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Abstract

A topical operator on lRd is one which is isotone and homogeneous. Let

{ A(n) : n > 1} be a sequence of i.i.d. random topical operators such that

the projective radius of A(n) .. . A(1) is almost surely bounded for large n. If

{ x(n) : n > 1} is a sequence of vectors given by x(n) = A(n) . . . A(1)xo, for

some fixed initial condition x0, then the sequence {x(n)/n : n 1} satis

fies a weak large deviation principle. As corollaries of this result we obtain

large deviation principles for products of certain random aperiodic max-plus

and mm-plus matrix operators, and for products of certain random aperiodic

non-negative matrix operators.

1 Topical Operators

An operator A : JRd jd is homogeneous if it satisfies A(x + al) =

Ax + al for all x e lRd and a e IR, where 1 is the vector in JR” with all

components equal to one. A is isotone if it satisfies Ax <Ay whenever

x < y (the order here and throughput this paper is the product order

on lRd) An operator which is both homogeneous and isotone is called

topical. This terminology was introduced by J. Gunawardena and M.

Keane [GK95], who proposed the class of topical operators as a setting

for the study of certain properties of discrete event systems. In this

context, one considers recursive systems of equations of the form

x(n)=A(n)x(n—1), n=1,2,..., (1)

with the interpretation that x(n) jpd is a vector whose entries rep

resent timing data: x(n) is the time of the nth event of some type i,

where d is the number of types of event which may occur. The operators

A(n) : lRd lRd determine the delays and synchronisation constraints

present between events. Homogeneity of these operators reflects invari

ance of the system’s dynamics under a shift in the origin of the time
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axis. Isotonicity of the A(n)’s implies that the system is monotonic,

in the sense that if some events were to be artificially delayed, then all

subsequent events would also be delayed, or at best they would occur

no sooner than originally. For more information on topical operators

and their application to discrete event systems see [GK95, Gun96] and

references therein.

Well-known examples of topical operators include the max-plus and mm-

plus matrix operators, which are defined as follows. A : IRd
.

JRd is a

max-plus matrix operator if it takes the form

(Ax) = max + x,
j=1 d

for every x e IRd, where {A : i, j = 1,... , d} are elements of JRU{—oo}.

(We assume that each row of the matrix {A } has at least one entry

different from —oc, so that the image of JFtd under A is contained in
jjd) A mm-plus matrix operator is one which takes the form

(Ax) = mm + x, i = 1,.. . , d

for each x E lRd, where now {A23 : i, j = 1,... , d} are elements of

JR U {+oo} (again with the caveat that each row of {A3} has at least

one finite entry). Matrix operators of these kinds arise in the theory of

Markov decision processes and timed event graphs. A general reference

is the book of F. Baccelli et al. [BCOQ92]. If we take a finite pointwise

infimum of max-plus matrix operators, or a finite pointwise supremum of

mm-plus matrix operators, we obtain an operator which is again topical,

known as a mm-max operator. In the context of discrete event systems

mm-max operators were introduced and studied by G. J. Olsder [01s91]

and J. Gunawardena [Gun94].

Another interesting class of topical operators can be constructed from

the isotone linear operators on the positive cone JR, in the following

way [Gun96]. Let exp: IRa JR be the componentwise exponential

function and log: IR JRd the componentwise logarithm: exp(x)j :=

exp(xj) and log(x) := log(x). If A : —* JR is isotone and satisfies

A(ax) = aAx for all x E IRa and a E 1R, then the operator A : IRa

JRd defined by Ax := log(Aexp(x)) is topical. A might be, for example,

a non-negative matrix operator with at least one non-zero entry per row.

Our purpose in this paper is to study the large deviations of sequences

{x(ri) : ri l} which satisfy recursions of the form (1), in the case when
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{A(n) : n > l} is a random sequence of i.i.d. topical operators. The

approach we will take requires an assumption that the A(n)’s satisfy a

certain range condition, which we now state.

Let t and b denote the top and bottom functions on IRd:

t[x] := max x; b[x] := mm x.

J. Gunawardena and M. Keane [GK95] show that A : IRd IRd is

topical if and only if it is non-expansive in t:

t[Ax — Ayj t[x
—

yj Vx, y; (2)

and if and only if it is non-contractive in b:

b[Ax — Ay] b[x
—

yj Vx, y. (3)

Together these inequalities imply that topical operators are non-expan

sive in the l-norm on lRd:

jAx—Ay jx—y Vx,y,

where IIxII = max Ix = t[x] V (—b[x]). In fact, M. G. Crandall and L.

Tartar have shown [CT8OJ that a homogeneous operator on ]Rd is isotone

if and only if it is l non-expansive. Inequalities (2) and (3) also imply

that topical operators are non-expansive in the projective semi-norm

(p defined by

(xp =t[x]—b[x].

We define the projective radius of a topical operator A to be the extended

real number

H[A] := sup (AxWp.
xIRd

Note that the projective radius of a translation operator, for example, is

+oo. The interest of projective radius is that, if A has finite projective

radius, then there exists a vector x e lptd and a scalar a such that

Ax = x + al [BM96]: such a vector is sometimes called a generalised

fixed point of A. Finite projective radius is not, however, a necessary

condition for the existence of a generalised fixed point. More details

and references on the fixed point properties of various types of topical

operators can be found in [BCOQ92, GG98].

Turning to sequences of random operators, an important result is the

following ergodic theorem due to F. Baccelli and J. Mairesse.
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Theorem. {BM96] Let {A(n) : n 1} be a stationary and ergodic

sequence of random topical operators. If there is an integer N and a real

number C such that

H[A(N).. 11(1)] C

with positive probability, then there exists ‘y E IR such that

urn —A(n) .. . A(1)xo = 71
m—*oo n

almost surely, for every xo

In this paper we study deviations from the behaviour described by this

theorem, but under the following stronger assumption:

Assumption 1 (a) {A(n) : n> 1} is a random sequence of i.i.d. topical

operators; (b) there exists an integer N and a real number C such that

H[A(N) A(1)] C almost surely.

Our main result is that if this assumption holds for the sequence {A(n)},

and if {x(n) : n 1} is a sequence of vectors satisfying the recursive

system (1) for some fixed initial condition, then the sequence {x(n)/n

n 1} satisfies a weak large deviation principle. The associated rate

function is equal to +oo away from the line x = al, a e IR, so that

at this scale the system’s behaviour is effectively one-dimensional. This

confinement is the consequence of part (b) of assumption 1. We also

present some results to characterise the rate function, but explicit cal

culations turn out to be difficult in all but trivial cases. It is well known

that calculation of the Lyapunouv exponent of the ergodic theorem is

already a hard problem.

For the case of max-plus and mm-plus matrix operators, our results

extend previous work by F. Baccelli and T. Konstantopoulos [BK91],

P. Glassermann and D. D. Yao [GY95], and Cr-S. Chang [Cha96].

2 Large Deviations

Let {A(n) : n 1} be a sequence of random topical operators on

Given a fixed initial vector xO lRd we let {x(n; xO) : n 1} be the
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sequence defined by

x(n; xo) A(n)A(n — 1) A(1)xo, n = 1,2,...

It will be convenient to let A(l, m) stand for the product of the A(n)’s

fromn=l+lupton=rn,wherern>l>0:

A(l,rn) := A(m)A(m - 1)... A(l + 1).

We shall also use x(l, ni) to denote the vector A(l, 7n)x.

With the assumption that xo is a fixed, rather than random, initial con

dition, the non-expansive property of the A(n)’s ensures that the large

deviations of the sequence {x(n; xo)/n n > 1} are in fact independent

of x0. If Yo is another fixed initial condition, then

JJx(n;xo) —x(n;yo)JJ = jjA(0,n)xo —A(0,n)yoI J)xj yoJj,

implying that, for any e> 0,

(Wx(n;xo)—x(n;yoW >n) =0

for n large enough. The sequences {x(n; xo)/n} and {x(n; yo)/n} are

therefore exponentially equivalent ([DZ98], chapter 4), so that one satis

fies a large deviation principle if and only if the other does, and with the

same rate function. We set x0 equal to the zero vector 0 and suppress

the dependence of x(n; xo) on xO henceforth.

Let ]IVI be the law of x(n)/n, and let and be set functions defined

on the Borel subsets of JRd by

[B] := lim sup log
n—icc fl

rri[B] := 1iminf1og1Mn[B].
n—icc fl

The upper and lower deviation functions p and associated with the

sequence {1M : n 1} are the maps from lRd into [—oc, 0] given by

:= infrn[G],
Gx

:= infp[G],
— Gx

where the infima on the right-hand sides are taken over all open sets G

containing the point x. As both and in are increasing set functions
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these infima may in fact be taken over any base of Borel neighbourhoods

of x. The properties of ]J and i are discussed in the review of J. T. Lewis

and C.-F. Pfister [LP95]. They are upper semi-continuous and for all

open sets G satisfy

[Gj sup)J(x),
xG

[G] supt(x).
xEG

In addition, 71 satisfies

m[K] sup 11(x)
xEK

for all compact sets K.

The sequence {IM : n > 1} satisfies a weak large deviation principle

with rate function 1 if and only if 1 is lower semi-continuous and the

inequalities

[K] < — inf 1(x),
xEK

m[G] > —infl(x),
— xEG

hold for all compact sets K and open sets G. A neccessary and sufficient

condition for the weak l.d.p. to hold with rate function 1 is that 71 and u

should coincide and be equal to —l throughout JRd [LP95j {lM : n 1}

satisfies a large deviation principle with rate function 1 if and only if it

satisfies a weak l.d.p. in which the upper bound for compact sets extends

to all closed subsets F of jpd:

<— inf 1(x).
xEF

Lemma 1 below establishes that, if the A(n)’s are i.i.d., then 11(x) = u(x)

on the line x = al, a e JR. The argument is based on the following

observation: if A1, A2 are any pair of topical operators and a, b are any

pair of real numbers, then

AiA2.O—(a+b)1W

IA1A2 . 0— A1 aiM + WA1 al — (a + b)1U

jA2 0 — aij) + A1 . 0 — bill. (4)

Let Br(ai) denote the l-ball of radius r centred at ai. Since x(n +

m) = A(n, n + m)A(0, n) .0, the inequality (4) implies that the sequence
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{1M [Br (a 1)] } is super-multiplicative:

IM7i+m[Br (al)]

= F(Ijx(n + m) — (n + rn)aljj <(n + m)r)

(Wxn) —na1j <nr, x(n,n+m) —ma1 <mr)

= 1Mn[Br(al)jlMm[Br(a1)].

A variant of the standard sub-additivity lemma (see [Lan73, LPS94])

may now be used to show that i(a1) = (a1), and also that the resulting

function a F—+ p(al) = (a1) is concave.

Lemma 1 Under part (a) of assnrnption 1, ,u(al) = i(a1) for each

a E JR.

PROOF Fix a e JR and put n = ps + q, where s > 0, p > 0, and

0q<s. Wehavefrom(4) that

— nalli IIx(ps,ps + q) — qaljj + jx(0,ps) —psa1,

and, continuing the expansion,

Ix(n) — nalII jx(p$,ps + q) — qa1I

+ jx((k - 1)s,ks)
- sa1I. (5)

Let z8(k) denote the contribution coming from the kth block of size s:

z8(k) := x((k — 1)s,ks).

Then {z8(k) : k 1} is a sequence of i.i.d. random variables and the law

ofz8(1) is 1M3. It follows from (5) that, for each e > 0,

(IIx(n - na1I <nr)

F( Wx(ps,ps + q) — qa1j <ne, z3(k) — salW <n(r
—

(iix(q) - qa1j <nc) [(Iizs1 - salI <s(r -

and therefore

log1[B(a1)]

1ogP(jlx(q) —qa1 <) + 1ogls[Bre(a1)]. (6)
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Now, since any finite collection of probability measures on jRd is tight,

we can find a compact set K C IRd such that x(q) falls in K with positive

probability for each for each q = 0,. . . , .s — 1. Define

:= mm IP(x(q) K).
O<q<s

Then c > 0, and there exists M < cc such that for all n > M and each

q=0,...,s—1,

(IIx(q) — qa1 <ne) (x(q) e K)
•

Returning to inequality (6), this yields

1ogJM[B(a1)j 1oga + 1og1M3[B_(a1)j

> loga + 1og/I3[Br_(a1)],

with log c > —cc. Taking first the liminf in n and then the limsup in

s we obtain

liminf log In[Br(a1)j lim sup log [Br_(a1)j,
Th—*oo fl s—*oo S

or rn{Br(al)] > i[Br._(a1)]. The statement of the lemma follows on

taking infima over r > e, giving

infrn[Br(al)] p(al),

and then over e> 0, to get t(a1) > p(a1). I

Lemma 2 The map a —+ i(a1) = (a1) resulting from lemma 1 is

concave.

PROOF For al, a2 E IR, we have from (4) that

IIx(2n) — n(ai + a2)1I IIx(n) — nailII + x(n, 2n)
— na2lII,

which implies

lM2n[Br((a11+ a21)/2)] 11V1n[Br(a11)j lMn[Br(a21)].

Therefore,

[Br((ai1 + a21)/2)] lirnmnflog12n[Br((ai1 + a21)/2)]

[Br(ai1)] + rn[Br(a21)],
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and taking infima over r > 0 we get

((ail + a21)/2) > (ail) + (a1).

This inequality may be extended to cover all convex combinations Aa1 1+

(1
—

A)a21, where \ is a dyadic rational in [0, 1], by iterating the above

argument. The concavity of the map a ,u(al) = p(al) then follows

from the fact that it is upper semi-continuous. •

Lemma 1 is enough to establish a weak large deviation principle if both

parts of assumption 1 are satisfied.

Theorem 3 Let both parts of assumption 1 hold. The sequence {JM

n > 1} satisfies a weak large deviation principle with a convex rate

function 1 which is equal to +oo on the set {x : jxp > 0}.

PROOF Fore>OandnN,

(IIx(n)lIp > ne) = (lfA(n - N,n)x(n - N)jp > ne)

< Ip (n[A(n — N, n)] > ne)

= IP(H[A(o,N)] >

which is zero for n sufficiently large. Therefore u(x) = (x) = —oo for

each x with xp > 0. Combining this with lemma 1 we have ,u =

everywhere, and the resulting rate function 1 = —J = —i is convex by

lemma 2. I

The next two lemmas are directed towards proving that the rate function

1 is the convex dual of the scaled cumulant generating function \ of the

sequence {x(n)}. For 0 e ]Bf’, let {1M} be the sequence of measures

defined by

]M[B]
‘B

{lM : n> 1} satisfies a weak large deviation principle with rate func

tion 1° given by l°(x) = 1(x) — (0, x) [LP95]. Let ?‘ be the cumulant

generating function of x(n) (automatically proper, convex, and 1.s.c.):

:= log ]M[1Rdj = log IEe0’ x(n))
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Lemma 4 shows that the limit A(0) := lim÷ A(8)/n exists, and

lemma 5 shows that A is the convex dual of 1.

Lemma 4 also gives two expressions for A which may be of use in ap

proximating it. To state these, we define : JR2 — JR to be the map

fl(i, 2) := log Eexp(it[x(n)] +

For 0 JRd we let 0+ represent the sum of the positive components of 0

and O_ the sum of the negative components.

Lemma 4 Under assumption 1, A(8) exists for each 0 JRd and is

given by
1

A(O) = sup -b(0_, 0+)
n>1

and
.1

A(8) = inf —‘/i(0,0_).
n1 fl

PROOF For n, rn> 1,

x(n+m) = A(n,n+m)A(O,n)O

ri + m)(t[A(O, n)O]1) = A(n, n + rn)O + t[A(O, n)Oj1,

and similarly

x(n + m) A(n, n + rn)O + b[A(O, n)O]1.

These yield the inequalities

t[x(n + rn)] < t[x(n, n + m)j + t[x(n)], (7)

b[x(n + m)] > b[x(n, n + 7n)] + b[x(n)], (8)

which together imply that the sequence {b(0_, 0) : n 1} is super-

additive:

bn+m(0_,6+) > b(0_,0±) +bm(0_,0+)

for all n, m 1. Now is the cumulant generating function of the

pair of random variables (t[x(n)], b[x(n)]), and as such cannot take the

value —cc. It follows that the limit

lim (0_, 0±) = sup (0_, 0)
n n>1 n
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exists for all 8.

Clearly A(8) > /(8_, O) for all n. But for n N, x(n) satisfies

t[x(n)]—b[x(n)] <C, so that t[x(n)]—x(n) C and x(n)—b[x(n)] C

for each i. Therefore

(8, x(n)) 8+b{x(n)] + 8C + 8_t{x(n)] — 8_C,

implying that

<b(8_,8+) + O1C,

and
1 1

urn —A(8) = lim —b(8_,8+).
n_*oo fl fl—*OO fl

To prove the second identity for A we first note that the argument just

given also establishes that

b(8+,8_) —b(8_,8+) <2ClI8i

for all n > N. Therefore /-‘(8±, 8_)/n converges to A(8) as Ti —+ cc.

Furthermore, inequalities (7) and (8) imply that {‘/‘(8÷, 8_)} is a sub-

additive sequence: for all ri, m 1,

bn+m(8+,8_) <b(8+,O_) +bm(8+,8_);

hence

lim(8,8) •

Recall that the convex dual of 1 is the function 1* : 1W’ _ [—cc, +ocj

given by
l*(O) := sup {(8, x) — l(x)}.

x1Rd

Lemma 5 Under assumption 1, A is the convex dual of 1.

PROOF The sequence of measures {1M} satisfies a weak large deviation

principle with rate function 1(x) — (8, x). Since 1W’ is an open set, the

large deviation lower bound gives us

A(0) = urn in4 log IM[IRd] >
- inf{l(x) - (8, x)},
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or A(O) l*(e). To prove the opposite inequality, let Zm(fl) be the

random variable x((n — 1)m, nm), and let ym(fl) denote the sum

ym(fl) := ±Zm(k).

(m)
For fixed m, the sequence {Zm() : n 1} is i.i.d. Let IL be the law

of ym(fl); by Cramer’s theorem, the sequence {Lm) i} satisfies a

large deviation principle with convex rate function 1m equal to

lrn(X) = sup{(O, x) —
0

Since both 1m and A are proper convex 1.s.c. functions, we also have

m(0) = sup{(mO, x) — lm(X)}.

Now for n, m > N the two inequalities (7) and (8) imply that

Ix(n+m)—x(n,n+m)—x(n)II C.

Setting n = pm with m N and applying this result repeatedly yields

- flYm(P)Ij = itx(n) - zm(k)(I mC.

Therefore

4n[Br+C/m(X)] = (IIx(n) — uxil <nr +pC)

(IIflYm(P) - nxIj <nr)

=

Taking logs, dividing by n, and letting p —* cc, this becomes

[Br+C/m(X)] liminf log Lcm)[Br(x)],

and taking infima over r > 0 we get:

inf {Br()] lm(X).
r>C/m m

Now fix r’ = C’/rn> C/rn, and let Br’ (x) be the closed l-ba11 of radius

r” centred at x. Applying the large deviation upper bound for the set

B.(x) produces

— iflf 1(y) > [Br’()] > lm(X).
yEB(x) m
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Hence

sup {(O, y)-l(y)} (g, x)-IIC’- inf 1(y)

YEBr!(X)
m yEBi(x)

(0, x) - (lI0IIC’ + lm(X)),

and taking the supremum over x on both sides:

l*(o) (Am(8) - UOWC’).

The upper bound A(6) <l*(8) is now obtained by letting m —*

If A is finite in a neighbourhood of the origin then the sequence {IM

n 1} is exponentially tight: there exists a sequence of compact sets

{K : n> l} such that

urn sup m[lRd \ K] = oc
fl-+ 00

Under exponential tightness the weak Ld.p. for {TM : n 1} extends

to a full l.d.p. [LP95]

Theorem 6 Let assumption 1 hold. The rate function 1 of theorem S

is the convex dual of A. If A is finite in a neighbourhood of the origin,

then the sequence {1M} satisfies a large deviation principle with rate

function 1.

PROOF A exists by lemma 4, and by lemma 5 it is the convex dual of 1.

Since 1 is a proper convex 1.s.c. function, it follows that 1 = l** = A*. if

A is finite in a neighbourhood of the origin then the sequence {IM} is

exponentially tight and the l.d.p. follows.

Note that since A(8) O)/n for all n one needs only that

8_) be finite in a neighbourhood of the origin, for any n, in order

to establish the l.d.p.

3 Matrix Operators

From the results of the last section we may deduce for the l.d.p. for

certain classes of the matrix operators introduced in section 1.
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Lemma 7 A max-plus matrix operator has finite projective radius if

and only if each of its columns has all entries finite, or all entries equal

to —cc. Similarly a mm-plus operator has finite projective radius if and

only if each of its columns has all entries finite or all entries equal to

+00.

PROOF Suppose that A is a max-plus matrix operator with all matrix

entries finite, and let x be any vector in JJ{d• For a given value of i e [1, dj

let J(i) be the value of j which maximises + x3. Then

t{Ax] = max + xj = max Aj() + Xj(j)
i,j i

and

b{Ax] = mm max Aki + Xj > minAkJ() + Xj(j).

Therefore

jAxp <max(AJ()
— minAkJ()) <rnaxA3 —

mm Aki.
k z,j ki

This gives a finite upper bound on JAxJp, independent of x. Next, if one

or more columns of A are identically equal to —cc then the projective

radius of A is equal to that of the matrix obtained by deleting these

columns. If the remaining entries are all finite then so is H[A]. (Recall

we assume that each row of A has at least one finite entry, so that A

cannot be identically equal to —cc).

Now suppose that for some column j we have finite and Ak = —cc.

Then for any x

jAxp > (Ax)
— (Ax)k A + x — max(Akl + x1),

and since x3 can be made arbitrarily large it follows that H[A] = +00.

The proof for mm-plus matrices is similar. •

In particular, if A is an aperiodic matrix operator, then there exists

N < cc such AN has all entries finite, and therefore finite projective

radius. Turning to random sequences of matrix operators, we say that

{A(n) : n > l} has fixed structure if, for each i, j, Aj(n) equal to —cc

for all n with probability one or zero.
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Assumption 2 {A(n) : n > 1} is a random sequence of i.i.d. aperiodic

max-plus matrix operators, with fixed structure. In addition, the finite

components of A(1) take values in a bounded subset of IR.

As in section 2, 1Iv1 denotes the law of x(n)/n, where

x(n) =A(n)...A(1)xo

with x0 fixed.

Theorem 8 Let assumption 2 hold. Then the sequence {1M} satisfies

a large deviation principle with convex rate function 1 equal to A.

PROOF Let N < cc be such that the matrix (A(1))N has all entries fi

nite. Note that, when taking the product of matrices A(1) and A(2), the

positions of the finite entries in A(2)A(1) depend only on which entries

of A(1) and A(2) are finite (and not on the values of these entries: this

is similar to the situation with the zeros of products of positive matrices

under the standard algebra). Since each matrix A(k) has its finite entries

in the same positions (due to the fixed structure assumption), it follows

that A(O, N) = A(N) . .. A(1) has all entries finite, and therefore finite

projective radius. Under the second part of assumption 2 the entries of

A(O, N) actually take values in a bounded subset of IR, implying that

ll[A(O, N)] is almost surely bounded. It follows from theorems 3 and

6 that the sequence {I1VI,} satisfies a weak l.d.p. with rate function )*

Assumption 2 also implies that for each n, x(n) is a bounded random

variable, so that the functions of lemma 4 are finite throughout 1R2.

Therefore so is A(6) and the l.d.p. holds for {JM}. •

The l.d.p. for a certain class of non-negative matrix operators on the

positive cone 1R can be proved along similar lines. Recall that if A

1R —+ IR is a non-negative matrix operator having at least one non

zero_entry per row, then A : IRd _ JRd is the topical operator defined

by Ax := log(Aexp(x)).

Lemma 9 Let A : IR —* IR be a non-negative matrix operator, with

at least one non-zero entry per row. Then A has finite projective radius

if and only if each column of A has all entries greater than zero, or all

entries equal to zero.
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PROOF Assume that A has no matrix entries equal to zero, and let x

be any vector in lRd. For a given value of i let J(i) be the value of j

which maximises Aijexi. Then

t[Ax] = maxlog( Aijexa) j maxlog(dAJ()e’())

and

b[Ax] = mm log(Ak1e) mm log(AkJ() e(i)).

Therefore

Ax)p < max(log(dAjJ(j)) — mm log AkJ())

logd+rnaxlogA3—minlogAkt,
k,1

a finite upper bound which is independent of x. As in the max-plus

matrix case one can now observe that if A has all entries of one column

equal to zero, then the projective radius of A is equal to that of the

operator obtained by excluding this column. This proves the ‘if’ part of

the lemma.

On the other hand if column j of A has a non-zero entry and a zero

entry Ak then for any x E IRa

Axjp > logA + x — log(Ajiex1).

1j

Since xj can be made arbitrarily large it follows that H[A] = +00. I

The assumption analagous to assumption 2 is therefore the following.

A fixed structure sequence of random non-negative matrices {A(n)} will

be one in which, for each i, j, A(n) is zero for all n with probability

either one or zero.

Assumption 3 {A(n) : n 1} is a random sequence of i.i.d. non

negative aperiodic matrix operators, with fixed structure. In addition, the

non-zero entries of A(1) take values in a compact subset of the positive

real line.

We continue to let x(n) denote the vector A(n) . . . A(1)xo, for a fixed

1R, but we now take JM to be the law of (log x(n))/n.
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Theorem 10 Under assumption 3, the sequence {1IV1 : n 1} satisfies

a large deviation principle with rate function 1 equal to )*, where )

IRa JR is given by

A(8) = lim 1ogIEfJ(xj(n))°.

PROOF Letting (n) = logx(n) we find that (n) satisfies

The remainder of the proof parallels the proof of theorem 8, and is

omitted.
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