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Abstract. We propose a new class of models of queueing networks with

load-balanced dynamic routing. The paper extends earlier works, including

[FC], [FMcD], [VDK], where systems with no feedback were considered. The

main results are: (a) a sufficient condition for positive recurrence of the aris

ing Markov process and (b) a limiting mean-field picture where the process

becomes deterministic and is described by a system of non-linear ODEs.

0. Introduction

Historic background. This paper proposes a class of queueing network

models with dynamic routing based on the principle of balanced load. The

idea of dynamic routing is to select a path across a network in such a way

that it minimises (i) the delivery time (or the end-to-end delay) of a given

task, and (ii) the occupancy of buffers in the network. These goals do not

always agree; besides, a decision is to be taken on the basis of a limited
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amount of available information. To our knowledge, until recently, in the

literature there was no mathematical model proposed, of a queueing net

work with dynamical routing, which could be studied rigorously”2);the first

example of such a model was a queueing system introduced in [VDK] (and

independently, but somewhat later in [M]). See also [VS] and [T]. The original

model was then modified in [MSJ to include a class of Jackson-type networks,

but the dynamic routing principle was still reduced in {MS] to the choice be

tween servers from a given station. We refer the reader to the introductory

section of [MSJ for a discussion of the approach adopted in the above papers;

a review of the available literature can also be found in [KPS].

The principle of dynamic routing proposed in the above papers is to select

a server with the shortest queue among a sample collection of servers chosen

at random. E.g., in the model considered in [VDK] there are N identical

exponential servers, each with an infinite buffer and service rate one. The

exogenous flow is Poisson with rate NA; service times and arrival times are all

independent. Upon arrival, each task chooses m servers at random (m> 1),

and joins the one whose queue is the shortest. If A < 1, the system is

described by a positive recurrent Markov process whose state is represented

by a tail histogram identifying, for each n = 0, 1, 2, ..., a proportion r(n) of

servers with at least n tasks in the queue. This Markov process has a unique

invariant distribution 7tN, and the main result of {VDKj is that the expected

value EN r(n) of proportion r(n) converges, as N —+ , to A(mTh—l)/(m)

which gives a super-exponential decay as n —* oo. This result contrasts

with a model where each task selects a server independently and completely

at random (which corresponds to the previous scheme with m = 1): here,

E, r(n) = A (a geometric, or exponential decay).

Similarly, in the model considered in [MSJ there is a set of stations J =

{ 1, ..., J}, station i containing N identical exponential servers, each with an

1) See [FIM] for references to works on two-server systems. However, these

do not include networks with feedback.
2) Loss networks with dynamic routing have been discussed in [Ke]. How

ever, loss networks do not pose such challenging problems as the existence of

a stationary distribution.
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infinite buffer and service rate jij; for simplicity, assume that ,u = 1. The

exogenous flow to station i is Poisson with rate NXj; all service times are

mutually independent and independent of the arrival times. It is convenient

to introduce the vector ) = (Ai, j e 3). Upon arrival in station i, each task

chooses m servers at random, and joins the one whose queue is the shortest.

After completing service in station i, the task is dispatched to station j with

probability and exits the network with probability 1 — 23 Here

P = (P,) is a (sub-stochastic) Jackson routing (J x J) matrix; one assumes

that matrix I—P is invertible. If the vector = A(I—P)—’ with components

pj obeys IN < 1, i E 3, the network is described by a positive recurrent

Markov process whose state is now represented by a vector tail histogram

identifying, for each i e 3 and n = 0, 1, 2, ..., a proportion r(n) of servers

in station i with at least n tasks in the queue. As before, this Markov

process has a unique invariant distribution rN; the main result of {MS] is

that the expected value ENrj(n) converges, as N —÷ oo, to
cmm—1)/(m—i)

This contrasts with the corresponding Jackson model where, upon arrival

at a station, the task joins a randomly chosen queue: here the expectation

ElrNrj(n) = p.
On the other hand, {FC] and [FMcD] deal with a system of J stations,

each containing a single exponential server of rate 1. The arrival is described

by a collection of independent Poisson flows of rates ) 0, for each

non-empty subset K C 3, and the rule is that the tasks from E joins the

station from IC with the shortest queue. Upon completing the service, the

task leaves the system. The condition of positive recurrence here is that

CcA < # A for any non-empty A ç J. There is no explicit formulas

for the equilibrium distribution, but some tail asymptotics are available, at

least for J = 2.

Description of the model under consideration. In this paper we deal with

a generalisation of the models discussed in [FCj, [FMcDJ and [MSJ. Namely,

comparing with {MS], we allow a task to choose a server from a sample that

is not confined to a single station, and comparing with [FC], [FMcD], we

allow a Jackson-type feedback, or networking. The collection of stations is

3 = { 1,... , J}, each station containing N single exponential servers of rate

one. The network model is determined by the exogenous Poisson flows Em

of rates N)m and routing probabilities p, Pj,m E [0, 1], j e 3. Here, m is a

positive integer mass distribution on 3, i.e., a function i e 3 ‘—+ m E
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Figure 1. The scheme of the network model

*
(3)

p3p

= {O, 1,. .
. } with m

=
rri > 0. It describes how many inspections a

given task performs in a given station; for this reason we call it an inspection

number distribution. For simplicity, we assume that Am > 0 and Pj,m > 0 for

a finitely many m only, and m Pj,m = 1 V j E J. The exogenous Poisson

flows are assumed independent, and a task arrived in flow Em chooses at

random m, servers in each station i e J (the choice is with replacement, so

some servers may be chosen repeatedly) and then joins the shortest queue

from the sample. After completing the service in station j, the task quits or

remains in the network with probabilities 1 — p and p; in the latter case it

picks up a positive inspection number distribution m with probability Pj,m and

then again chooses at random m servers in each station i e J and joins the

shortest queue from the sample. When occur, the ties are broken at random

(i.e., if m* Im servers from the sample have the shortest queue-length, any

of them can be chosen with probability 1/m*).

The above model is called shortly an L-model or L-network (for load-

balancing); it is determined by the parameters J, N, Am, p and Pj,rn A

4-

1-p*
3
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notable feature is an additional symmetry between N servers within a station.

Also, for N large, the principle of dynamic routing is somehow ‘softened’: the

task does not inspect all queues, but only a portion.

Some of our results for the L-model hold for any N = 1, 2 Others

are established in the limit N —+ cc. Under a simplifying assumption that

Pj,m does not depend on j, or even equals \m/A, where A = ), we can

produce a more detailed information.

A an example of an L-network is presented on Figure 1. In this exam

ple, there are three exogenous flows, of rates = ‘m() N, with three

inspection number distributions = {m5, i, j = 1, 2, 3}, as follows : a)

m’ = m1 = 0, m’ = 1 (a single inspection in station 1), b) m2 = 0,

m = 1, = 2 (a double inspection in station 1 and a single in station

2), c) m3 = 2, m2 = m2 = 0 (a double inspection in station 3). After

service in station 1 or 3, the tasks quit with probabilities 1 — p and 1 — p,

while after service in station 2, they always return to the network: p = 1.

Finally, the featured transition probabilities (k)
= Pk,k, after completing

service in station k = 1, 2, 3, correspond to a) ?i’
=

= 0, n4’ = 1,

b)
2)

= = 0, n$ = 1 (a single inspection in station 2), c)
3)

= 2,
1) = 42)

= 0 (a double inspection in station 1). There may also be other

transitions (omitted in order not to overload the diagram).

Our exposition is carried in Sections 1—7 below. Sections 1 and 2 present

results at an informal level. In Section 1 we discuss the capacity domain of

an L-network and in Section 2 properties of the limit N —* cc. In Section 3 a

formal mathematical background is provided and the main theorems stated.

The rest of the paper is devoted to the proofs. In Section 4 we prove Theorem

1. Section 5 is devoted to the analysis of the limiting system (2.1), (2.2) and

its stationary version (2.3). In Section 6 we establish the convergence to the

limiting picture as N — cc. Finally, in Section 7 we analyse a particular

case where probabilities p and Pj,m do not depend on j, the station where

previous service has been completed.

1. The capacity domain

General bounds. The first question that arises is when the L-network is

in a sub-critical regime, i.e., has a proper equilibrium, or stationary, distri

bution. More precisely, the above model leads to a denumerable continuous

time Markov process whose state is represented by a collection the queue
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lengths Q,(t), where j J labels the stations and s = 1,... , N the servers

(within a given station). We call it the q-process. Most of the time we will

work with a ‘symmetrised’ Markov process, called the r-process, whose state

is given by a (vector) tail histograms r(n), j é J, n e Z, where r(n) is

the proportion of the servers in station j with the queue length n. We

propose a sufficient (but not necessary) condition for these processes to be

positive recurrent, and hence to have a unique equilibrium distribution.

Condition 1: V subset of stations IC C J,

(1.1.1)

or, equivalently,
z < 1. (1.1.2)

Here,

v = max( <1. (1.2.1)

and

= (m + (1.2.2)

m:mK=O jEJ

Condition 1 describes the sub-criticality domain in a rnajorising system,

called model 8, which is simply a collection of isolated stations j J, each

consisting of N servers. The exogenous arrival flow at station j is Poisson, of

rate Nv, and the flows in different stations are independent. Upon arrival,

a task chooses a queue in a given station at random and quits the system

after completing service. The majorising property of model S is established

in Theorem 1. The assertion of Theorem 1 has been independently proved by

E. Thomas (unpublished), by using a modification of a method from [FMcD];

in fact, in the particular case where all probabilities p vanish, Theorem 1

gives the result of [FMcD].

Condition 1 reflects a popular point of view that, dealing with a load-

balanced network, one has to assess the so-called dedicated traffic, through all

sub-networks (including the network itself). The dedicated traffic is formed

by the tasks that join a given collection of stations regardless of the state of

the network, as opposite to the discretionary traffic where the decision to join

a station depends on the state. Pictorially speaking, if the network is able

to cope with the dedicated traffic, the discretionary traffic will be processed

anyway. Note that in condition (1.1.1), c can be considered as the rate of
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the dedicated traffic through set of stations 1C under an assumption that all

servers in the network are busy (which is stressed in the form of the term

jEJ

Condition 1 indicates a domain in the space of parameters Am, P and Pi,m

which lies inside the capacity domain, i.e., the open set D of the parameter

values such that outside the closure D the network is super-critical, i.e.,

the Markov process is not recurrent. The problem of finding the capacity

domain of an L-networks remains unresolved. A natural necessary condition

(i.e., indicating a domain that is no smaller than D is

Condition 2: there exist numbers e [0, 1), i e J, such that V

(m + aPPim) < a(), (1.3.1)

m:m1K=O jEJ iElC

whereas for IC =

P) = SAm. (1.3.2)

Eqn (1.3.2) simply means that the total arrival and departure rates are bal

anced. It is possible to check that condition 3 is sufficient for the positive

recurrence under additional symmetry conditions (a nice example was found

recently by F.I. Karpelevich (in preparation)).

There is a conjecture that for the case J = 2 (two stations) Condition

2 in fact suffices for positive recurrence of the Markov process in a general

network L. For N = 1, J = 2, this conjecture was proved by I. Kurkova [Ku],

following an approach developed in [FMM]. Geometrically, Condition 2 for

J = 2 is that, inside the unit square 0 < a2 1, the line a(’)(l —pt) +
a(2)(1 _p) = Am has a non-empty intersection with two open half-planes

a’ > (Am + a’pi,m + a(2)p2,m) and a2 > (Am + a’pi,m +
m: m2=O m: mi=O

a(2)p2,m).

Examples. To compare Conditions 2 and 3, we take J = 2. In the first

example we assume that the inspection number distributions m for which Am
or Pi,m are non-zero, have m < 1. In other words, the network is determined

by exogenous rates A1, A2 and A1,2 and probabilities p and Pi,i, Pi,2 and

Pi,{1,2}, i = 1, 2. Here, AN is the exogenous dedicated arrival rate from

outside in station i; the tasks arriving at this rate choose a queue in the
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1-p*

qp*

qp*

1-p*

Figure 2

station at random. Next,)1,2N is the discretionary arrival rate from outside

(the tasks arriving at this rate choose at random one server in station 1

and one in station 2 and then join the shorter queue). Similarly, Pi,j is the

probability that after completing service in station i and deciding not to

quit, the task will enter station j and join a randomly selected queue, while

Pi,{1,2} the probability that it will choose a server at random in each station

and then join the shorter queue. To further simplify the matter, consider

a particular case where )2 = 0 and set ) = ) and )‘1,2 = ,u. Also assume

that p = p = p, Pi,i = P2,1 = 0, P1,2 = P2,2 = p and P1,{1,2} = P2,{1,2} =

q, with p + q = 1. In this network, the exogenous arrivals go to station 1 or

become discretionary while the re-entering tasks go to station 2 or become

discretionary with probabilities that do not depend on the station where the

previous service was completed. See Figure 2.

Conditions 1, 2 in this case take the following form:
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Condition 1:

I
1

A <1, A+ <2(1 _*), <1/2,

qp1*

pp

1-p

(1.4.1)

Condition 2:

A <1, A+t<
2(1_p*), (p*p)_l(1_p*). (1.4.2)

If p*p
< 1/2, Conditions 1 and 2 coincide and hence Condition 1 describes

the capacity domain of the network.

A modified version of this example is where p and p are not necessarily
equal, while pi,i = P2,1 = 0, P1,2 = P2,{1,2} = p and P1,{1,2} = P2,2 = q, with

p + q = 1. Here, as before the exogenous arrivals go to station 1 or become

Figure 3
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discretionary whereas the re-entering tasks go to station 2 or become discre

tionary with probabilities that depend on the last visited station, but in a

symmetric way. See Figure 3. Here, in terms of parameters ), ,u, p, p, p

and q, the domains given by Condition 1 and 2 are as follows.

Condition 1:

(1.5.1)

Condition 2:

< ‘ (l_p)lP2P+(l_p). (1.5.2)
p1q

As pp + pq < 1 implies (pp)’(1 — pq) > 1, Condition 1 is strictly more

restrictive than 2.

2. The limit N —* cc

Now we pass to limiting properties of the networks under consideration,

as N —÷ cc. The key fact is that the Markov process describing the L-network

converges, as N —* cc, to a deterministic process whose trajectory is given by

a solution of a countable non-linear system of ordinary differential-difference

equations. See Theorem 2. We write this system for an array of functions

u(t) = (n(t;n)), where t 0, i e J and n

(t; n) = u(t; n + 1) — u(t; n) + ( + u(t; 1)PPj,m) (2.1)

m

x f4ll () (ui(t; n -1) - uj(t; (ui(t;

m’, rn” : m > 1, IEJ

m’ + rn” = m

Here and below, the sum m’ + m” of inspection number distributions is un

derstood component-wise. The summation includes the

m’ ,m”: m >1, m’ +m” =m

case = m, i.e., m” = 0.
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The meaning of Eqn (2.1) is that the change in u(t; n), the (limiting)

portion of the queues of length > n in station i at time t may be produced

when (i) a task completes service, which is described by the term u (t; n +

1) — u,j (t; n) and (ii) a task arrives (from outside or within the network) and

joins a queue of length n — 1. The latter situation is analysed by taking into

account all possibilities, first at the level of rates )‘m and u(t; l)PPj,m

and then by specifying the composition of the sample inspected. E.g., given

m’ and m”, the sample contains m queues of length n — 1 and m’ of length

ri from station 1 J; the condition m> 1 is necessary here.

The following boundary condition is observed at n = 0:

u(t;0) 1, t 0, i e J. (2.2.1)

We also impose an initial condition u(0) = g, or, component-wise,

uj(t;n)0 =gj(fl), i e J. n E Z. (2.2.2)

Here sequence (gj(n)) obeys 1 = g(0) g(1) >
...

0 and, possibly,

< cc, i e J. Similar properties are expected from u(t), t> 0.

In Theorem 2 we establish a (global) existence and uniqueness of a solu

tion u(t; g) to the initial-boundary value problem (2.1), (2.2.1-2). Here, and

below, g is the array of initial data (gj(n), n e Z, i e J) and u(t, g) is the

array of functions (u(t; n), n e Z, i e J) satisfying (2.1), (2.2.1-2). Next,

in Theorem 3 we prove the convergence of the r-process in model L to this

solution as N —* cc.

Next, we analyse a fixed point of (2.1), (2.2.1), i.e., an array (a(n), i E

n Z) obeying 1 = a(O) > a(1)
...

0 and >> a(n) <cc, i E

and

a(n) — a(n + 1) = (m + aj(1)ppj,m) (2.3)

m

m
—-

(mj / m / m’

II km’) ai(n — 1) — ai(n)) ai(n))

m’, m” : m 1,

m’ + m” = m

Observe that a(n) 1 is always a fixed point: it corresponds to a ‘saturated’

regime where all queue-lengths are set to be infinite. In Theorem 4 we prove

that if there exists a fixed point a with je,nEZ a(n) < cc (which is the

11



case under condition (1.1)) then it has a ‘global’ attracting property. Finally,

in Theorem 5 we establish the existence of such a fixed point a.

An important role in the analysis is played by the quantity

V(t, g; n) = u(t, g; n’), t 0, ri e Z. (2.4)

1<i<J 7’i1>fl

Assuming that g(n) < oc, a straightforward algebra leads to the

following formula for the derivative V(t, g; n):

g; n) = — u(t, g; n) + (m 1)PPj,m)

iJ m jEJ

xfJ(ui(t,g;n_1))ml, t0, ri 1, (2.5)

IEJ

with the initial condition

V(0,g;n)=g(n’), nEZ. (2.6)

iE.f n’>n

In particular, by using Lemma 2.1 we establish that

V(t,g;n) Z(t,g;n), t 0, n e Z, (2.7)

where Z(t, g; n) satisfies the linear system

g; n) = zi(Z(t, g; n — 1) — Z(t, g; n)) — Z(t, g; n) + Z(t, g; Ti + 1), (2.8)

with the initial and boundary conditions

Z(0, g; n) = gi(n’), n e Z, Z(t, g; 0) — Z(t, g; 1) = J, t 0, (2.9)

iEJ n’n

and

lim Z(t, g; n) = 0, t 0. (2.10)
n—>co

Here ii is the quantity defined in (1.2.1); when ii < 1 system (2.8), (2.9)

(which corresponds to a collection of J isolated stations) has a unique fixed

point B = (B(n), n E Z), satisfying

B(n) — B(n + 1) = v(B(n — 1) — B(n)), n e Z. (2.11)

12



This fixed point is of the form B(n) = Jz/’(l — ii)—’ and has a global at

tracting property in a sense similar to above. Bound (2.7) helps to establish

similar facts (existence and the global attraction) for the original system

(2.1), (2.2.1-2); it is also used in the proof of Theorem 2.

Another key property is that a fixed point a e U obeys

a(n) = (m + ai(1)i,m) fl (a1(n — l))ml, n 1. (2.12)

iEJ m jEJ 1eJ

In particular, for n = 1,

a(1)(1 —pr) = A, (2.13)

iEJ

where

A>Am. (2.14)

We use Eqn (2.12) to study the decay of a(n) for large n. Theorem 2

directly implies an inequality between a(n), and B(n) (see Eqn (3.4) in The

orem 6(A)) which provides an exponential bound fora3(n). However, a more

interesting super-exponential bound can be proved. Assume the following

Condition 3:

= sup [max (m +
- m:m=O jEJ

b1,... ,b e [0,1], b(1—p) =A <1. (2.15)

1<j<J

Then (see Theorem 5), for any t91 e (9, 1) there exists a constant C > 0

(that can be assessed numerically) such that:

a(n) <cm_l)/(m*_l), j, n E Z+, (2.16)

where

m = mm m: ).m + PPj,m> 0 . (2.17)

jeJ

13



Condition 3 is weaker than 1 as the maximum in (2.15) is over a smaller

set than in (1.1). Eqn (2.16) produces a super-exponential bound when

m 2, i.e., the task always inspects more than one queue before it joins

one (the bound remains valid when m = 1 and (m — 1)/(m — 1) is defined

to be n). This is an analogue of the aforementioned results from [VDK] and

{MSj on the super-exponential decay of the tail histograms, hence the term

fast Jackson-type networks in the title of this paper.

3. Formal preliminaries and main theorems

The state space of the q-process for model L is a Cartesian product (z)
and that of the r-process U. Here, UN is the collection of the sequences r =

(r(n),n E Z) such that 1 = r(O) r(1) r(2) > ... 0, r(n)N is integer

and r(n) = 0 for ri large enough. We denote by Qj,r(L, t) and Qj,r(S, t),

t 0, j e J, 1 r < N, the random variables forming the q-process in

models L and 5; TN(t) denotes the transition semi-groups for the r-process

in model L.

Theorem 1. V N 1 and x E 0, if Qj,r(L, 0) =

jEJ 1<r<N

Qj,r(S, 0) then V t 0

jEJl<r<N

E( Qj,r(L, t)

<( Qj,r(S, t) - (3.1)

jE.J 1<r<N
+ jEJ 1r<N +

Theorem 1 establishes a majorant in the sense < (see, e.g., [5], Sect. 1.3

and Chapters 5—7), popular in the queueing theory context. It implies that

if, for a given N, model S has a stable equilibrium regime, so does L.

Corollary. Under Condition 1 (see (1.1)) model L has a unique equilib

rium distribution.

Now turn to the limit N —* oc. The state space of the limiting r-process

is denoted by U: as before, it is the Cartesian product of J copies of U, the

space of the limiting tail histograms. A point of U is a sequence r = (r(n))

where 1 = r(0) r(1) >... > 0 and r(n) < oc. It is also convenient to

consider a larger space U where U consists of sequences r = ((r(ri)) where

14



1 = r(O) > r(1) ... > 0. In probabilistic terms, U contains probability

measures on Z with a finite expectation, while U is formed by probability

measures on the extended set Z U {oo}. Points of U and U are denoted,

as before, by bold symbols, and referred to as arrays (e.g., r = (rj(n), i e J,

e

The norm r = sup supnez+ makes a complete compact

metric space. The corresponding topology is understood when we refer to

continuity and convergence in U and U.

Theorem 2. For V g e U, problem (2.1), (2.2.1-2) has a unique solution

u(t) = u(t, g), t > 0, in t?. If g e U, u(t, g) belongs to U V t 0.

Furthermore,

V(t,g;ri) Z(t,g;n), (3.2)

where Z(t, g; ri) is a solution to (2.8), (2.9).

The convergence result for finite times is contained in Theorem 3:

Theorem 3. For V continuous function f: —+ R and t 0,

lim sup TN(t)f(g) — f(u(t,g)) = 0, (3.3)
N—*oo

gE N

and the convergence is uniform in t within bounded intervals.

Now consider properties of the fixed points of problem (2.1), (2.2.1). We

are interested in the ‘unsaturated’ fixed points a = (a(n)) that lie in U.

A remarkable fact is that if such a point exists, it is unique and attracts the

whole of U.

Theorem 4. There exists at most one a = (a(n)) e U solving (2.3),

and if such a point exists then V g e U, lim u(t, g) = a.
t-+oo

Furthermore, there exists at most one B = (B(ri)) solving (2.11), and if

such a point exists then V g e U, lim Z(t, g) = B.
t—*oo

Theorem 5. Under Condition 3 (see (2.15)) there exists a solution a =

(a(ri)) e U to (2.3). Furthermore, this solution satisfies super-exponential

inequality (2.16) whenever rn, 2.

15



Theorem 6. Under Condition 1 (see (1.1)):

(A) There exists a fixed point a e U of system (2.1), (2.2.1) and a

solution B = (B(n)) of system (2.11). Furthermore, B(n) = JvTh(1 — ii)—’

and
a(n) <J(l-v)’. (3.4)

jE3 nE7Z

(B) The equilibrium distribution TrN converges as N — oo to the measure

concentrated at fixed point a.

4. A comparison between networks L and S

Proof of Theorem 1. The nonzero rates of transition g F—* g’, g, g’ e
of the Markov r-process in model L are as follows.

g g + e(n), rate NA(,)(g), (4.1.1)

g g — e(n), rate NB)(g), (4.1.2)

g g + (e(n’) — e(n)), rate NB)(g)C,(,fl!)(g — e(n)). (4.1.3)

Here, e(n), n E Z+, i e J, stands for an array whose only non-zero compo

nent is assigned to station i and the value of the argument n, and addition of

arrays is component-wise. Physically, (4.1.1), corresponds to an exogenous

arrival in and (4.1.2) to the departure from the network, while (4.1.3) cor

responds to the transfer of a task from one queue to another. Furthermore,

for i,j E J, n E Z+,

=

m > 1,

m’ + rn” = m

m m m’

11 (mi)
(gl(n -1)

-
gi(n)) (91(n)) , (4.2.1)

1J

B)(g) = (gi(n) -gj(n+ i))(i -p), (4.2.2)

B)(g) = (gi(n) - gj(fl + i)) (4.2.3)
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rn’
=

m m’, rn” : rn > 1,

m’ + m” = m

rn m m’
xfl

(rn)
(gz(n -1)

- 91(n)) (91(n)) . (4.2.4)

leJ

We want to examine the action of the generator AN of the Markov r

process in network L on the functions g E —+ V(O, g; n), see (2.6) (the

argument 0 in this notation will be omitted).

Lemma 4.1. The following formula holds:

ANV(g;n) = > (Am+gj(1)P;Pj,m) fJ(gi(n— 1))m1 _gj(fl). (4.3)

m jeJ leJ iEJ

Proof of Lemma 4.1. The lemma claims that ANV(g; n) = V(°)(g; n) +

V(’)(g;n) + V(2)(g;n), where

V°(g; n) = A, J]j (gi(n — 1))ml,

V(”(g;n) = —g(1),

iEJ

(2) * ml
V (g;n) = > gj(1)pjpj,mfl (gi(n — 1))

m jEJ

In fact, under the action of AN, the value of function V(g; n) can only

increase or decrease by 1/N which corresponds to an arrival or departure of a

task from a queue of length n. From this point of view, the term V° (g; n)

describes the effect of an exogenous arrival, V’ (g; n) that of a potential

departure (when service is completed) and V’ (g; n) that of a return. This

completes the proof.

Our next step is Lemma 4.2 below:

Lemma 4.2. Vr1,... , rj E [0, 1],

(Am + gj(1)p;pj,m) flr1
m jEJ

17



<max (Am+Yi(1)P;Pim)rk. (4.4)

— m:mIlCc=O jEJ kej

Proof of Lemma 4.2. In view of the convexity of the LHS of (4.4), it is

enough to check that (4.4) holds on the boundary of [0, i]J, where one of the

ri’s takes value 0 or 1. Here, the problem is reduced to J — 1 variables. Ap

plying the same argument, it suffices to check (4.4) on the lower-dimensional

parts of the boundary, etc. Finally, our task is reduced to checking (4.4)

when some of the ri’s are 0’s and the rest are l’s. Here, it is straightforward.

Back to the proof of Theorem 1, Lemmas 4.1 and 4.2 allow us to write

the inequality

ANV(g; n) v gj(n — 1) — > gj(n). (4.5)

iEJ ieJ

Observe that we replaced the factors g(l) in the sum gj(1)ppj,m in

the RHS of (4.3) by 1. We use the notation VN(t, g; n) for the function

(TN(t)V( ; ri)) (g), the result of the action of the transition operator TN(t)

= exp (tAN) on V(g; n). In other words,

NVN(t;n)=E( Qr(Lt)_n)
jELT 1<r<N +

Then
VN(t,g;n) = (TN(t)ANv(. ;n))(g)

v(t)Y(. ; n - 1)) (g) - (TN(t)Y(. ; n)) (g), (4.6)

where v is defined in (1.2.1) and

Y(g;n) = gj(n). (4.7)

jeJ

Bound (4.6) shows that VN(t, g; n) < Z(t; g; n) where Z(t; g; n) is the so

lution to problem (2.8), (2.9). But (2.8), (2.9) is just the system of equations

for the expected values in model S:

NZ(t, g; n) = E Qj,r(S, t)

—jE.J1<r<N +

18



The proof of Theorem 1 is now complete.

5. Analysis of the limiting model

Proof of Theorem 2. The proof of the statements when the initial date

g e U is rather standard and may be done as in [VDKj or {MSJ; both

methods use a kind of monotonicity argument. We therefore omit the bulk

of technical details. However, we note the following monotonicity property

of the solution u(t):

Lemma 5.1. If g > g’ then, V t 0,

u(t, g) u(t, g’) (5.1)

(the inequalities between arrays are understood component-wise).

Proof of Lemma 5.1. It suffices to check that the RHS of (2.1) is monotone

in all variables uk(t,ri), k e J, I = n — 1,n. For i = n — 1 this is plain; for

= n it follows from a straightforward calculation.

A useful observation providing the proof of a part of Theorem 2 is related

to the case where g is as follows. According to (2.5), the derivative

V(t, g; n) is bounded as u(t, g) belongs to U. Thus, V(t, g; n) grows at most

linearly with time. Therefore, if g e U, u(t, g) belongs to u V t 0.

Inequality (3.2) is just a limiting form of (3.1) and follows from Theorem

3. This completes the proof of Theorem 2.

The proof of Theorem 3 is carried in Section 6.

Proof of Theorem 4. Consider the initial condition g° with g(n) =

i J. Due to monotonicity property (5.1), the solution u(t, g°) is monotone

non-decreasing with t and hence has a limit (in Us). Denote this limit by a°;

then by continuity, a° satisfies (2.3). Our aim is to show that if a e U then

a° attracts any solution u(t, g) with g U; this will imply the uniqueness

of the fixed point in U.

Observe that, owing to (5.1), if g a° then u(t, g) a0 V t

0, and if g < a0 then u(t, g) a° V t 0. Now set W(t; n) =

W(t; g, n) = u(t; ri’) — a(n’), t 0, n e Z. Assuming that

ieJ n’n
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W(t; 1) = > gj(ri’) — <cc, we will show that, V n e
— jEJn’1

f dt u(t; n) — <cc implyillg that u(t; n) — a(n) = 0.
0 jeJ

First, let us prove the assertion under an additional assumption that

g a0. We can then omit the absolute value sign in the definition of W(t; ri).

We begin with the remark that W(t; 1) stays bounded in t. In fact, with the

help of (2.5), W(t; 1) = — — p) (u(t; 1) — a(1)) which is 0. In

other words, W(t; 1) is non-increasing in time. Now we are goillg to use

induction in n: for n = 0, the above assertion holds automatically, owing

to the boundary condition. Assuming the induction hypothesis for n — 1,

write, in view of (2.5):

W(s; ) = - (u(s; n) - a(n)) + [(m + u(t; 1)PPm) (5.2)

iEJ m jej

xfl (ui(t; n
- i))1

- (Am + a(1)PPim) II (a(n
- 1))ml]

IEJ jeJ leJ

or, integrating,

W(t; n) = W(0; n) + f (the RHS of (5.2)) ds. (5.3)

The LHS of (5.3) is W(t; 1) and hence is bounded in t. In the RHS of

(5.3), the sum

1t

[( i)m) (ui(s;n
— 1))m1

m 0 jEJ leJ

mj
- (Am + a(1)ppj,rn) fl (a(n - 1))

/leJ

converges as t —+ cc, owing to the induction hypothesis. Therefore, the

remaining integral

ft [_
(uj(s; n) - a(n))]
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also converges as t —+ cc. This verifies the induction step.

The case where g < a° is analyzed in a similar fashion. In a general case

we pass to g+ = max [g, a°] and g = mm [g, a°] (both operations max

and mm are understood component-wise) and use again the monotonicity of

u(t, g) in g. This completes the proof of Theorem 4 for model L.

Finally, the analysis of the fixed point B of linear system (2.8), (2.9), is

performed in a standard way, and we do not dwell on it.

Proof of Theorem 5. As in Section 4, set Y(n) (= Y(a; n)) = .-a3(n).

We then have Y(O) = J. As to Y(n), n 1, in view of (2.3), (2.55 we have

that

Y(n) — Y(n + 1) = (m + ai(1)PPim)
jeJ

[n (ai(n
-
i))1

(al(n))m1 ]teJ 1E3

This suggests that Y(n) can be sought in the form

ml

Y(n) = > (m + aj(1)ppj,rn) fl (ai(n
-

1)) , (5.4)

m jE.J

which, according to Lemma 4.2, is t9Y(n — 1), ‘0 being given by (2.15).

So, Y(n) < Jt9Th, and if i9 < 1, this implies an exponential and in fact a

super-exponential decay of a(n) as n —* cc, i.e., bound (2.16). The proof of

Theorem 5 is now complete.

Proof of Theorem 6(A). The existence, under Condition 1, of the fixed

point B = (B(n)) is straightforward. Also, bound (3.1) implies that in model

L, under (1.1), a0 e U and Eqn (3.4) holds. This completes the proof of

statement (A).

The proof of Theorem 6(B) is carried in Section 6.

6. Convergence to the limiting model

Proof of Theorem 3. The proof of this theorem essentially repeats the

argument used in [MS] (and other papers quoted in Introduction), and we

21



will oniy sketch it. We use notation similar to {MS], Section 3. The first step

is to make a statement about the convergence of the generator AN of the

Markov r-process in model L (see Section 4) to the operator related to the

RHS of of (2.1) precise. The following lemma is used here:

Lemma 6.1. V g E U, t 0, j e J and N e Z, the derivatives

Out 32u(’t“
‘‘, and “ ‘‘ , exist and satisfy

6g(n) 8gj(fl)0gj(fl)

8uk(r,t,g)
< CieC2t (6.1.1)

3gj(n)

and
D2uk(r,t,g)

,- c3

8g(n)8g’(n)

where C1, 02 and C3 are positive constants.

The proof of Lemma 6.1 is similar to that of Lemma 3.2 from [MS] and

omitted. We then introduce the set D of functions f : —+ R for which

8f(g) a2f(g) . .

the derivatives , and exist for all g, j, , ri, n and are
8g(n) 3g(n)ag’(n)

uniformly bounded in the absolute value by a constant c = c(f) < cc. D is

dense in the space C(t?) of continuous functions on U (with the standard

sup-norm). Furthermore, let AN denote the generator of the r-process in

model L, with the matrix entries given by (4.1). Then, as it is easy to see, V

f e D, urn ANf(g) = Af(g), where A is an operator defined by
N-*oo

Af(r) = [rin+i -r(n)] + (m+ ri(1)PPirn)

1<i<Jn>1 m 1<j<J

fi (:) (ri(n -1)
-

Ti(fl))

m

f(r).

m’, rn” : m 1,

m’ + rn” = m
(6.2)

Observe that the operator semi-groups TN(t) and T(t), t 0, generated

in C(l7) by AN and A are continuous and contracting.
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If D0 denotes the subset of D consisting of functions f that depend on

finitely many variables gj(n) then D0 is dense in D and hence in C(U). As

in {VDK] and [MS], it is easy to see that T(t)D0 C D. It remains to use

general facts about the convergence of distributions of Markov processes (see

[EK], Chapter 1, Proposition 3.3 and Theorem 7.1). This gives the assertion

of Theorem 3.

Proof of Theorems 6(B). Theorem 1 allows us to use the same argument

as, e.g., in [MS]. Namely, the sequence of probability measures PN is compact,

and any of its limit points is a measure concentrated on fixed points of (2.1),

(2.2.1-2). Thus, it suffices to check that if ir is a limit point then r(uj = 1,

which in turn will follow from the bound iE-V(. ; 1) <oc. Now by Theorem

1,

E,,.V(. ;1) <

jEJ nEZ

and the RHS is finite under condition (1.1). This completes the proof of

Theorem 6(B).

7. A simplified model

The model considered in this section is where probabilities p and Pj,m do

not depend on j; thus subscript j will be omitted from this notation. The

main simplification is that the total throughput rate in the whole network is

A(1 — p*)_l, where A is the sum (2.14). It is also easy to calculate the total

rate A of the dedicated traffic in a sub-set of stations IC C J (cf. (1.2)):

(m+Ap*(1_p*)_lpm). (7.1)

m: m=OVjC

Thus, the above principle of the dedicated traffic capacity (see Section 1) can

be now stated as a formal Conjecture: the inequality

1
ri:=max—jAc<1 (7.2)

describes the sub-criticality domain for the simplified model L, in the sense
that a) condition (7.2) is sufficient, and b) if the inequality sign in (7.2) is
reversed, the network does not have a proper equilibrium distribution.
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As was said, the general results given in the previous sections are not

sufficient for proving this conjecture. However, under additional assumptions

about rates Am and probabilities Pm we can establish this conjecture in the

limit N —f oc. These assumptions are that, for some M°, M’ 1 and q, q,

e [0,1], j e J, with = = 1,

A=Afl(q)m1( M°
ifmI=M°,

mjj
leJ

Am = 0, otherwise, (7.3)

and
pmAfl(qi)m1( M ), ifm=M’,

1eJ

pm = 0, otherwise. (7.4)

Here, ( M ), for M,m1,... , mj E Z, 1<k<J mk = M, stands
\ml,... ,mj — —

for the product
(M (M — mi)

.... The L-model of this form is called
\m1J \ m

multinomial. Here,

= A + 1*P*
(qi)Ml).

(7.5)

lelC IE)(

Also, for a multinomial L-model, Eqn. (2.5) takes the form

/

(t,g;n) = — u(t,g;n)+A ( quk(t,g;n— 1))

i<i<J i<k<J

/

+p u(t,g;1)( uk(t;n_1)) (7.6)

i<j<J i<k<J

and Eqn (2.12)

M1

Y(n)=A( ak(n_1)) +lP*A( ak(n_1)) . (7.7)

i<k<J i<k<J
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Here, as in Section 6, Y(n)
=

a(n), n e Z.

A condition for a super-exponential decay in the multinomial L-model is

that
= min{M°, M’] 2, (7.8)

and

A (max
(q)MO

+
(q)M1)

<1 (79)

Theorem 7. For a multinomial L-model, under condition (7.2) there

exists a solution a e U3 of (2.3). On the contrary, if the inequality sign in

(7.2) is reversed, system (2.1) does not have a fixed point in U3.

Furthermore, if conditions (7.2), (7.8) and (7.9) holds, fixed point a in

the multinomial model L has a super-exponential decay:

a(n) <CM_1)/(M*_1) z+, i j. (7.10)

Applying Theorem 4 yields the following

Corollary. For a multinomial L-model, under condition (7.2) there exists

a unique a E U3 solving (2.3), and V g U3, the solution u(t, g) of (2.1),

(2.2.1-2) converges to a.

Proof of Theorem 7. As in the proof of Theorem 6(A), we analyse Eqn

(7.7). A bound similar to (4.4) is that

the RHS of (7.7) <jY(n — 1) — Y(n), n E Z. (7.11)

So, if ?7 < 1, Y(ri) decays exponentially with n. However, if one in addition

assumes (7.8) and (7.9), it is possible to obtain more:

Y(n) <iY(n — 1)M* n e Z+.

which leads to (7.10).

Reversing the inequality sign in (7.2) leads to the absence of a fixed point

in U3 in a straightforward way.

In memoriam. We dedicate this paper to the memory of Roland Do

brushin (1929—1995) whose influence upon both of us, both scientifically and
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personally, is difficult to overestimate. Roland pioneered rigorous studying

of many aspects of the queueing network theory; the interested reader can

find more details in [KPSJ. See also [D].
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