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Abstract

The standard model fermion spectrum, including a right handed neu

trino, can be obtained as a zero-mode of the Dirac operator on a space

which is the product of complex projective spaces of complex dimension

two and three. The construction requires the introduction of topologically

non-trivial background gauge fields. By borrowing from ideas in Connes’

non-commutative geometry and making the complex spaces ‘fuzzy’ a ma

trix approximation to the fuzzy space allows for three generations to

emerge. The generations are associated with three copies of space-time.

Higgs’ fields and Yukawa couplings can be accommodated in the usual

way.

1 Introduction

Current descriptions of the force of gravity and the fundamental interactions of

particle physics are set in the language of differential geometry and fibre bundles.

A unified description of gravity and gauge theories has long been one of the

main goals of modern theoretical physics and superstring theory is currently the

most popular framework for this endeavour. Nevertheless it may be worthwhile
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Aspects” in honour of A.P. Balachandran’s 65th birthday, Vietri sul Man, Salerno, Italy
26th-3lst May, 2003
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pursuing other avenues of investigation and a suggestion is made here, based on

an observation of a curious connection between the standard model of particle

physics and the Atiyah-Singer index theorem on complex projective spaces.

The motivation is to bring the geometrical descriptions of general relativity

and Yang-Mills theory closer together. In a geometrical approach to fundamen

tal interactions physical fields are tensors associated with the tangent space of

an underlying four dimensional manifold, M:

General Relativity Yang-Mills Theory

Manifold: M Manifold: M

Tangent Bundle: TM Vector Bundle: S(M)

Lorentzian Metric: g Connection: A

Spin Connection: w Curvature: F

Curvature: R Local Gauge group:

Local tangent space rotations: e.g. U(n) or SU(3) x SU(2) x U(1)

SO(3,l) (or Sl(2,C))

In Kaluza-Klein theories one brings these structures together by taking a

compact co-set space, C G/H, of small radius and extending M to M x C.

The gauge group is identified with the isometry group G of C. In the spirit of

general relativity it is perhaps more natural to identify the holonomy group H

of C with the Yang-Mills gauge group, since it is the holonomy group of M that

takes the centre stage in gravity. If C is a complex manifold, with n complex

dimensions and an hermitian metric, it has holonomy group U(n) in general

and so might furnish a U(n) gauge theory.

If the Dirac operator on M x C decomposes as a direct sum

iZiiM®1+75®iC, (1)

where 5
= 70717273 is the chirality operator on M, then eigenspinors (of the

internal Dirac operator,
= A(, (2)

will have eigenvalues of the order of the Ricci scalar on C. In the spirit of

Kaluza-Klein theory, if C has a very large curvature, only the zero eigenstates

will contribute to the low energy spectrum seen in M. It was shown by Witten

[1] that the chiral fermion spectrum of the standard model in M cannot be

obtained in this way purely from the metric and spin connection on C and

this essentially killed the Kaluza-Klein programme in the early ‘80 s. Some

extra ingredient is needed and we shall avoid Witten’s theorem by introducing

fundamental gauge fields.

We are thus led to an investigation of the zero modes of the Dirac operator

on complex manifolds in the presence of background gauge fields but we first

discuss Clifford algebras and complex vector spaces.
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2 Clifford Algebras on Complex Vector Spaces

Let z, i = 1,. . . , n be complex co-ordinates on a complex manifold with com

plex dimension n. Dirac fermions have components and Weyl fermions 2n_1

components. The 7-matrices can be chosen so that

{7a,
} = {,} = 0, } = 26 (3)

with a, b indices labelling an orthonormal basis. This Clifford algebra is iso

morphic to the algebra of of n-fermionic creation and annihilation operators

[2]. Because of the fermionic nature of the creation and annihilation operators,

= and (b°)t = *ya, the Fock space is 2’-dimensional. Denoting the

vacuum state by Ill > we can construct a basis for the Fock space

id>, da >
7a, ç1ab

>
7ab =_1ç1ã>, dl >= etc.,

-

- (4)

where =
(l/2)[7ã,7b1, and higher rank products are similarly anti-symmetrised.

A Dirac spinor can then be expanded as

>. (5)

This can be decomposed into two Weyl spinors

= Id>+i>+... (6)

= aIda > + > +.... (7)

We can thus read off how the spinor components transform under the

SU(n) part of the holonomy:

1 SU(n) SINGLET

ii ANTI-FUNDAMENTAL

(8)

n FUNDAMENTAL

1 SINGLET.

The U(1) charges are more subtle, since the creation and annihilation operators

have U(1) phases. Normalise the charge so that b has charge +1 then the

vacuum can have a charge, which will be denoted by k for the moment, and we

shall fix later. The U(1) charges of our Fock space basis are now

id >‘ k; Ida k —

...
idalan >- k — . (9)

As an example consider the case of a 4-dimensional space with n = 2. With

out any complex structure the holonomy group is SO(4) SU(2) x SU(2)

but this can be restricted to SU(2) x U(1) when a complex structure and a

3



compatible hermitian metric are introduced. From the decomposition under

SU(2) — U(1)
2 —+11+1_i

(10)

we see the following structure:

80(4) SU(2) x SU(2) —÷ SU(2) x U(1) —+ SU(2) x U(1)

(2,1) + (1,2) —* 2o + (1 + 1_i) —f 2_ + (lo + 1_2)

DIRAC > +( > +>)
(VL)

VR eR
eL

(k=1) (k=0)

(11)

It is natural to take k = 1, as indicated in the middle column. But if we shift

k to zero we see that the states in the last column have the quantum numbers

of the electro-weak sector of the standard model. I first became aware of this

assignment of quantum numbers to the components of a spinor for n = 2 from

Balachandran [3].

Now consider a 6-dimensional space with n = 3. Without any complex

structure the holonomy group is 80(6) SU(4) but this can be restricted to

SU(3) x U(1) when a complex structure and a compatible hermitian metric are

introduced:

80(6) SU(4) —
SU(3) x U(1)

4 + f (3—1/2 + 13/2) + (1/2 + 1_3/2) (12)

DIRAC (I> I1:>) (I> I>)
(k=3/2)

In this instance we see that k = 3/2 gives the correct U(1) charges for the

decomposition 4 — 3—1/2 + 13/2 (the normalisation of the U(1) charge is at our

disposal). If k is shifted to zero a single Weyl fermion reduces to

4 — 3_ + 10. (13)

If we now take the tensor product of a Dirac fermion for n = 2 with k = 0,

dividing the U(1) charges by two to give 21/2 + (l + 1k), and and Weyl

fermion for ri = 3, dividing the U(1) charges by —3 to give 32/3 + 1, we find

(32/3 + 1) ® ((21/2) + (lo + 1_i)) =

(3, 2) + (3, 1)3 + (3, 1)1/3 + (1, 2)1/2 + (1, 1) + (1, 1)C14)

with the superscript ± denoting the chirality. The fermion spectrum of the

standard model emerges, including a right-handed neutrino. This structure can
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be summarised by putting the 16 fermion states into a 4 x 4 matrix,

U U U 11L

n d 4 ej
g b

UR UR UR 1’R

d 4 4 e

and the action of SU(3) x SU(2) x U(1) on this matrix is represented by

(16)

where g E U(2) and g E U(3) — the U(i) action is just the difference of the

U(i)’s in U(3) and U(2), if the k = 0 charge assignments in (11) and (13) are

multiplied by and respectively and then subtracted as implied by (16).

3 Global Spinor Fields

The considerations of the last section were purely algebraic and it is a much more

involved question to decide whether these structures can be defined globally on

a given complex space. Indeed it is well known that the complex projective

space CF2 (n = 2) does not admit a globally well defined spin structure [4].

Fortunately even when a complex manifold manifold does not admit a spin

structure it always admits a spinc structure, obtained by introducing a topolog

ically non-trivial U(i) background gauge field. An essential tool in determining

the zero modes of the Dirac operator in a background field is the Atiyah-Singer

index theorem and an analysis of the index on CP was given in Ref. [5] (the

particular case of a U(i) field on CF2 was first analysed, in physicists language,

in Ref. [6]).

Here we quote the results in Ref. [5] for the index of the Dirac operator for

a fermion on CF in a background U(n) gauge field obtained by identifying the

gauge connection with the spin connection, A w. For a fermion which is a

SU(n) singlet and has U(i) charge n) = q the index is

(q+1)”.(q+n)
(17)

where the U(1) charge is normalised so that the fundamental unit of charge is

an integer and q = 0 is the spinc structureJ

A fermion in the fundamental representation, n, of SU(n), with U(1) charge

n) = q + , has index

(q+i)..(q+n—1)(q+n+1)
18Vq

(n—i)!
( )

‘Since the Euler characteristic of CFTh is Xn = n + 1 the first Chern class of the spin

connection is n + 1, by the Gauss-Bonnet theorem. Thus a ‘natural’ unit of charge might

be 1/y = 1/(n + 1) — in these units a fermion of unit charge would couple to the gauge

connection with the same weight as to the spin connection. Relative to this ‘natural’ unit the

charges q in the text have been scaled by Xn so as to make the fundamental unit of charge

equal to unity rather than l/Xn.
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(the U(1) charge is q+ because a U(n) instanton on CF has first Chern class

one, so the U(1) generator is 1 where 1 is the unit n x n matrix, Ref. [5]).

Using these formulae it can be shown that the algebraic structure described

in section 2 is, in fact, global on CF2 x CF3 [5]. We construct a Dirac spinor

on CF2 and positive chirality Weyl spinor on CF3 by taking the following

combinations:

( SU(2) SINGLET WITH q = 0, = 1, = 0

• CF2 —
SU(2) SINGLET WITH q = —3, v_3 = 1, 1(2) = —3

SU(2) DOUBLET WITH q = —2, V_2,2 = —1, Y(2) =

• CF3 — f SU(3) SINGLET WITH q = 0, = 1, Y(3) = 0

SU(3) TRIPLET WITH q = —3, ZL.3,3 = 1, Y(3) = —.

(19)

Defining the hypercharge as

Y := Y(2) — Y(3) (20)

the tensor product of these zero-modes is

(32/3 + 1o) 0 ((2_1/2) + (lo + 1_)) =

(3,2)/6 + (3,1)/3 + (3,1)1/3 + (1,2)1/2 + (1,1) + (1,2)t1,

(21)

which is precisely that of (14).

The structure here was obtained by identifying the spin connection with the

gauge connection, A w, but the existence of zero-modes does not require this,

the connections can be varied independently and the zero-modes are guaranteed

to persist by the index theorem — provided the connections are kept within their

topological classes. Unlike standard Kaluza-Klein theory the structure here does

not rely on any special isometry symmetry being present.

4 Harmonic Expansion of zero-modes

The zero-modes of the Dirac operator on CF are closely related to the repre

sentation theory of SU(n + 1). Consider, for example, the index for fermions on

CF2 which are SU(2) singlets with U(1) charge q. Equation (17), with n = 2,

gives

Vq
(q+1)(q+2) (22)

For q = 0, 1, 2,3,... this gives iiq = 1, 3, 6, 10,... and it is no coincidence that

these are the dimensions of irreducible representations of SU(3) — more specifi

cally the symmetric irreducible representations. The same is true for CF3. The

representations required in section 3 all had index with v = 1 and so corre

spond to singlets of SU(3) on CF2 and singlets of SU(4) on CF3. This has the
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the immediate consequence that there exists a metric and a gauge connection in

the relevant topological sector for which these zero-modes are constant spinors.

Although the existence of zero-modes, being a topological statement, does not

require any specific metric on CF, one can choose to work with the SU(n + 1)

symmetric metric (the Fubini-Study metric [7]). There is then a linear combi

nation of spinor components for which the gauge connection exactly cancels the

spin connection in the Dirac equation [8]

= 7a/I (8 + + i()A) (, (23)

so a solution is to take ( = const (p here is the U(1) charge coupling to the

U(1) gauge connection — there is a contribution to q from the spin connection

too [5]).

The fact that the zero-modes have such a simple structure suggests introduc

ing a new ingredient to the construction presented here. The full space M x C

discussed in the introduction is a fourteen dimensional space and so one cannot

hope that the standard model would be renormalisable in this space, but we can

expect a renormalisable theory if the internal space C had only a finite number

of degrees of freedom rather than the infinite number of a continuum manifold.

Borrowing from ideas of Connes [9] this suggests that one might replace the

complex projective spaces by finite matrix approximations — fuzzy CF ‘s [10].

We are thus led to a picture of the standard model involving non-commutative

geometry similar in spirit, but different in detail, to the Connes-Lott model

[11]. Fuzzy CF2 has finite matrix approximations of dimension 1 x 1, 3 x 3,

6 x 6, . . . , d x dL, where dL = (L + 1)(L + 2)/2 are the dimensions of the

symmetric representations of SU(3), and fuzzy CF3 similarly requires matrix

algebras whose size is dictated by the symmetric representations of SU(4) [10].

If we replace the continuum CF2 x CF3 with its fuzzy version, CF x CF,

then chiral spinors become matrices

(z) —* E Mat ®c2’1, (24)

where MatdL is the algebra of dL x dL matrices, z is a point in CP’ and

c2—’ is chiral spin space. In fact, for the constant spinors that we require

for our zero-modes, we only need the trivial representations, dL = 1, for both

CF and CFj.

5 Generations and Yukawa Couplings

The construction described in the previous section only provides one generation

of the standard model, because the index of the Dirac operator is +1. An

obvious question is whether or not it is possible to obtain 3 generations in some

way. Since the inclusion of generations requires an SU(3) symmetry it is natural

to ask whether or not the SU(3) isometry group of CF2 SU(3)/U(2) might

be able to provide the extra generations, so let us focus on CF (fuzzy CF2

was analysed in detail in Ref. [3]). Since the SU(3) generation symmetry is
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broken in the real world, let us assume that it is broken in our model too.

For example we could deform the Fubini-Study metric so that it no longer has

SU(3) as its group of Killing vectors. This will change the spin connection w, in

equation (23), while leaving the gauge connection A11 unchanged. We no longer

have exact cancellation between the gauge and spin connections, there are still

zero-modes but they must become non-trivial functions of position, 8( 0.

An immediate consequence of this is that singlets alone are no longer sufficient

for a harmonic expansion of ((z), higher dimensional representation of SU(3)

must be included. The simplest possibility is that dL in (24) is three and (is

then a 3 x 3 matrix, with SU(3) representation content 3 x 3 = 1 + 8, whose

entries depend on the parameters describing the metric deformation. The Dirac

operator (1) on M x C acts on spinors 1’(x) = ‘(x) 0 ( where b(x) is spinor on

M, (x E M), and we are led to consider

i4r(x)
=

® çt) (iiM ®i) ((x)
®

c) = iM’u(x)) ®

(25)

Now is a 3 x 3 hermitian matrix and so can be diagonalised by an SU(3)

transformation and the three eigenstates would look like three generations in

M.
One can introduce Yukawa couplings in the usual way: represents the set

of zero-modes which we shall denote by

- ( U ‘\ (UR)2/3 L .— ( N “\ (ER)_l

QL ñ (R)l/3 E
)_1/2

(NR)o,

(26)

where each of these states is a 3 x 3 matrix (the subscript denotes the hyper

charge). Introduce Riggs scalars

=

= (iu2)*
= (()*

, (27)

0O J 1/2 ° 1-1/2

which transform under SU(2) x U(1) as 21/2 and 2_1/2 respectively and are

constant on CP. SU(3) singlets can now be constructed in the usual manner:

ñv (t) + ULu (L) + it (tL), (28)

where D, U and £ are arbitrary complex 3 x 3 matrices of Yukawa couplings. The

usual argument to derive the CKM matrix goes through without modification

— U(3) rotations act on the left of the fermion fields to diagonalise U and £

and the CKM matrix is in V.

The point of this discussion is to show that all the usual arguments used

to derive the CKM matrix work with this fuzzy construction because they only

require acting on the fermion generations from the left by U(3), and this does

not interfere with the fact that we have diagonalised (t( by acting on ( from

the right. All the standard arguments for the neutrino sector go through as well
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— one can introduce three Dirac and three Majorana neutrino masses as well

as twelve complex couplings [12]. Of course the individual eigenstates here will

not be zero-modes of the Dirac operator, in general, and more work is necessary

to determine whether or not this suggestion for the origin of the generations is

viable.

6 Conclusions

It has been argued that one generation of the standard model can be obtained as

a zero-mode of the Dirac operator on CF2 x CF3, by introducing fundamental

U(2) x U(3) gauge fields and identifying the spin connection with the gauge con

nection. The discussion circumvents Witten’s no-go theorem for chiral fermions

in Kaluza-Klein theories precisely by introducing fundamental gauge fields

indeed fundamental gauge are essential as soon as one considers CF2 because

CF2 does not admit spinors without them. Three generations can be obtained

by considering the SU(3) isometry group of CF2 to be related to generation

symmetry. Introducing concepts from non-commuting geometry and making

the complex projective spaces fuzzy allows one to represent the zero-modes as

finite matrices and distorting the metric on CF2 away from the SU(3) sym

metric metric can lead to 3 x 3 matrices whose eigenstates we identify with the

three generations.

The picture presented here borrows from many ideas that are in the air at

the moment, but it modifies them slightly and puts them together in a rather

different way than usual. Kaluza-Klein theory uses the isometry group as the

gauge group, but here it is the holonomy group. In Connes’ non-commutative

version of the standard model two copies of space-time are introduced to ac

commodate the two-component Higgs field while here three copies of space-time

are being introduced to accommodate three generations. Also the three copies

used here are being directly related to a fuzzy space and I am not aware of any

such interpretation in the literature of the Connes-Lott model — though the

two copies used there do look very like a fuzzy sphere and may have such an

interpretation (associating the generations with different copies of space-time

was suggested in Ref. [13]). Another difference between the construction pre

sented here and the Connes-Lott model is that the gauge symmetries here are

not automorphisms of the matrix algebra.

Many questions remain to be investigated in this approach. The holonomy

group of CF2 x CF3 is U(2) x U(3), which has two U(1) factors, but only

one linear combination, dictated by (20), has been used. This seems natural in

view of the structure in equations (15) and (16), but it raises the question of

the significance, if any, of the orthogonal combination of U(1) generators, which

remains open. The Higgs’ fields and Yukawa couplings were introduced by hand

here but it would clearly be preferable to have a geometrical interpretation —

it would be satisfying if the Yukawa couplings could be incorporated into the

Dirac operator on the fuzzy spaces as in the Connes-Lott model. The role of

the SU(4) isometry group of CF3 has not been discussed here either — it is
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tempting the think that it may be related to the 4 x 4 structure of equation (15)

in some, way but this remains to be investigated.
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