersections
were discussed, while a lot of progress was reported in subsequent years, (see e.g. [7]).
We could overcome the technical difficulties of localized flavor brane embeddings by considering
configurations which are partially smeared 2 along appropriately chosen compact directions. Super-
symmetric backgrounds corresponding to partially smeared Karch-Katz like embeddings, [9], have
been constructed in [10]. In general these backgrounds possess a hollow cavity in the bulk of the

1For a concise review in the case of holographic duals to the Dp/Dq–brane intersections look at ref. [5].
2For a detailed review on the smearing approach see [8].
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geometry where the supergravity solution is sourced solely by the color branes. The radius of this
cavity is related to the bare mass of the fundamental flavors [11]. In the limit of vanishing bare
mass the cavity shrinks to the radius of the compact part of the geometry and the supergravity
background has an essential singularity at the origin of the non-compact part of the geometry. In
both cases the dilaton field diverges at large radial distances. This corresponds to the Landau pole
that the dual field theory develops in the UV, due to its positive beta function β(λ) ∝ Nf/Nc.

One can imagine that a non-supersymmetric background interpolating between the supersymmetric
backgrounds corresponding to massless flavors in the UV and massive flavors in IR would describe
a dynamical mass generation. The radius of the hollow cavity would correspond to the dynamically
generated constituent mass of the fundamental flavors.

A promising framework for the construction of such a geometry has been developed in [12]. In
this paper, a ten dimensional black-hole solution dual to the non conformal plasma of N = 4
Yang-Mills coupled to Nf ≫ 1 massless flavors has been presented 3 . The D7 flavor branes are
smeared homogeneously and extend along the radial direction up to the black hole horizon. The
smearing procedure reduces the flavor symmetry group from U(Nf ) to U(1)Nf and allows for a
simple way to account for the backreaction of the flavor branes. This in turn allows one to explore
the “unquenched” regime of the dual field theory. In the zero temperature limit, the resulting
backgrounds coincide with those found in [15].4 More precisely, the authors of [12] consider the
smearing of a general non-supesymmetric “fiducial” embedding of the flavor brane for the purpose
of obtaining a perturbative non-extremal black hole solution. However it turns out that obtaining
even a perturbative solution in the general case is technically too difficult and the authors obtain
a perturbative finite temperature solution for the particular case of massless flavors (when the
“fiducial” embedding is trivial).

In this paper we will construct a perturbative non-supersymmetric background with a non-vanishing
B- field, which corresponds to an external magnetic field coupled to the fundamental degrees of
freedom of the dual gauge theory. Following the approach of [12] we will consider the case when
the “fiducial” embedding is trivial. Note that the results of the probe limit case considered in [3],
show that this embedding is unstable since it corresponds to vanishing constituent mass of the
fundamental flavors. In the probe limit this instability is present for any non-vanishing value of
the external magnetic field. Therefore one may expect that the background obtained by smearing
such unstable embeddings would also be unstable. However the effect of backreaction is that the
theory develops a Landau pole. This suggests the existence of an extra energy scale in addition
to the energy scale associated to the external magnetic field. Therefore we may expect that the
supergravity background would be characterized by a non-zero critical value of the B-field (Hcr)
below which the background is stable. Our studies on the stability of the background using a probe
D7-brane confirm this expectation.

Let us summarize the content of our work:

In Section 2 we introduce useful notation and the supergravity ansatz that is appropriate for the
description of the backreacted supergravity background discussed above. We proceed by construct-

3All the hydrodynamic transport coefficients of the model were analyzed in [13], while the addition of a finite
baryon density was presented in [14]

4Other solutions employing the smearing technique appear in [16].
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ing an effective one dimensional action and obtaining the supergravity equations of motion. After
that we solve those equations perturbatively to first order an appropriate small parameter, namely
ǫ∗ ∝ λ∗

Nf

Nc
. We are able to present our solution in a closed form. In the limit of vanishing magnetic

field our solution reduces to the supersymmetric background constructed in [15].

In section 3 of this paper we introduce a probe flavor brane to the supersymmetric background
obtained in[15]. We first consider the case of supersymmetric embeddings and perform a holographic
regularization of the probe brane action. Our findings enable us to propose an AdS/CFT dictionary
applicable at the finite UV cut off of the theory. Next we consider D7-brane embeddings with fixed
worldvolume gauge field. On the field theory side this corresponds to a constant external magnetic
field coupled only to the fundamental degrees of freedom introduced by the probe brane. Using the
proposed AdS/CFT dictionary we obtain numerical plot of the fundamental condensate versus the
bare mass parameter and explore the effect that the presence of backreacted massless flavors have
on the effect of magnetic catalysis of mass generation. Our findings suggest that the effect is to
make the magnetic catalysis less efficient.

In Section 4 we generalize the study of Section 3 for an external magnetic field coupling to both the
probe and the backreacted fundamental flavors. To this end, we consider a probe D7-brane in the
non-supersymmetric background constructed in Section 2. We identify the value of the non-trivial
B-field at the finite UV cut off as the value of the external magnetic field in the corresponding
field theory. Our study of the classical embeddings of the probe brane suggest that for sufficiently
low values of the perturbative parameter ǫ∗ < ǫcr the stable phase of the theory exhibit dynamical
mass generation. However for sufficiently large values of ǫ∗ = ǫcr the theory is unstable. This
instability is manifest as a diverging slope of the plot of the parameter of the IR separation (related
to the constituent mass of the probe fundamental flavors) versus the parameter ǫ∗. We find further
evidence for this instability by studying the meson spectrum of the theory and identifying appro-
priate tachyonic modes. We interpret the instability of the probe as reflecting an instability of the
supergravity background.

In the Conclusion section of the paper we discuss briefly our present results and their possible
extensions.

2. Constructing the background

The main goal we want to address with the gravity background of the following subsection is
the study of the phenomenon of mass generation in magnetic catalysis. The field theories we are
interested in are realized on the intersection between a set of Nc color D3-branes and a set of Nf ,
homogeneously smeared, flavor D7-branes. This is mainly the construction that was studied in [12]
and in order to accommodate the phenomenon of mass generation we will impose an additional
coupling between the fundamental fields and an external magnetic field.

The color D3-branes are placed at the tip of a Calabi-Yau (CY) cone over a Sasaki-Einstein manifold
X5, where the latter can be expressed as a U(1) fiber bundle over a four dimensional Kähler-Einstein
base (KE). In the absence of flavor branes the color ones source a background whose near horizon
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limit is the AdS5 ×X5 and the dual gauge theories are superconformal quivers. 5

The flavor D7-branes introduce fundamental matter in the dual field theory. They extend along
the radial direction of the background, wrap a submanifold X3 of X5 and at the same time smear
homogeneously over the transverse space [18, 19]. The smeared distribution is taken in such a way
that the isometries of the fibered Kähler-Einstein space are kept unbroken and allows to write an
ansatz where all the unknown functions just depend on a single radial coordinate. The D7-brane
embedding is described by a constant profile, implementing massless flavor fields in the dual gauge
theory. As a general feature of all the D3-D7 setups, the dilaton runs and blows up at a certain
radial distance, corresponding to a UV Landau pole in the dual gauge theory [15].
The presence of both kind of branes will deform the ten dimensional space-time, a product of a
four dimensional Minkowski space with a six dimensional CY cone, through a (self dual) F5 and an
F1 RR fields. The coupling of the flavor D7-branes with the external magnetic field will be realized
by the simultaneous presence of a B2 NS field and its electric dual C2 RR field, along the gauge
theory directions.
In the next subsection we will be precise about the mathematical expression of every one of the
forms that we described above.

2.1 Ansatz

Our notation will follow closely [12, 14, 15]. The action for the of Type IIB supergravity coupled
to Nf D7-branes, in the Einstein frame, is given by the following expression

S = SIIB + Sfl , (2.1)

where the terms of the SIIB action are

SIIB =
1

2κ210

∫

d10x
√−g

[

R− 1

2
∂MΦ∂MΦ− 1

2
e2ΦF 2

(1) −
1

2

1

3!
eΦF 2

(3) −
1

2

1

5!
F 2
(5)

−1

2

1

3!
e−ΦH2

(3)

]

− 1

2κ210

∫

C4 ∧H3 ∧ F3 , (2.2)

and the action for the D7-branes takes the usual DBI+WZ form

Sfl = −T7
∑

Nf

[

∫

d8x eΦ
√

− det(Ĝ+ e−Φ/2F) −
∫

D7

Ĉq ∧
(

e−F
)

8−q

]

, (2.3)

with F ≡ B + 2πα′F . In those expressions B denotes a non-constant magnetic field, F the world-
volume gauge field and the hat refers to the pullback of the quantities, along the worldvolume
directions of the D7-brane. The gravitational constant and D7-brane tension, in terms of string
parameters, are

1

2κ210
=
T7
gs

=
1

(2π)7g2sα
′4
. (2.4)

5For X5 = S5 the CY is the six dimensional Euclidean space and the dual field theory is N = 4 SYM
For X5 = T 1,1 the CY is the singular conifold and the dual theory is the Klebanov-Witten quiver [17]
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The ansatz for the metric that we will adopt is inspired by [12] and has the following form

ds210 = h−
1
2

[

−dt2 + dx21 + b(dx22 + dx23)
]

+ h
1
2

[

b2S8F 2dσ2 + S2ds2CP 2 + F 2(dτ + ACP 2)2
]

, (2.5)

where the CP 2 metric is given by

ds2CP 2 =
1

4
dχ2 +

1

4
cos2

χ

2
(dθ2 + sin2 θdϕ2) +

1

4
cos2

χ

2
sin2 χ

2
(dψ + cos θdϕ)2 &

ACP 2 =
1

2
cos2

χ

2
(dψ + cos θdϕ) . (2.6)

The range of the angles is 0 ≤ (χ, θ) ≤ π, 0 ≤ ϕ, τ < 2π, 0 ≤ ψ < 4π. The ansatz for the NS and
the RR field strengths will be the following

B2 = H dx2 ∧ dx3 , C2 = J dt ∧ dx1 ,

F5 = Qc (1 + ∗)ε(S5) , F1 = Qf (dτ + ACP 2) , F3 = dC2 + B2 ∧ F1 (2.7)

where ε(S5) is the volume element of the internal space and Qc, Qf are proportional to the number
of colors and flavors

Nc =
Qc V ol(X5)

(2π)4gs α′2
& Nf =

4Qf V ol(X5)

V ol(X3)gs
. (2.8)

In our case X5 = S5 and the volume of the three sphere is 2π2. The fact that the flavors are
massless is encoded in the independence of F(1) on σ, (see [10, 15]). All the functions that appear
in the ansatz, h, b, S, F,Φ, J &H, depend on the radial variable σ. In the convention we follow,
S&F have dimensions of length, b, h, J &H are dimensionless and σ has dimension length−4. The
ansatz for the F3 RR field strength is determined by the ansatz for F1 (see Appendix A for more
details). Finally the function b in the ansatz for the metric reflects the breaking the of SO(1, 3)
Lorentz symmetry down to SO(1, 1)× SO(2).

The equations of motion and Bianchi identities following from (2.1) will be provided in full detail
in Appendix A.

2.2 Effective action and the equations of motion

Since all the functions that participate in the ansatz for the solution, (2.5) & (2.7), depend only on
σ, it is feasible to describe the system in terms of a one-dimensional effective action. In order to
achieve that we insert all the ingredients of the ansatz in (2.1) and integrate out all the variables
except σ arriving to

Seff =
π3V1,3
2κ210

∫

L1d dσ (2.9)
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where V1,3 is the (infinite) volume of the Minkowski space and L1d is given by the following expression

L1d = −1

2

(

h′

h

)2

+ 12

(

S ′

S

)2

+ 8
F ′S ′

FS
+ 24 b2 F 2 S6 − 4 b2 F 4 S4

+
b′

b

(

h′

h
+ 8

S ′

S
+ 2

F ′

F

)

+
1

2

(

b′

b

)2

− b2Q2
c

2h2
− 1

2
Q2
f b

2e2ΦS8

(

1 +
e−ΦH2 h

b2

)

(2.10)

− 4Qf b
2 eΦ F 2 S6

√

1 +
e−ΦH2 h

b2
− 1

2
Φ′2 − 1

2

e−ΦH ′2 h

b2

(

1− e2Φ J ′2 b2

H ′2

)

−QcHJ
′ .

Producing (2.10) we have not made use of the WZ term, since it does not depend on the metric
or the dilaton. Its effect has been taken into account through the expression for F(1) (see [15, 12]).
The precise expression of the WZ term is needed in producing the equations of motion explicitly
from (2.1) and it is this point that the smearing procedure enters the field and imposes the following
replacement

∑

Nf

∫

M8

. . . −→
∫

M10

Ω ∧ . . . , (2.11)

where Ω is a form orthogonal to the D7-branes and we call it smearing form. The mathematical
formula for the smearing form is given through the Bianchi identity for F(1) and it is

dF1 = −gsΩ2 . (2.12)

We will provide more details on the smearing of the DBI part of the action in Appendix A, where
we will present all the details about the equations of motion and Bianchi identities of (2.1). Since
the potential J enters the effective action only through its derivative, it corresponds to a “constant
of motion”. This new parameter is related to the value of the magnetic field close to the boundary
through the equations of motion for F3, coming from the 10d supergravity. We will fix this constant
of motion in the following way

∂L1d

∂J ′
≡ −QcH∗ ⇒ J ′ =

e−ΦQc

h
(H − H∗) . (2.13)

The next step is to use equation (2.13) to eliminate J ′, in favor of H∗, from (2.10) after performing
the following Legendre transformation

L̃1d = L1d −
δL1d

δJ ′
J ′

∣

∣

∣

∣

∣

J ′≡J ′(H∗)

. (2.14)

The Euler-Lagrange equations will be calculated from the new, transformed, action (2.14). Defining
the following auxiliary (dimensionless) expressions

β1 ≡
√

1 +
e−ΦH2 h

b2
, β2 ≡ 1 +

e2Φ J ′2 b2

H ′2
& β3 ≡ 1 +

e−2ΦH ′2 β2
Q2
f H

2 b2 S8
(2.15)
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we can write the equations of motion in the following compact way

∂2σ(log b) = − 4Qf H
2 hS6F 2

β1
− eΦH2Q2

f hS
8 β3 (2.16)

∂2σ(log h) = −Q2
c

b2

h2
− 2Qf H

2 hS6F 2

β1
− 1

2
eΦH2Q2

f hS
8 β3 + (1− β2)

e−Φ hH ′2

b2
(2.17)

∂2σ(log S) = −2 b2F 4S4 + 6 b2F 2S6 − Qf e
Φb2F 2 S6

β1
+

1

4
eΦH2Q2

f hS
8 β3 (2.18)

∂2σ(logF ) = 4 b2F 4S4 − 1

4

(

1 + β2
1

)

Q2
f e

2Φb2S8 +
Qf H

2 hS6F 2

β1
+

1

4

e−Φ hH ′2 β2
b2

(2.19)

∂2σΦ =
1

2

(

1 + β2
1

)

[

Q2
f e

2Φ b2 S8 +
4Qf b

2 eΦS6F 2

β1

]

− 1

2

e−Φ hH ′2 β2
b2

(2.20)

∂σ

[

e−Φ hH ′

b2

]

= eΦQ2
f H hS8 + Qc J

′ +
4Qf H hS6F 2

β1
. (2.21)

It is straightforward to check that the above set of equations, together with (2.13), solve the full set
of Einstein equations, provided the following “zero-energy” constraint is also satisfied

0 = −1

2

(

h′

h

)2

+ 12

(

S ′

S

)2

+ 8
F ′S ′

FS
− 24 b2 F 2 S6 + 4 b2 F 4 S4

+
b′

b

(

h′

h
+ 8

S ′

S
+ 2

F ′

F

)

+
1

2

(

b′

b

)2

+
b2Q2

c

2h2
+

1

2
Q2
f b

2e2ΦS8 β2
1 (2.22)

+ 4Qf b
2 eΦ F 2 S6 β1 −

1

2
Φ′2 − 1

2

e−Φ hH ′2 β2
b2

+
1

2
eΦ h J ′2 .

This constraint can be thought of as the σσ component of the Einstein equations. Differentiating
(2.22) and using (2.13) & (2.16)–(2.21) we get zero, meaning that the system is not overdetermined.

2.3 Perturbative solution

The system (2.13) & (2.16)–(2.21) allows for a perturbative solution along the lines of [14]. There,
the dimensionless parameter ǫ∗, which is connected to the position that the dilaton blows up, was
introduced and subsequently used as an expansion parameter. In order for the solution to be valid
on a large energy scale this parameter has to be a small number and in principle the smaller the
value of the number the larger the range of the energy scale. After defining λ∗ as the ’t Hooft
coupling at the energy scale r∗ the parameter ǫ∗ is expressed in terms of the physical quantities as

ǫ∗ = Qf e
Φ∗ =

V ol(X3)

16π V ol(X5)
λ∗
Nf

Nc

, (2.23)
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and particularly for our case that X5 = S5 we have ǫ∗ =
1

8π2λ∗
Nf

Nc
. The parameter ǫ∗ can be thought

of as a flavor-loop counting parameter in the dual field theory.

Obtaining a perturbative solution, in terms of ǫ∗ of the system (2.13) & (2.16)–(2.21), we need
to impose the following two requirements to fix the constants of integration in the order by order
expansion of the solution. The first one is that the geometries should coincide with the extremal
ones in the absence of the magnetic field and the second is that the functions F, S&Φ should
correspond to the expressions given in [14], at the energy scale r = r∗. We will redefine the radial
variable σ in such a way that the warp factor keeps the standard AdS form

h =
R4

r4
& R4 ≡ 1

4
Qc (2.24)

therefore to first order in ǫ∗ we have the following expression

σ =
1

4r4
+ ǫ∗

[

− 1

72 r4

[

αr
α2
r − 1

− r4

r4∗

αr∗
α2
r∗ − 1

]

+
1

96 r4

[

αr
(

α2
r − 1

)

− r4

r4∗
αr∗
(

α2
r∗ − 1

)

]

− 1

192 r4

[

(

α2
r − 1

)2
log

[

αr + 1

αr − 1

]

− r4

r4∗

(

α2
r∗ − 1

)2
log

[

αr∗ + 1

αr∗ − 1

]]

− 17

144 r4
(αr − αr∗)

− 1

16 r4

[

(

α2
r − 1

)

log

[

αr + 1

αr − 1

]

−
(

α2
r∗ − 1

)

log

[

αr∗ + 1

αr∗ − 1

]]

+
αr∗

144 r4

(

1− r4

r4∗

)

]

, (2.25)

where another set of auxiliary dimensionless functions are in order

αr ≡
√

1 +
e−Φ∗ H2

∗ Qc

4 r4
& αr∗ ≡

√

1 +
e−Φ∗ H2

∗ Qc

4 r4∗
. (2.26)

Having (2.25) to transform the solution of the system (2.13) & (2.16)–(2.21) from the one holographic
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coordinate to the other we arrive to the following expressions for Φ, H, J ′ and b

Φ = Φ∗ − ǫ∗
2

[

αr − αr∗ −
1

2
log

[

(αr + 1)(αr∗ − 1)

(αr − 1)(αr∗ + 1)

]

]

(2.27)

H = H∗

[

1 − ǫ∗
8

[

αr
α2
r + 1

α2
r − 1

− αr∗
α2
r∗ + 1

α2
r∗ − 1

r4

r4∗
− α2

r − 1

2
log

[

αr + 1

αr − 1

]

(2.28)

+
α2
r∗ − 1

2
log

[

αr∗ + 1

αr∗ − 1

]

r4

r4∗

]

]

J ′ = ǫ∗
e−Φ∗ H∗

2 r

[

αr
α2
r + 1

α2
r − 1

− αr∗
α2
r∗ + 1

α2
r∗ − 1

r4

r4∗
− α2

r − 1

2
log

[

αr + 1

αr − 1

]

(2.29)

+
α2
r − 1

2
log

[

αr∗ + 1

αr∗ − 1

]

r8

r8∗

]

b = 1 +
ǫ∗
2

[

αr − αr∗ +
1

2

(

α2
r − 1

)

log

[

αr + 1

αr − 1

]

− 1

2

(

α2
r∗ − 1

)

log

[

αr∗ + 1

αr∗ − 1

]

]

. (2.30)

Integrating (2.22) we have for F & S

F + 4S = 5r +
ǫ∗
2

[

− r

16

[

αr
(

α2
r − 1

)

− r4

r4∗
αr∗
(

α2
r∗ − 1

)

]

+
r

9

r4

r4∗

+
r

8

[

αr −
r4

r4∗
αr∗

]

+
r

4

[

αr
α2
r − 1

− r4

r4∗

αr∗
α2
r∗ − 1

]

(2.31)

+
r

32

[

(

α2
r − 1

)2
log

[

αr + 1

αr − 1

]

− r4

r4∗

(

α2
r∗ − 1

)2
log

[

αr∗ + 1

αr∗ − 1

]]

]

while decoupling (2.18) & (2.19)

F − S = − ǫ∗
12

[

r

4

[

αr
(

α2
r − 1

)

− r2

r2∗
αr∗
(

α2
r∗ − 1

)

]

+ r
r2

r2∗
− r

4

(

α2
r − 1

)3/2
(

1− r8

r8∗

)

+
5 r

8

[

αr −
r2

r2∗
αr∗

]

+
3

8

r
√

α2
r − 1

log

[

αr +
√

α2
r − 1

αr∗ +
√

α2
r∗ − 1

]]

. (2.32)

2.4 Validity of the perturbative solution

The perturbative solution we present in the preceding section needs to be supplemented with a
hierarchy of scales. In terms of the radial coordinate r (or σ) our solution has two pathological
regions that we will describe in this section both qualitatively & quantitatively.
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As explained in the introduction, the background we have constructed consists of a sea of massless
flavors. This means that the flavor branes are stretched down to the bottom of the geometry and
the charge density is highly peaked at r = 0. This is the reason behind the curvature singularity
that appears in the origin.6 Another way to understand this pathology is through the restoration
of the U(Nf ) symmetry in the deep IR and the subsequent increase of the effective string coupling
in such a way that the smearing approach breaks down. Careful choice of the integration constants
when obtaining the perturbative solution together with the presence of the magnetic field, produce
a less severe IR singularity but by no means cure it.

A crucial point is that due to the infrared divergency of the background the perturbative solution
presented in equations (2.25)–(2.32) is not valid below certain radial distance above the origin. In

particular the Jacobean
∣

∣

∣

∂σ
∂r

∣

∣

∣
is vanishing at some rIR(ǫ∗). As one may expect if we increase the

number of backreacted flavors the value for the radius rIR(ǫ) increases. One can imagine that higher
order corrections in ǫ∗ could reduce the value rIR(ǫ), however the intrinsic infrared divergency of
the background at the origin suggests that rIR remains non-vanishing in any perturbative solution.
In Sections 3 and 4 we will use this radius as a parameter characterizing the infrared applicability
of our probe-brane analysis.

There are two ways of either avoiding or hiding the infrared singularity. The first one is to pull
the flavor branes away from the origin, while keeping the radial symmetry, by introducing massive
flavors. Then the distance between the color and the flavor branes is interpreted as a mass for the
fundamentals. The second possibility is the addition of temperature to the background, which has
effect of hiding the singularity behind the horizon, see [12].

A common characteristic of all the unquenched holographic backgrounds constructed so far is the
appearance of a point in the deep UV that the dilaton diverges. This behavior is a signal for a
Landau pole in the dual gauge theory.7 The perturbative solution we constructed in the previous
section is valid until r = r∗, where r∗ denotes an (arbitrary) UV cutoff scale r∗

R2 ∼ ΛUV , well below
the energy scale of the Landau pole. Additionally the energy scale of r∗ should be well above the
IR scale, in order for the UV completion to have only negligible effects in the IR physics. The
main characteristic of this scale is that the UV details of the theory do not affect the IR physical
predictions. This feature is reflected by the independence of all physical quantities (up to suppressed
contributions) on the position of r∗ but only on IR parameters. The quantitative outcome of the
above analysis is that ǫ∗ ≪ 1, [12, 14], and as we increase the number of flavors the effective physical
region for the solution between the IR & UV energy scales decreases.

3. Probing the supersymmetric background

In this section we introduce a probe D7-brane to the supersymmetric background of [15], which
is the limit of vanishing magnetic field for the perturbative supergravity background constructed
above. We consider both supersymmetric and non supersymmetric embeddings. The latter have a

6A very nice visualization of this construction can be found in [8].
7The first counter example is the addition of flavor D6-branes to the ABJM [20], where the smeared unquenched

supergravity solution has a good UV behavior.
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fixed value of the U(1)-gauge field strength along the coordinates x2 and x3, namely F23 = const. On
the field theory side this corresponds to an external magnetic field coupling only to the fundamental
degrees of freedom introduced by the probe D7-brane. We will contrast those results to the ones of
Section 4, where the external magnetic field couples to all the fundamental degrees of freedom. Let
us begin by studying the properties of the supersymmetric embeddings.

3.1 Holographic renormalization

In this subsection we propose a holographic renormalization scheme similar to the one reported in
[21] for asymptotically AdS gravitational backgrounds. Our goal is to come up with a prescription
to calculate vacuum expectation values (like the fundamental condensate) for the supergravity
background of [15], which suffers from UV divergencies. In the limit of vanishing magnetic field the
first order perturbative solution is given by [12]

Φ = Φ∗ + ǫ∗ log
r

r∗
+O

(

ǫ2∗
)

, b = 0 , h =
R4

r2
(3.1)

F0 = r

[

1− ǫ∗
1

24

(

1 +
1

3

r4

r4∗

)

]

+O
(

ǫ2∗
)

& S0 = r

[

1 + ǫ∗
1

24

(

1− 1

3

r4

r4∗

)

]

+O
(

ǫ2∗
)

.

The lagrangian of the D7-brane probe is given by

− L
N =

eΦ

8r5
S6
0F

2
0 cos

3 χ

2

(

cos2
χ

2
+
S2
0

F 2
0

sin2 χ

2

)
1
2
(

1 +
r10χ′2

4S6
0F

2
0

)
1
2

+
ǫ∗e

2Φ−Φ∗

32r5
S8
0 cos

4 χ

2
, (3.2)

where N ≡ 8T7 Vol(S
3)V1,3 with V1,3 the volume spanned by (t, xi) and Vol(S3) = 2π2 the volume

of the unit S3 wrapped by the probe brane. In the next step we expand the classical embedding
around ǫ∗ according to χ = χ0(r) + ǫ∗χ1(r) and solve perturbatively the EOM obtained from (3.2).
The zeroth order lagrangian is given by

−L0

N =
1

8
eΦ∗r3 cos3

χ0(r)

2

(

1 +
r2

4
χ′
0(r)

2

)1/2

, (3.3)

which is just the lagrangian for a D7-brane probe in pure AdS5 × S5 space time analyzed in [9]
(in slightly different coordinates). The solution for a supersymmetric embedding corresponding to
flavor with bare mass m/(2πα′) is given by

χ0(r) = 2 arcsin
m

r
. (3.4)

The solution for χ1(r) corresponding to the first order correction to (3.4) is

χ1(r) =
m
[

r4 −m4 + 12 r4∗ log(
m
r
)
]

36 r4∗
√
r2 −m2

. (3.5)
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In the next step we substitute (3.4) and (3.5) in the lagrangian (3.2), obtain the“on-shell” lagrangian
Lcl to first order in ǫ∗

−Lcl
N =

1

8
eΦ∗r(r2 −m2) +

ǫ∗ e
Φ∗

288 r r4∗

[

− 12m2 r2 r4∗ log
(m

r

)

(3.6)

−
(

r2 −m2
)

[

m4 r2 + 4 r6 − 15 r2 r4∗ +m2
(

r4 + 3r4∗
)

− 36r2r4∗ log

(

r

r∗

)]

]

and then integrate it from m to r∗. Note that since χ1(m) = 0 the classical embedding of the
D7-brane, to first order, closes at r = m above the origin. It is convenient to define

Scl =

r∗
∫

m

drLcl = S
(0)
cl + ǫ∗S

(1)
cl +O

(

ǫ2∗
)

, (3.7)

and after that expand in powers r∗

− S
(0)
cl

N eΦ∗

=
1

32
(r2∗ −m2)2 =

r4∗
32

− r2∗m
2

16
+
m4

32
, (3.8)

− S
(1)
cl

N eΦ∗

=
r4∗
288

− r2∗m
2

576

[

5 + 12 log

(

m

r∗

)]

+
m4

192

[

1 + 4 log

(

m

r∗

)]

+O

(

1

r2∗

)

. (3.9)

The divergent and finite terms can be canceled [21] by the addition of the following counter terms
at r = r∗

L1 = #1e
Φ
√−γ , L2 = #2e

Φ
√−γχ2 & Lf = #fe

Φ
√−γχ4 , (3.10)

where #1,#2 and #f are appropriately chosen coefficients and γ is the determinant of the induced
metric on the r = const slice. Note that we have integrated along all the compact directions (their
contribution is included in N ) and we have added a factor of eΦ to all the counter terms. To first
order in ǫ∗ we have the following divergent and finite contributions from the counter terms

L1

#1eΦ∗

=
r4∗
R4

, (3.11)

L2

#2eΦ∗

=
4r2∗m

2

R4
+

4m4

3R4
+ ǫ∗

m2

9R4

(

r2∗ +
2

3
m2

) [

1 + 12 log

(

m

r∗

)]

, (3.12)

Lf
#feΦ∗

=
16m4

R4
+ ǫ∗

8m4

9R4

[

1 + 12 log

(

m

r∗

)]

. (3.13)
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One can check that the following set of coefficients

#1 = N R4

32

(

1 +
1

9
ǫ∗

)

, (3.14)

#2 = −N R4

64

(

1 +
1

9
ǫ∗

)

, (3.15)

#f = N 5R4

1536

(

1 +
1

9
ǫ∗

)

(3.16)

cancels all the divergent and finite terms in the first order of the “on-shell” action S
(0)
cl + ǫ∗S

(1)
cl .

An interesting observation coming from (3.14), (3.15) and (3.16) is that the coefficient of all the
counter terms has the same ǫ∗ dependence, namely (1 + ǫ∗/9). In fact one can check that this
remains true also for the second order corrections, suggesting that resummation is possible. Indeed,
it turns out that if one considers the non-perturbative form of the solution the ǫ∗ dependence of the
“on-shell” action factorizes. Let us briefly sketch the derivation. The supersymmetric background
is determined by the following set of first order differential equations [12]

S = α′ 1
2 eρ

[

1 + ǫ∗(
1

6
+ ρ∗ − ρ)

] 1
6

, (3.17)

F = α′ 1
2 eρ [1 + ǫ∗(ρ∗ − ρ)]

1
2

[

1 + ǫ∗

(

1

6
+ ρ∗ − ρ

)

]− 1
3

, (3.18)

Φ = Φ∗ − log [1 + ǫ∗(ρ∗ − ρ)] , (3.19)

dh

dρ
= −Qcα

′−2e−4ρ

[

1 + ǫ∗

(

1

6
+ ρ∗ − ρ

)

]− 2
3

, (3.20)

where a new radial coordinate ρ has been introduced. The relation between r and the new radial
variable ρ can be obtained as an expansion in powers series of ǫ∗ and to first order is given by [12]

r = α′ 1
2 eρ

[

1 +
ǫ∗
72

[

e4ρ−4ρ∗ − 1 + 12(ρ∗ − ρ)
]

]

+O
(

ǫ2∗
)

. (3.21)

Note that for ǫ∗ = 0 one has simply r = α′ 1
2 eρ, while this relation also holds at r = r∗ for arbitrary ǫ∗.

Therefore at ǫ∗ = 0 the supersymmetric embedding χ(ρ) corresponding to χ0(r) from (3.4) is

χ(ρ) ≡ 2 arcsin
eρq

eρ
. (3.22)

The parameter eρq is related to the bare mass of the fundamental degrees of freedom introduced by
the probe. It turns out that the supersymmetric embedding at finite ǫ∗ is still given by equation
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(3.22)8, see [12]. The next step is to evaluate the“on-shell” action Scl and for this we note the zeroth

order term in (3.8) which suggests the following −S(0)
cl /(Nα′2) = eΦ∗(e2ρ∗ − e2ρq)2/32. The classical

action to all orders in ǫ∗ has the following expression9

−Scl(ǫ∗)Nα′2
=
eΦ∗

32

(

1 +
ǫ∗
6

) 2
3 (

e2ρ∗ − e2ρq
)2
. (3.23)

Remarkably the ǫ∗ dependence of the “on-shell” action factorizes when it is written in the radial
coordinate ρ. Furthermore, since at r = r∗ the relation between the two radial coordinates is
r∗ = α′ 1

2 eρ∗ the ǫ∗ dependence of the “on-shell” action remains unchanged if one defines m0 =
α′ 1

2 eρq = m + O(ǫ∗) as a bare mass parameter. This suggests that to all orders in ǫ∗ the counter
terms are given by equation (3.10) with the following coefficients #1,#2,#3

#1 = N R4

32

(

1 +
1

6
ǫ∗

) 2
3

, (3.24)

#2 = −N R4

64

(

1 +
1

6
ǫ∗

) 2
3

, (3.25)

#f = N 5R4

1536

(

1 +
1

6
ǫ∗

) 2
3

. (3.26)

The above considerations suggest that one can consistently regularize the “on-shell” action of the
probe D7-brane provided one keeps the parameter ǫ∗ sufficiently small to ensure that the finite
cut off r∗ = α′ 1

2 eρ∗ is sufficiently far from the Landau pole of the theory and at the same time is
sufficiently large so that terms of order O(e−ρ∗) can be ignored in calculating the regularized “on-
shell” action. Therefore we propose that the usual AdS/CFT dictionary can be applied at r = r∗,
namely one can expand

sin
χ(r∗)

2
=
m0

r∗
+

c

r3∗
+O

(

1

r5∗

)

(3.27)

and identify m0 = α′ 1
2 eρq as the bare mass parameter and c ∝ 〈q̄q〉 as the fundamental condensate.

Note that for the supersymmetric embedding of (3.22) we have c = 0 and thus the fundamental
condensate vanish (as it should for supersymmetric theory). In the next subsection we will consider
non-supersymmetric embeddings with fixed U(1) gauge field strength F23 = const and apply the
proposed dictionary to study the fundamental condensate of the theory.

3.2 D7-brane probe with fixed U(1)-gauge field.

In this subsection we introduce a D7-brane probe with fixed U(1) gauge field strength F23 =
H0/2πα

′. On the field theory side this corresponds to coupling the N = 2 hypermultiplet with

8Note that equation (3.21) suggests that m ≡ r(ρq) = α′ 1
2 eρq +O(ǫ).

9We refer the reader to the appendix of the paper for more details on this calculation.
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a constant external magnetic field H0/2πα
′ along the x1 direction. The effective action of the probe

brane in the Einstein frame is

S = −T7
∫

d8xeΦ
√

−det(ĝ + e−Φ/2B2) + T7

∫

P [C(8)] , (3.28)

where C(8) is the background Ramond-Ramond form sourced by the smeared flavor branes. One
can show that the effective lagrangian is

− L
N =

1

8
eΦS6F 2 cos3

χ

2

(

cos2
χ

2
+
S2

F 2
sin2 χ

2

)1/2(

1 +
χ′2

4S6F 2

)1/2
(

1 + e−ΦH2
0h
)1/2

+
Qf

32
e2ΦS8 cos4

χ

2
, (3.29)

where the functions F S Φ & h are given in equations (3.17)-(3.20). Note that in (3.20) the equation
of motion for h is in an integral form but it can be obtained in terms of incomplete gamma functions.
We refer the reader to the appendix for the technical details.
It turns out that for the numerical analysis it is convenient to define the following dimensionless
quantities

ρ̃ = ρ− ρm , r̃ = r/rm , & ρm ≡ log
rm√
α′

≡ 1

4
log

e−Φ∗QcH
2
0

4α′2
. (3.30)

Next we proceed by solving numerically the equation of motion for the classical embedding of the
probe χ(ρ̃) and expanding at ρ̃ = ρ̃∗ = log(r̃∗)

sin
χ(r̃∗)

2
=
m̃

r̃∗
+

c̃

r3∗
+O

(

1

r̃5∗

)

with m̃ = m0/rm & c̃ = c/r3m; , (3.31)

where as we discussed above m0 & c are related to the bare mass and the fundamental condensate
of the N = 2 hypermultiplet corresponding to the probe brane. Next we vary the parameter ǫ∗ and
generate plots of −c̃ versus m̃, which we present in figure 1.
The first plot corresponds to a very small value of ǫ∗, namely 10−3. One may expect that for such
a small value the qualitative and quantitative behavior of the system would be the same as for
the case of pure AdS5 × S5 space-time, studied in [3]. Indeed our results confirm that. The other
plots in figure 2 correspond to ǫ∗ = 0.25, 0.5, 0.75. One can observe that qualitatively the theory
has the same properties. For sufficiently low bare mass (strong magnetic field) there are multiple
phases forming a spiral structure near the origin of the −c̃ versus m̃ plane. Only the lowest positive
(m̃ > 0) branch of the spiral corresponds to a stable phase [22]. Furthermore at vanishing bare
mass the theory has a non-vanishing negative condensate which spontaneously breaks a global U(1)
R-charge symmetry. As one can see the only effect of the backreaction is to lower the value of this
condensate.
In figure 2 we have presented a plot of the symmetry breaking condensate (at vanishing bare mass)
as a function of the parameter ǫ∗. We have normalized the plots in units of the condensate at

16



0.5 1.0 1.5 2.0 2.5 3.0
m
�

-0.25

-0.20

-0.15

-0.10

-0.05

-c
�

Ε*=0.001

0.5 1.0 1.5 2.0 2.5 3.0
m
�

-0.25

-0.20

-0.15

-0.10

-0.05

-c
�

Ε*=0.25

0.5 1.0 1.5 2.0 2.5 3.0
m
�

-0.20

-0.15

-0.10

-0.05

-c
�

Ε*=0.5

0.5 1.0 1.5 2.0 2.5 3.0
m
�

-0.20

-0.15

-0.10

-0.05

-c
�

Ε*=0.75

Figure 1: Plots of the parameter −c̃ (fundamental condensate) versus the parameter m̃ (bare mass) for
various values of the parameter ǫ∗. The shape of the plots remains unchanged.

vanishing ǫ∗. Note that one can vary ǫ∗ either at fixed rm (fixed magnetic field) or at fixed infrared
separation L0 = rmin (the radial distance above the origin at which the S3 wrapped by the probe
brane shrinks). As one can see in both cases the fundamental condensate decreases as we increase
ǫ∗. Note that in figure 2 we keep the value ǫ∗ between zero and one, even if it is possible to extend
this range. The reason behind this choice is the separation of scales, which keeps the finite cut off
well below the Landau pole only in the limit ǫ∗ ≪ 1.

4. Probing the fully backreacted background

In this section we introduce a probe D7-brane to the perturbative background obtained in section 2.
On the field theory side this corresponds to an introduction of additional fundamental flavors. The
fundamental fields couple to the background B-field, which on the field theory side corresponds to
an external magnetic field. Therefore, in the limit of vanishing bare mass we expect to observe the
phenomenon of magnetic catalysis of mass generation according to [3]. The novel feature of our set
up is the presence of smeared backreacted flavors which number is controlled by the parameter ǫ∗.
Our immediate goal is to study the effect of the presence of the sea of massless fundamental fields
on the process of mass generation. Note that in this set up the external magnetic field couples to
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Figure 2: Plots of the dependence of the scaled fundamental condensate 〈q̄q〉ǫ∗/〈q̄q〉0 versus the small
parameter ǫ∗. The left plot corresponds to varying ǫ∗ at fixed rm (fixed magnetic field) and the right plot
corresponds to fixed infrared separation L0 (fixed constituent mass).

the smeared massless fundamental flavors. This is to be contrasted to the case studied in section
3.2, when the external magnetic field couples only to the flavor fields introduced by the probe brane.
Our investigation indicates a significant change in the physical properties of the system.

4.1 Classical embeddings

Let us begin by considering a probe D7-brane extended along the t, xi, σ, θ, ψ, φ coordinates and
having a non trivial profile along the coordinate χ. The effective action of the probe in the Einstein
frame is

S = −T7
∫

d8xeΦ
√

−det(ĝ + e−Φ/2B2) + T7

∫

P [C(8) − B(2) ∧ C(6)] , (4.1)

where C(8) and C(6) are background Ramond-Ramond forms sourced by the smeared flavor branes.
One can show that the effective lagrangian is

L(0) ∝ 1

8
eΦb2S6F 2 cos3

χ

2

(

cos2
χ

2
+
S2

F 2
sin2 χ

2

)1/2(

1 +
χ′2

4b2S6F 2

)1/2(

1 +
e−ΦH2h

b2

)1/2

+
Qf

32
e2Φb2S8

(

1 +
e−ΦH2h

b2

)

cos4
χ

2
. (4.2)

We find it convenient to introduce the radial variable r related to σ via (2.25). In order to obtain
numerical solutions for the classical embedding, we define as usual the following dimensionless
variable

r̃ =
r

rm
, with rm ≡ e−Φ∗QcH

2
∗

4
. (4.3)

It is convenient to write the dimensionless action in terms of the following auxiliary functions

L̃(0) = −f1(r̃)
(

cos2
χ

2
+ f2(r̃)

2 sin2 χ

2

) 1
2
√

1 + f3(r̃)2χ′2 + f4(r̃) cos
4 χ

2
, (4.4)
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where

f1(r̃) =
1

8
eΦ̃b̃2S̃6F̃ 2

(

1 +
e−Φ̃H̃2

r̃4b̃2

) 1
2
∣

∣

∣

∂σ̃

∂r̃

∣

∣

∣ , f2(r̃) =
S̃

F̃
,

f3(r̃) =

(

2b̃S̃3F̃
∣

∣

∣

∂σ̃

∂r̃

∣

∣

∣

)−1

, f4(r̃) =
ǫ∗
32
e2Φ̃b̃2S̃8

(

1 +
e−Φ̃H̃2

r̃4b̃2

)

∣

∣

∣

∂σ̃

∂r̃

∣

∣

∣
, (4.5)

and Φ̃ , b̃ , S̃ , F̃ , H̃ , σ̃ are related to the functions defined in equations (2.25)-(2.32) via

Φ̃(r̃) = Φ(r̃rm)− Φ∗ , b̃(r̃) = b(r̃rm) , S̃(r̃) = S(r̃rm)/rm ,

F̃ = F (r̃rm)/rm , H̃(r̃) = H(r̃rm)/H∗ , σ̃(r̃) = σ(r̃rm)r
4
m . (4.6)

One can show that a smooth solution to the equations of motion derived from (4.4) valid near the
point that the S3-sphere, wrapped by the probe brane, shrinks (χ(r̃min) = π) is

χ(r̃) = π −
√

a(r̃ − r̃min) , a =
8f1f2

f3(−2f4 + f1f3f ′
2 + f2(f3f ′

1 + f1f ′
3))

∣

∣

∣

r̃=r̃min

(4.7)

The approximate analytic solution (4.7) can be used to fix the boundary conditions for a numerical
shooting technique at r̃ = r̃min + δ for small values of δ.
A crucial point is that due to the infrared divergency of the perturbative solution, (2.25)-(2.32),
this is not valid below a certain radial distance r̃IR(ǫ∗) above the origin (r̃ = 0). The probe reflects

that by having its tension vanishing at r̃IR(ǫ∗) but in fact it is the Jacobian
∣

∣

∣

∂σ̃
∂r̃

∣

∣

∣
which is vanishing

at this value of the radial coordinate. As one may expect if we increase the number of backreacted
flavors the radius r̃IR(ǫ) grows. Therefore we start loosing some of the probe brane embeddings
corresponding to low bare masses. Fortunately this effect is somewhat softened by the effect of
magnetic catalysis of mass generation which leads to infrared separation of the probe branes (the
probe closes at some distance above the horizon). To visualize this behavior in figure 3 we have
presented plots of D7-brane embeddings in (r, χ) polar coordinates for a range of different infrared

separations (L̃0 = r̃min) and different number of backreacted flavors (ǫ∗ ∝ λ∗
Nf

Nc
).

The first plot corresponds to the absence of backreacted matter studied in [3]. As one can see there
are two classes of embeddings: those which asymptote to negative (positive) separation at large r̃.
One can show that [3] only the second class corresponds to stable embeddings. The two classes are
separated by a critical embedding (depicted with a red curve in figure 3), which has zero separation
at large r̃ (vanishing bare mass) and finite separation in the infrared (dynamically generated mass).
The second and the third plots correspond to small (non-vanishing) values of the parameter ǫ∗. As
one can see due to the infrared divergencies some of the embeddings with small separation in the
infrared are lost. However the critical embedding is still present and we can study how its separation
in the infrared (related to the dynamically generated mass) depends on the number of backreacted
flavors.
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Figure 3: Plots for the profiles of D7–brane embeddings having different infrared separations for vari-
ous values of the perturbative parameter ǫ∗. The red curves correspond to embeddings with vanishing
separation at r = r∗, which we interpret as describing fundamental fields with vanishing bare mass and
non-vanishing constituent mass.

The last plot in figure 3 corresponds to a sufficiently large number of ǫ∗, at which the radius of the
region which is not accessible by the probe brane has increased so much that the embedding with
the lowest separation in the infrared asymptotes to positive separation at large r̃.

At first sight it seems that the validity of the perturbative background is not sufficient to detect
a qualitative change of the theory as a function of the parameter ǫ∗. Furthermore unlike the case
of the supersymmetric background studied in section 3, we do not have an analogous holographic
renormalization procedure. This is why we cannot justify the validity of the AdS/CFT dictionary
and in particular (3.27).

Fortunately one can use the properties of the D7-brane embeddings in the infrared, such as the
infrared separation L̃0 to study the constituent mass of the fundamental fieldsMq. Indeed a detailed
study of the behavior of the infrared separation L̃0(ǫ∗) of the critical embedding as a function of
the parameter ǫ∗ is presented in figure 4.

The blue curve corresponds to the function L̃0(ǫ∗). The dashed growing curve corresponds to
the radial distance r̃IR(ǫ∗) below which the perturbative solution for the background geometry
cannot be trusted. The study indicates that for sufficiently large values of ǫ∗ the function L̃0(ǫ∗)
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Figure 4: A plot of the infrared separation L̃0 (at zero bare mass) versus ǫ∗ ∝ λ∗
Nf

Nc
.

becomes multivalued through a diverging slope at L̃0 ≈ 0.326. This in turn implies that the critical
embedding becomes unstable at this point. The study of the meson spectrum supports that.
It is plausible to interpret the instability of the probe D7-brane as reflecting an instability of
the background. Indeed if we consider a single “fiducial” embedding, representative for the smeared
massless flavor branes 10, such an embedding would be unstable in the probe limit due to its coupling
to the background B-field [22]. Therefore we would expect that the background constructed by
smearing many such embeddings would be unstable.
Then a natural question arises. Is there a critical value of the B-field at which the instability is
triggered or the background is unstable at any non-vanishing magnetic field? In the probe limit at
zero bare mass the only physical scale is the scale corresponding to the non-vanishing B-field (H∗)
therefore one would expect that the background is unstable at any H∗ > 0. On the other side in the
backreacted case the dilaton field is running and the theory develops a Landau pole. This suggests
that even at vanishing magnetic field the backreacted theory has a physical scale associated to the
finite UV cut off needed to keep the relevant energy scales below the Landau pole. Therefore one
would expect that there is a finite Hcr > 0 at which the background becomes unstable.
Let us consider again the physical process described in figure 4. Qualitatively the quantity L̃0 can

10Note that unlike the critical embedding, the smeared massless flavor branes correspond to trivial (χ ≡ 0)
embeddings, which are unstable in the presence of non-vanishing B-field
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be thought of as proportional to the ratio of the dynamically generated mass of the fundamental
fields introduced by the probe D7-brane Mq and the energy scale corresponding to the external
magnetic field

√
H∗, namely L̃0 ∝ Mq/

√
H∗. At any fixed value of ǫ∗ we have three independent

energy scales: Mq, H∗ & Hcr. In order to compare states at different values of ǫ∗ we will keep the
dynamically generated mass of the quarks fixed. The data in figure 4 suggests that as we increase ǫ∗
the value of L̃0 decreases. At fixed value ofMq this is equivalent of increasing the external magnetic
field H∗. Assuming that the critical value Hcr varies slowly enough with ǫ∗ we conclude that at
sufficiently large values of ǫ∗ ≥ ǫcr the external magnetic field H∗ is H∗ ≥ Hcr and the gravitational
background is unstable. It is plausible to interpret the instability of the probe D7-brane associated
to the diverging slope of L̃0(ǫ∗) in figure 4 as reflecting an instability of the gravitational background
for H∗ ≥ Hcr.

11

Note that the limited validity of our perturbative solution in the deep IR prevent us from directly
studying the stability of the background. For example by studying the spectrum of minimally
coupled scalar field. It would be interesting to address this problem at finite temperature, where
the IR behavior of the supergravity solution is regularized by the non-extremal horizon. We leave
such studies for future work.
The instability of the probe D7-brane could be the sign of a “new” physical effect, called “super-
conducting vacuum”12. According to [23], the quantum vacuum (i.e., an empty space) may become
a superconductor (in the usual electromagnetic sense) under a strong enough magnetic field. This
magnetic field forces the electrically charged vector mesons to condense via a tachyonic instabil-
ity, which in turn implies electromagnetic superconductivity. Calculations in a variety of models,
supporting this idea, can be found in [24, 25, 26].

4.2 Meson spectrum

In this section we analyze part of the spectrum of meson like excitations of the dual gauge theory.
To this end we perform a semi-classical quantization of the probe D7–brane embeddings studied in
section 4.1. In order to obtain the spectrum of the corresponding quantum fluctuations we expand
systematically the effective action of the probe D7–brane to second order in α′.

4.2.1 Quadratic fluctuations.

For a detailed study of the light meson spectrum of the theory we need to consider the quadratic
fluctuations of a D7–brane and study the corresponding normal modes, [11]. The relevant pieces of
the action are

S

T7
= −

∫

d8x eΦ
√

− det
[

Gab + e−
Φ
2 (Bab + Fab)

]

+

∫

P [C(8)−F(2)∧C(6)+
1

2
F(2) ∧ F(2) ∧ C(4)] , (4.8)

where C(4), C(6) & C(8) are defined by:

C(4) ≡ C(4) − C(2) ∧B(2) , C(6) ≡ C(6) − B(2) ∧ C̃(4) , C(8) ≡ C(8) − B(2) ∧ C(6) (4.9)

11However we should point out that though plausible our studies based only on a probe brane calculation alone
are not conclusive.

12We thank Maxim Chernodub for pointing out to us this possible interpretation.
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and C̃(4) is the magnetic dual of the RR potential C(4)

C̃(4) = − 1

32
Qc sin θ cos

4 χ

2
dθ ∧ dϕ ∧ dψ ∧ dτ , (4.10)

We will consider fluctuations of the form

χ = χ0(σ) + 2πα′ δχ(ξa) & τ = 2πα′ δτ(ξa), (4.11)

where the indices a, b = 0, 1, . . . , 7 run along the worldvolume of the D7-brane and expand (4.8)
to second order in α′. Before presenting the relevant terms in this expansion it is convenient to
introduce S & J , which are symmetric & antisymmetric matrices respectively, in the following way

||E0
ab||−1 = S + J . (4.12)

The non-zero elements of those matrices are

−Stt = S11 = G−1
11 , S22 = S33 =

G22

G2
22 + e−ΦH2

, Sσσ = G−1
σσ , Sθθ = G−1

θθ ,

Sϕϕ =
Gψψ

GϕϕGψψ −G2
ϕψ

, Sϕψ = − Gϕψ

GϕϕGψψ −G2
ϕψ

, Sψψ =
Gϕϕ

GϕϕGψψ −G2
ϕψ

, (4.13)

Jab =
e−

Φ
2H

G2
22 + e−ΦH2

(δa3δ
b
2 − δb3δ

a
2) , (4.14)

with

G11 = g
(0)
11 , G22 = g

(0)
22 , Gσσ = g(0)σσ + g(0)χχ χ

′
0(σ)

2 ,

Gθθ = g
(0)
θθ , Gψψ = g

(0)
ψψ , Gϕψ = g

(0)
ϕψ , Gϕϕ = g(0)ϕϕ . (4.15)

The second order terms in α′ expansion of the action (4.8) are

−L(2)
δτδτ =

T7
2
eΦ
√

−E0

[

g(0)ττ − g(0) 2ϕτ Sϕϕ − 2g(0)ϕτ g
(0)
ψτ S

ϕψ − g
(0) 2
ψτ Sψψ

]

Sab∂aδτ∂bδτ ,

−L(2)
δχδχ =

T7
2
eΦ
√

−E0 g
(0)
χχ

[

1− g(0)χχS
σσχ′

0(σ)
2

]

Sab∂aδχ∂bδχ +
1

2
f̃(σ) δχ2 ,

−L(2)
δχδτ = T7J aδχ∂aδτ , L(2)

AA =
T7
4

√

−E0S
aa′Sbb

′

FabFa′b′ +
T7
2
P [C4] ǫmnop Fmn Fop ,(4.16)

−L(2)
δχA = f(σ) δχF34 & L(2)

δτA =
T7
32
QcH∗ ∂σ

[

cos4
χ0(σ)

2

]

δτ F12 .
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where the indicesm,n, o, p run in the transverse directions of the D3-branes. The auxiliary functions
f , g & J a, appearing in the above equations, are defined as follows

f(σ) ≡ T7∂σ

[

e
Φ
2

√

−E0 J
23 g(0)χχ S

σσ χ′
0(σ)

]

− T7 e
−Φ

2 J23 ∂χ
√

−E0 − ∂χL(0)
WZ,

f̃(σ) ≡ ∂2χL(0) − T7 ∂σ

[

eΦ g(0)χχ S
σσ χ′

0(σ) ∂χ
√

−E0

]

, (4.17)

J a ≡ eφSab∂χ(
√

−E0)g
(0)
bτ − eΦ

√

−E0S
aa′∂χga′b′S

b′cg(0)cτ − ∂σ(e
ΦSab

√

−E0g
(0)
χχ)χ

′g
(0)
bτ ,

where L(0),L(0)
WZ are the complete classical lagrangian of the probe brane (4.2) and the C6 contri-

bution of the Wess-Zumino part respectively. Note that the function J a is non-vanishing only for
a = φ , ψ.
Note that if one restricts the fluctuating modes to depend only on the time and the holographic
directions the coupling term in the effective lagrangian vanish and we can consistently focus only
on the fluctuations along χ.

4.2.2 Fluctuations along χ

We consider the ansatz

δχ = eiωtη(σ) , δτ = 0 & Aµ = 0 . (4.18)

The only relevant part of the effective action is the term L(2)
δχδχ. We find it convenient to use the

radial coordinate r(σ) related to σ via equation (2.25). Using the dimensionless notation defined in
equations (4.3) and (4.6) we obtain the equation of motion for η(r̃)

∂r̃

[

L̃(0)
DBIf

2
3

(1 + f 2
3χ

′2)2
∂r̃η

]

+

[

L̃(0)
DBIf

2
5

1 + f 2
3χ

′2
ω̃2 −

[

∂2χL̃(0) − ∂r̃

(

f 2
3χ

′

1 + f 2
3χ

′2
∂χL̃(0)

DBI

)]

]

η = 0 , (4.19)

where

ω̃2 ≡ Qc

4r2m
ω2 , f5(r̃) ≡

S̃(r̃)

2r̃2
. (4.20)

In order to solve numerically (4.19) we need to impose proper boundary conditions at r̃ = r̃min = L̃0.
Using (4.7) for the classical embedding one obtains the following asymptotic form of (4.19)

η′′(r̃) +
3

r̃ − r̃min
η′(r̃) +

3

4

1

(r̃ − r̃min)2
η(r̃) = 0 . (4.21)

The general solution of equation (4.21) is

η(r̃) =
C1

(r̃ − r̃min)
1
2

+
C2

(r̃ − r̃min)
3
2

. (4.22)
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Requiring renormalizability for η(r̃)

r̃∗
∫

r̃min

dr̃
√

−Ẽ(0)

∣

∣

∣
η(r̃)

∣

∣

∣

2

<∞ , (4.23)

and the fact that
√

−Ẽ(0) ∼ (r̃− r̃min) on can see that C2 should vanish. This suggests the following
substitution in equation (4.19)

η(r̃) =
ζ(r̃)√
r̃ − r̃min

, (4.24)

where the function ζ(r̃) is analytic near r̃min. The resulting equation of motion for ζ(r̃) is of the
form

ζ ′′(r̃) +

(

C1 −
1

r̃ − r̃min

)

ζ ′(r̃) +

(

C0 +B2ω̃2 − C1

r̃ − r̃min
+

3

4

1

(r̃ − r̃min)2

)

ζ(r̃) = 0 , (4.25)

where C0 , C1 &B are functions of r̃ and χ(r̃) regular at r̃ = r̃min. Equation (4.25) has predetermined
boundary conditions at r̃min. Therefore one can expand ζ(r̃) near r̃min and solve equation (4.25)
order by order. The obtained approximate solution for ζ(r̃) can be used to fix the boundary
conditions for a numerical shooting technique. The resulting numerical solution depends on the
parameter ω̃. Imposing Dirichlet boundary condition at r̃ = r̃∗ quantizes the spectrum of ω̃.
We used the procedure outlined above to generate plots of the first three excited states of the
spectrum as a function of the parameter ǫ∗. The resulting plots are presented in figure 5. One
can see that the ground state becomes tachyonic exactly at the critical value of ǫ∗ ≈ 0.058 where
the slope of L̃0 versus ǫ∗ in figure 4 diverges. This confirms that at this point the probe branes
become unstable. As we commented in subsection 4.1 we interpret this instability as reflecting an
instability of the background. This suggests that the dual gauge theory is unstable for sufficiently
strong magnetic fields. This is to be expected because the backreacted massless flavors are in a
phase with vanishing constituent mass which is disfavored by the external magnetic field.

5. Conclusions

In this paper we propose a string theory dual to a 1+3 SU(Nc) N = 4 SYM theory coupled to
Nf massless fundamental flavors in an external magnetic field. Our motivation is to undertake the
first steps towards an unquenched holographic description of magnetic catalysis of mass generation.
By construction, our background corresponds to a phase of the flavored theory with vanishing con-
stituent mass. This phase is disfavored by the external magnetic field, therefore one would expect
that for sufficiently strong B–field the supergravity background would become unstable. Unfortu-
nately the infrared singularity of our perturbative solution prevents us from directly studying the
stability of the background by studying the spectrum of its quasi-normal modes. To circumnavigate
this limitation we study the properties of an additional probe D7–brane.
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Figure 5: Plots of the first three excited states of ω̃ versus ǫ∗ ∝ Nf/Nc. One can see that at the critical
value ǫ∗ ≈ 0.058 the ground state is tachyonic.

In Section 3.1 we study the properties of a supersymmetric probe D7–brane in the limit of vanishing
B–field. In this way our background reduces to the supersymmetric one obtained in [15]. We
consider a holographic renormalization of the probe brane “on-shell” action in the spirit of [21], but
in the case with backreacted flavors. Our studies reveal a remarkable factorization of the dependence
of the “on-shell” action on the perturbative parameter counting the number of backreacted flavors
(ǫ∗). This factorization suggests that the holographic renormalization performed in [21] can be
implemented, at least formally, for the background [15]. Next, a systematic expansion in ǫ∗, for
ǫ∗ ≪ 1 & keeping the finite cut off of the theory sufficiently far bellow the Landau pole, provides
a regime of validity of the renormalization procedure. This suggests that the usual AdS/CFT
dictionary holds at the UV scale fixed by the finite cut off.

In Section 3.2 we move one step forward our study and introduce a non-supersymmetric probe D7–
brane to the supersymmetric background of [15]. This probe brane has a fixed U(1) worldvolume
gauge field corresponding to an external magnetic field coupled to the fundamental fields introduced
by the probe brane only. Using the AdS/CFT dictionary proposed in the previous section we study
the effect of mass generation and its dependence on the number of backreacted fundamental flavors.
Qualitatively the physical picture remains the same compared to the one without backreacted
flavors, [3]. We contrast these results to those of a magnetic filed coupling to all fundamental
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degrees of freedom.

Finally in Section 4 we consider a D7–brane probe in the supergravity background obtained in
Section 2. Now the B–field, corresponding to an external magnetic field, couples to both the probe
and the backreacted fundamental degrees of freedom. The study of the meson spectrum shows that
for sufficiently strong magnetic field the probe brane becomes unstable. It is plausible to interpret
this instability as reflecting an instability of the supergravity background.13 As commented above
this is anticipated since the external magnetic field disfavors a phase with vanishing constituent
mass of the fundamental fields. We speculate that the stable phase at vanishing bare mass would
correspond to a supergravity background obtained by smearing “fiducial” embeddings with a non-
trivial profile along the radial coordinate having finite separation in the infrared corresponding to
dynamically generated constituent mass. The construction of such a background is one of the main
directions for future studies that we intend to pursue.

A possible way to improve the IR properties of the gravity dual constructed in Section 2 is to
consider the non-extremal case, when the zeroth order solution is the AdS5 ×S5 black hole. In this
case it would be possible to study directly the spectrum of quasi-normal modes of the background
and verify the anticipated instability for sufficiently strong magnetic field. One could also introduce
an additional probe brane and perform a study analogous to the one considered in Section 4.2 of
the present work. Naturally, one would expect that such a probe would become unstable when the
energy scale of the magnetic field is sufficiently larger than the energy scale of the finite temperature.
One can then compare the critical parameters obtained from studying the spectrum of quasi-normal
modes of the background and from studying fluctuations of the probe brane. Such a study could
provide an indirect check of the interpretation of the instability of the probe brane cosidered in
Section 4.2.14 We leave such studies for a future work.
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A. Equations of motion

The equations of motion produced from (2.1) are [27]

Rµν =
1

2
∂µΦ∂νΦ +

1

2
e2ΦF (1)

µ F (1)
ν +

1

4

1

5!

[

5F
(5)
µρσαβF

(5)ρσαβ
ν − 1

2
gµνF

2
(5)

]

+
1

2

1

3!
eΦ

[

3F (3)
µρσF

(3)ρσ
ν − 1

4
gµνF

2
(3)

]

+
1

2

1

3!
e−Φ

[

3H(3)
µρσH

(3)ρσ
ν − 1

4
gµνH

2
(3)

]

+

[

Tfl −
1

8
gµνT

2
fl

]

, (A.1)

d [ ⋆ dΦ] = e2ΦF(1) ∧ ⋆F(1) +
1

2
eΦF(3) ∧ ⋆F(3) −

1

2
e−ΦH(3) ∧ ⋆H(3) − 2κ2

δSfl
δΦ

, (A.2)

d
[

e2Φ ⋆ F(1)

]

= −eΦH(3) ∧ ⋆F(3) −
1

24
F4 ∧ Ω2 , (A.3)

d
[

eΦ ⋆ F(3)

]

= −H(3) ∧ F(5) +
1

6
F3 ∧ Ω2 , (A.4)

d
[

⋆F(5)

]

= dF(5) = H(3) ∧ F(3) −
1

2
F2 ∧ Ω2 , (A.5)

d
[

e−Φ ⋆ H(3)

]

= eΦF(1) ∧ ⋆F(3) − F(5) ∧ F(3) −
δS

(DBI)
fl

δF . (A.6)

where the last term in (A.6) is an eight form and denotes the derivative of the smeared DBI action
with respect to F

∫

d8x eΦ
√

− det(Ĝ+ e−Φ/2F) →
∫

d10x eΦ
√

− det(G+ e−Φ/2F)|Ω2| (A.7)

The symbol |Ω2| that appears in (A.7) denotes the modulus of the smearing form and has the
following expression

|Ω2| = 2
2Qf√
hS2

. (A.8)

The Bianchi identities for all the forms of the background are

dF(1) = −gsΩ2 , (A.9)

dF(3) = H(3) ∧ F(1) − gsF ∧ Ω2 , (A.10)

dH(3) = 0 . (A.11)

The Bianchi identities and the equations of motion for the worldvolume gauge fields are

dF = H3 & d

[

δSfl
δF

]

= 0 . (A.12)
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Plugging the ansatz of (2.7) in the Bianchi identities (A.9), (A.10) and (A.11) as well as the
equations of motion (A.3) and (A.5), trivially satisfies them all. The equations of motion for F3 &
H3, namely (A.4) & (A.6), will give us (2.13) & (2.21) respectively.

The equation of motion for the dilaton, namely (A.2), will give us (2.20). The contribution from
the last term in (A.2) is the following

2κ2
δSfl
δΦ

= −4eΦQf√
hS2

1 + e−ΦH2h
2b2

√

1 + e−ΦH2h
b2

. (A.13)

The Einstein equations, namely (A.1), will give us (2.16), (2.17), (2.18) & (2.19) together with the
constraint (2.22). This last one is coming from the 44 (frame) component of the Einstein equations.
The contribution from Tfl that appears in (A.1) is the following

T flµν =
2κ2√−g

δSfl
δgµν

=
1

2
gs e

Φ
√
−E
[

Sµν |Ω2| −
2

|Ω2|
Ω(2)
ρµΩ

(2) ρ
ν

]

, (A.14)

with

Eµν = ηµν + e−
Φ
2
H

√
h

b
(δµ2 δ

ν
3 − δν2δ

µ
3 ) , (µ, ν = 0, 1, . . . , 9) (A.15)

and S is the symmetric part of the inverse of E

Sµν = diag{−1, 1,
1

1 + e−Φ H2 h
b2

,
1

1 + e−Φ H2 h
b2

, 1, 1, 1, 1, 1, 1} . (A.16)

Finally for the worldvolume gauge fields, we have the first of the equations in (A.12) trivially satisfied
while the second splits into

d

[

δS
(DBI)
fl

δF

]

+ d

[

δS
(WZ)
fl

δF

]

= 0 . (A.17)

The first term in (A.17) can be easily evaluated if one differentiates (A.6) and plugs in the ansatz
(2.7). One can show that it is of order d [O(dA)]. The second term is proportional to the expression

d
[

C(6) ∧ Ω2 +O(dA)
]

→ d [O(dA)] . (A.18)

The bottom line is that the whole expression in (A.12) is of order d [O(dA)] and hence one can
consistently set the D-brane worldvolume gauge field to zero (A ≡ 0).

B. Technical details

In this appendix we will present some technical details on the computations of Section 3.
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B.1 Exact On-Shell Action

The “on-shell” action −Scl/(Nα′2) of a supersymmetric embedding with bare mass parameter eρq

in the supergravity background described by equations (3.17)–(3.20) is given by

ρ∗
∫

ρq

dρ
eΦ∗(e2ρ − e2ρq)[6ǫ∗(e

2ρ − e2ρq)(1 + ǫ∗(
1
6
+ ρ∗ − ρ)) + 4(1 + ǫ∗(ρ∗ − ρ))(6e2ρ(1 + ǫ∗(ρ∗ − ρ) + ǫ∗e

2ρq)]

32× 6(1 + ǫ∗(
1
6
+ ρ∗ − ρ))

1
3 (1 + ǫ∗(ρ∗ − ρ))2

.

(B.1)
The definite integral in (B.1) can be solved in a closed form using the relatively simple dependence
on the parameter eρq . To this end one defines mq ≡ eρq and takes the second derivative with respect
to m2

q = e2ρq

∂2Scl[ρ∗,m
2
q]

∂(m2
q)

2
= −Nα′2 e

Φ∗

16

(

1 +
ǫ∗
6

) 2
3

. (B.2)

Furthermore equation (B.1) suggests that Scl
∣

∣

ρq=ρ∗
= 0 and one can verify that ∂(mq)2Scl

∣

∣

∣

ρ∗=ρq
= 0.

Therefore we can integrate (B.2) and obtain the following expression for the classical action

− Scl
Nα′2

=
eΦ∗

32

(

1 +
ǫ∗
6

) 2
3 (

e2ρ∗ − e2ρq
)2
, (B.3)

which is exactly (3.23).

B.2 The Function h

In order to evaluate the effective action from (3.29) we need to integrate the equation of motion for
h(ρ) in (3.20). Changing variables to dimensionless ones along (3.30), the equation of motion for
h(ρ̃) becomes

∂h

∂ρ̃
= −4e−4ρ̃

[

1 + ǫ∗

(

1

6
+ ρ̃∗ − ρ̃

)

]− 2
3

. (B.4)

A short integral expression can be given in terms of x ≡ 1/ǫ+ 1/6 + ρ̃∗ − ρ̃

h(x) = e−4ρ̃∗



1 +
4e−

4
ǫ
− 2

3

ǫ∗
2
3

x
∫

x∗

dx
e4x

x
2
3



 with x∗ ≡ x(ρ̃∗) =
1

ǫ∗
+

1

6
. (B.5)

The constant of integration in (B.5) is fixed by requiring h(ρ̃∗) = e−4ρ̃∗ . Using that

∫

dx
e4x

x
2
3

=
ei

2π
3

2
2
3

[

Γ

(

1

3
,−4x

)

− Γ

(

1

3

)

]

+ const , (B.6)

where Γ(a) and Γ(a, z) are the complete and incomplete gamma functions15, we have

h(ρ̃) = e−4ρ̃∗

[

1 +
4e−

4
ǫ
− 2

3
(1−iπ)

(2ǫ∗)
2
3

[

Γ

(

1

3
,− 4

ǫ∗
− 2

3
− 4(ρ̃∗ − ρ̃)

)

− Γ

(

1

3
,− 4

ǫ∗
− 2

3

)]

]

. (B.7)

15Note that the right-hand side of equation (B.6) is real for x > 0.
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Note that for ρ̃ ∈ (−∞, ρ̃∗) & ǫ∗ > 0 h(ρ̃) is real.
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F. Bigazzi, A. L. Cotrone, C. Nuñez and A. Paredes, Phys. Rev. D 78, 114012 (2008) [arXiv:0806.1741
[hep-th]].
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