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In this talk the gauge symmetry for Wilsonian flows in pure Yang-Mills theories is dis

cussed. The background field formalism is used for the construction of a gauge invariant

effective action. The symmetries of the effective action under gauge transformations for

both the gauge field and the auxiliary background field are separately evaluated. Mod

ified Ward-Takahashi and background field identities are used in my study. Finally it

is shown how the symmetry properties of the full theory are restored in the limit where

the cut-off is removed.

Introduction and aim: Wilsonian or Exact renormalisation group (ERG) equations

have successfully been applied to non-perturbative phenomena in quantum field

theories. Hence an ERG formulation of gauge theories is a promising tool for re

solving open questions concerning the non-perturbative regime of these theories,

e.g. confinement, chiral symmetry breaking. A key hurdle in such a task concerns

the consistent and practicable introduction of an infra-red cut-off in a theory with

a non-linear local symmetry.

In this talk° I will discuss this difficult matter in some detail. The quest can

be presented as follow: How can it be ensured that a Wilsonian effective action

shows the gauge symmetry of the underlying full theory? Let me first explain in

more detail why this question requires a surgical look into. Implementations of the

ERG’ are most intricate when the symmetries of the theory are deformed by the

intrinsic infra-red cut-off to this approach. As the integration of the flow equation

is carried out it is necessary to guarantee that the information about the inherent

symmetries of the theory is not washed out, In general, much work has been

devoted to overcoming the involved problems mainly within different approaches to

non-Abelian theories.3’46’7Here, for the sake of clarity, I will discuss this problem

for pure Yang-Mills theory. Moreover I use an approach to these theories within

the background field formalism which permits the definition of a gauge invariant

effective action.

atalk presented by FF at the Second Conference on the

Exact Renormalization Group, Roma, Sep. 18-22, 2000.
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The aim is to clarify how it can be ensured that after the complete integration

of the ERG equations, z.e. flow the cut-off scale k to zero, a gauge invariant solution

is obtained without the need of an extra fine-tuning. Furthermore, I will show that

the resurgent symmetry does indeed correspond to the inherent gauge one. Most

technical details will be bypassed in this presentation and may be found in a recent

letter,2

At the centre of my presentation is the quest of understanding how physi

cal information is encrypted along the flow through an interplay between gauge

invariance, Ward-Takahashi identities and background field identities. A similar

programme has been pursued a few years ago in the context of Abelian theories.5

Background field identities were shown to contain the Ward identities under a re

quirement of gauge invariance.

The key ingredient of the present approach is the ERG equation for the effective

action “kS It describes the logarithmic rate of the change of I’k with respect to the

scale k. Following the standard implementation of the background field formalism

I introduce a non-dynamical auxiliary field A, the so-called background gauge field.

Then formally the flow equation for pure Yang-Mills may be written as:

8tfk{A, c, c*; A] = Tr + RA) aRA — Tr + Rc)8tRc. (1)

I use the common notation where t = in k and the trace Tr denotes a sum over

momenta, Lorentz and gauge group indices. The functions RA and R implement

the infra-red cut-off for the gauge field A and ghost fields c and c* respectively.

They may also depend on the background field, to which I now turn your attention.

Background field formalism: I briefly summarise some important points about the

background field formalism, in particular the role of different gauge transformations.

The formalism is settled on the use of a background field dependent gauge-fixing

condition that is invariant under a simultaneous gauge transformation of A and of

the fields A, c and c. This can be used for a definition of an effective action which

is invariant under this combined gauge transformation. As A is involved in this

transformation, the invariance of the effective action is, a priorz, only an auxiliary

symmetry. However, for the choice A = A it becomes the inherent gauge symmetry

of the theory.

For a pure Yang-Mills theory including the ghost term,

SSc1+Sgf+Sgh. (2)

The classical action S1 = jFF contains the field strength tensor F(A) =

— + g {A, Au], where F. ta and A,1 = At with the generators

ta satisfying [ta, tb] fabctc and tr tatb — dab, I also use the shorthand notation

fr E f ddx. In the adjoint representation, the covariant derivative is

D(A) = ab8
+ gfaA

. (3)

The natural choice for the gauge fixing is the so-called background field gauge. The

corresponding gauge-fixing and ghost actions are respectively,

= - f (A - A) DDbc (A - A), Sgh = f C
cd

Cd, (4)
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which involves the covariant derivative 15 D(A). The symmetries of the action

in (2) can be inspected by two different gauge transformations. The first one gauge

transforms the dynamic fields A, c, and c — it represents the underlying symmetry

of the theory. Its infinitesimal generator ga in a natural representation is defined

as

ca_Dab abc( 5—gf
Cb

+c
. (

From the action of ga on the fields it can be shown that A transforms inhomo

geneously, the ghosts transform as tensors and A is invariant. It follows that the

covariant derivative transforms as a tensor.

The second transformation, denoted by the generated ga, acts only on the

background field,

ça=j5ab.L (6)

and under its action A transforms inhomogeneously like A under ga, and therefore

the covariant derivative 15 also transforms as a tensor. Note that the auxiliary

transformation as it stands, does not carry any physical information.

I now turn your attention to the manner in which and ga operate on the

action S. The classical action is invariant under both transformations since it does

not depend on the background field, while neither Sgf nor Sgh are invariant under

(5) or (6). For (5) it follows,

ga(x)sgf = DDD(A — A)(x), ca(x)sgh fbdc15d
(cDce) . (7)

Now from the explicit expression for Sgf and Sgh, as given in (4), it follows that (7)

just displays _gaSgf and _gaSgh respectively. Thus, in the background field gauge,

each term in the Yang-Mills action (2) is separately invariant under the combined

transformation + . A key point of the background field formalism has been

reached: the action resulting from setting the background field equal to the gauge

field, i.e. S[A, c, c*] S[A, c, c; A = A] is invariant under the physical symmetry

generated by (5), gaS[A, c, c*] = 0, with S{A, c, c*; A] satisfying the classical ‘Ward

Takahashi identity’, c”s = ga(Sgf
+ Sgh).

At quantum level this symmetry turns into the gauge invariance of the effective

action F[A, c, c*; A = A], which in turn satisfies the Ward-Takahashi identity for a

non-Abelian gauge theory. However I remind you that it is only the combination of

both statements that gives a physical meaning to this gauge invariance. Note that

heuristically this result stems from the observation that in the quantised theory the

source only couple to the fluctuation field

(8)

and the gauge fixing condition (4) oniy constrains a.
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Background field dependent Wilsonian flows: In order to effectively implement the

background field formalism for the coarse-grained effective Yang-Mills action I

choose the regulator terms

= /Sk,A + ZSk,C, (9)

for the gauge and the ghost fields, respectively, to be3

Sk,A = f(A - A) R4(2)(A - A) (10)

=

c R(P) Cb. (11)

The arguments 2 and 1 of the regulator functions are appropriately defined

background field dependent Laplaceans, and their choice might determine the sym

metries of the resulting theory. For instance, in order to have an action Sk which is

gauge invariant under the combined transformation it is only necessary to required

that both 2 and P2 transform as tensors under + ‘. Thus, in the following, I

shall assume that such a choice has been made.

Up to this point, I have restricted the presentation to the classical action with

the regulator terms (9) added. The computation of the coarse-grained effective

action “k follows the usual procedure. Consider the Schwinger functional 147k E

Wk[J,
, *; A],

exp l’Vk =f fl {VA VCa Vc} exp [_sk +f (J(A—A) + 7]ca_c17a)]. (12)

where (J, i,
77*) are the respective sources. Then the effective action Fk is given by

Fk[A,c,c;A] = —Wk[J,77,77 A] — Sk[A,c,c*;A]

+ f(J(A -A) + Ca ca). (13)

The flow equation for T’k has already been given at the beginning, (1). Now I

introduce the effective action Fk,

,
c*] Fk{A, C, c*; A = A]. (14)

As I shall argue later, this new action is gauge-invariant. Its flow equation, of course,

is given by the flow of T’k in (1), but evaluated at A A. It is important to stress

that 8tk, since it depends on the second functional derivatives of fk with respect

to the dynamical fields (at A = A), is a functional of Fk and zwt a functional of Fk.

This means that is not sufficient to study the symmetries of fk but also necessary

to study those of Fk.

Modified and background field Ward -Takahashi identities: I will now discuss the

Ward-Takahashi identities that are related to the gauge transformations (5) and

(6). In the Wilsonian formalism, due to the presence of a coarse-graining, these

identities receive a contribution from the regulator term. The identity that follows
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from considering cark is called the modified Ward-Takahashi identities (mWI).

A second identity follows from Fk and I shall denote it as the background field

Ward -Takahashi identities (bWI). -

As Sk is invariant under the action of ça
+ it can be read off from the

Schwinger functional (12) and the effective action (13), that ga
+

ça leaves the

functional Fk invariant for generic A and A configurations,

(ga ) F = 0. (15)

Therefore by requiring A = A, f’k is also invariant, g’1rk = 0, which for k = 0

expresses the desired physical gauge invariance. Consequently, for k 0, physical

gauge invariance is encoded in the behaviour of Fk under the transformation ‘. I

emphasise again that, in order to attain this crucial result, I had to keep track of

the effects from the transformations and on Fk separately.

For pure Yang-Mills theories the mWI is given by

(x) Fk
= qa()

(Sgf + Sgh) + L) + Lk(x). (16)

Both Lk and LR,k display ioop terms. The first term Lk stands for the well-known

loop contributions to Ward -Takahashi identities in non-Abelian gauge theories orig

inating from ga (Sgf + Sgh))J, whilst the second term is due to the regulator terms

and clearly vanishes when k — 0. It follows that the mWI (16) turns into the

standard WI for k 0,

= L . (17)

As for the bWI, by applying to Wk[J, i, i; A] it follows from (12) and (13) after

some manipulations that the effective action I’k obeys the equation

cark = a(3gf
+ Sgh) — (L + Lk). (18)

The combined gauge invariance of Fk, Eq. (15), follows immediately from this iden

tity and the mWI given by (16).

Symmetries of the flow and physical gauge invariance: The implementation of a coarse

graining modifies the gauge symmetry of the theory as I mentioned before. At the

formal level it is clear that the original symmetry is restored when the coarse

graining scale is removed. A more delicate problem is to guarantee that this also

happens at the level of the solution to the flow equation.

To understand how gauge invariance is encoded throughout the flow, it is pivotal

to also study the action of the symmetry transformations on aFk, Eq, (1). Under

the combined gauge transformation the flow of I’k transforms as

(a+ )8tFk = 0. (19)

An immediate consequence is that 8t1’k = 0. Note that the only input for (19)

was the invariance of1’k Thus, when the initial effective action PA is invariant under
ga+ qa, it follows that the full effective action F0 is also invariant, (°+

g2)r0 =

0. In other words, (15) and (19) are the proof that the flow and the combined
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transformation commute. Moreover, F0 satisfies the usual WI (17). This means

that the line of arguments for the background field formalism can be followed here

as well. Hence the equation cap0
= 0 displays physical gauge invariance.

Now I wish to make a final remark on the consistency of the mWI (16) with

the flow. Here, as in other formulations of Wilsonian flows in gauge theories,4’7the

flow of the mWI is proportional to itself. Such common property states that if the

effective action Fk satisfies the mWI at some scale k, e.g the initial one k = A, then

Fk automatically satisfies the mWI at any scale k, provided it is obtained from inte

grating the flow equation, and in particular, Pu satisfies the usual Ward-Takahashi

identity.

Summary of the Talk: I have established a complete set of equations relevant for the

control of gauge invariance in the ERG approach to pure Yang-Mills theories. In

particular, it can be inferred that there is no requirement for additional fine-tuning

conditions, despite the presence of a background field. Moreover, I have shown that

invariance of the effective action under a combined gauge transformation of all fields

follows from mWI and bWI. More generally, two of these three properties of the

effective action (invariance, mWI and bWI) lead to the third one.

Consequently, a key property of the usual background field formalism is main

tained in the ERG approach: by virtue of the auxiliary background identity it

follows that physical gauge invariance is reflected in the invariance of the effective

action under the combined gauge transformation of all fields.

The formalism is not only suitable for formal or analytic analysis, but also,

it elucidates the problem of how to filter the contribution of spurious unphysical

modes in a numerical computation of approximate solutions to flow equations in

gauge theories.
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