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Summary - We study quantized Yang-Mills theory with massive vector fields in the framework of

causal perturbation theory. The most general form of the interaction which is invariant under operator

gauge transformations is pointed out. The generator of these transformations generally fails to be nilpotent.

This defect, however, is easily cured by including scalar fields in the gauge transformations. Due to gauge

invariance these scalar gauge fields couple to the Yang-Mills fields with predicted strength. We also show

that invariance under ghost charge conjugation fixes the form of the interaction completely. The coupling of

the Yang-Mills fields and the scalar gauge fields to matter is investigated. It is proven that gauge invariance

implies unitarity of the physical S-matrix. We always work in the Pock space of free quantum fields in which

all expressions are mathematically well defined.

1. Introduction

Recently, massless Yang-Mills theory has been succesfully studied in the framework of causal perturba

tion theory (1-4]. The central object in this approach is the causal S-matrix

S[g] = 1+Jd4xi.d4rnT(xi...xn) (11)

T’ specifies the theory. For massless Yang Mills theories it is given by

T’(xY—iefabc{ 4aAvbF — : AaUb0fi :}() (1.2)

e is the coupling constant and fabc are the structure constants of a non-abelian semi-simple compact gauge

group G. are the free gauge fields, defined by

8 . 8A) 0, [A(x), A(y)]_ iabgDQ(X
—

y) (1.3)

where D0 is the Pauli - Jordan commutation function for rn = 0. F are the free field strenghts:

F8A — 8MA (1.4)

and ua and a are the free ghost fields:

O Oa() = 0 Ofia(X) = 0, {a(), Ub(Y)}+ = 6abDO(
—

y) (1.5)

{a(), ub(y)}+ = {fia(X), b(y)}+ = 0 (1.6)

A detailed discussion of the algebraic properties of these ghost fields can be found in (5].
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Differentiating (1.3) we get
[8Afr),8A(y)]_=0 (1.7) -

[8A(z),F’(y)]_ =0 (1.8)

Despite their simplicity, these equations have important consequences. For, let us consider the operator

Q1t J cPf(8pA(z))8oua(z) (1.9)

x0=const.

Using the Leibnitz rule for graded algebras gives

= {Q, Q}+ = / cPf / d3U{[8A(x), 8A(y)]_ Oso Oyo (uafr)ub(y)) +

toconst. yo=const.

+ (8pA(y)OpA(x))8:o 8;o{ua(z),uoM}+} = 0 (1.10)

Thus eqs. (1.6, 1.7) make Q a differential operator in the sense of homological algebra. This allows for

standard homological notions [6,7]: Let F = {F} be the field algebra consisting of the polynomials in the

(smeared) gauge and ghost fields and their Wick powers. Consider the ghost charge operator [5]

Qd4f / d3füa(x)Ooua(z) (1.11)

ro=const.

and the corresponding derivation 6 in F

(1.12)

We say an operator F has ghost charge z if
69F=zF (1.13)

Since Q, has integer spectrum [5] we have z € Z. The operators F, with ghost charge z form the subspace

F:, and we obviously have
(1.14)

zEZ

which makes F a Z-graded algebra. Consider the unitary operator [5]

E1(_1)Q, E2 = 1 (1.15)

It induces the canonical involution w in F by

wFt1EFE, w2=1 (1.16)

We define the bosonic part El and the fermionic part F1 of an operator F by

=ewFb(f)= (t)Fe(f) (1.17)

and the graded bracket of two operators F and C by

[F,G]=[F6-i-F,,G6-i-G1]t![F6,G6]_+[Fb,Gf]_ +[Ff,Gb]_. +{F1,G1}+ (1.18)

We also define on F the operator dq by

F] = QF — (wF)Q (1.19)
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This is a differential operator:

d = 0, {Q, [Q, F]_}+ = [Q, {Q, F}+]_ = 0 (1.20)

and an antiderivation with respect to w:

dq(IG) (dQF)G+ (WF)(dQG) (1.21)

The commutator relation

[Qg,Q]Q (1.22)

implies

[6g,dq]__dQ, dFcF2_1 (1.23)

i.e. dQ is a homogeneous homomorphism of degree (—1) over F. This implies in particular that it anticom
mutes with the canonical involution:

{d,w} = 0 (1.24)

We conclude that the quadruplet {F, 6g w, dQ} fits well into the definition of a graded differential algebra

[6].

Let us study the action of dQ on F more explicitly. We find

dQA(x) = iazta(x) (1.25)

dQUa(X) = 0, dQfia(X) = _i8A(x) (1.26)

Eqs. (1.7, 1.8) immediately give two gauge invariants:

dQaA(x) = dqF”’(x) = 0 (1.27)

The above actions of dQ on F may be called free or asymptotic BRS variations since the (formally

defined) full BRS variations of interacting fields [7] reduce to them in the absence of interaction, It is exactly

these free varations we are intersted in when applying causal perturbation theory, since there we are looking

for symmetries of the S-matrix which is defined in the filbert - Fock space H of free asymptotic fields.

The algebra and homology of free BRS operators is well studied in [7,8]. The variations induced by dQ are

also called operator valued gauge transformations in [1] since they emerge from the usual asymptotic gauge

variations in QED [12] by replacing the gauge function x with the ghost operator u. We will often simply

call this asymptotic BRS variations gauge variations and their invariants gauge invariants.

The interaction (1.2) is gauge invariant, i.e. we have

dQT((x) = T’(x), T’(X)efabc : ia{AuaF + : (x) (1.28)

The quintessence of causal perturbation theory is that all higher terms n > 2 in (1.1) are determined

from T’ by Poincaré invariance’and causality [9-12]. This determination is unique up to some (finite!)

normalization constants, which can be determined by the requirement of symmetries and (finitely many)

normalization conditions. is given symbolically by

T(xi,. . , x) = e[T’)(x1) ‘ . .T(x)] (1.29)

where 8 means the time ordered product. This, however, cannot be constructed by multiplying with step

functions, since this would lead to the well known UV-divergences[9,10]. Instead one has to use the method

of distribution splitting, developed by Epstein and Glaser [11] and applied to QED, for example, by Scharf

[12]. Using exactly this construction Duetsch et al. [1-4] have shown that the Yang-Mills theory specified by

(1.2) is gauge invariant in all orders, i.e. the following equations hold true:

dT(x1,.. ,x)] = (1.30)
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.
£)e[T(H(xl) . ‘ T1(r) . . T’(x)] (1.31)

Thus the gauge variation of the are total divergences. One would like to conclude from this the more
convential form of gauge invariance:

limdqS{g]=O (1.32)

While this adabatic limit is well controlled in massive theories [13] the situation is far more difficult in

massless theories, where it generally fails to exist in the S-matrix elements [12,14]. The strength of eq.

( 1.30) is to give a formulation of gauge invariance which is completely independent of the infrared problems

encountered when passing to the adiabatic limit.

The importance of the gauge invariance (1.30) lies in the fact that it enables one to proof the unitary of

the physical S-matrix Sphys defined in the physical subspace of the total Hilbert-Fock H. The latter

one can be defined as the cohomology space of Q or, equivalently, as {KerQ} ej.. {RanQ}.

The paper at hand aims at the construction ofYang-Mills theories with massive gauge (and ghost) fields.

This is usally done via the Riggs mechanism which is known to give a renormalizable, gauge invariant, and

unitary perturbation series. While not questioning the validity of this result we here want to develop a

different approach.

To clearly enlighten this difference let us briefly summarize the logical steps used to derive the perturba

tion series for the Higgs model. There the starting point is a classical Yang-Mills theory defined by an action

which is invariant under the group of local classical gauge transformations Giocai. The gauge fields are

coupled to scalar fields which interact among each other by a mexican hat potential. Then one considers the

classical energy which is a functional on the configuration space of classical fields. Due to the peculiar form

of the classical potential the classical ground state, i.e. the points in the classical configuration space which

minimize the classical energy (often very misleadingly called the vacuum), is found to be degenerate. Then

an arbitrary representative point from this state is chosen. This is called spontaneous symmetry breaking.

After that new classical fields are defined as the original fields shifted by this reference point. Then a gauge

fixing term is added to the action and also the corresponding Fadeev-Popov ghost term included. The total

action is then shown to be BRS-invariant. Then the action is split into two parts: The free part being at most

quadratically in the shifted fields and the interaction part being at least trilinear in these fields. It is only

then that quantization comes into play: The quadratic part of the action defines the quantum kinematical

setup, i.e. the shifted classical fields are quantized as free quantum fields in a Hilbert-Fock space H with

unique (!) vacuum. These free quantized fields describe the in- and outgoing particles. The interacting part

of the action describes the interaction of these particles and allows for the perturbative calculation of Green

functions of the corresponding (only formally defined) interaction fields and, most important, determines

the S-matrix in H. Again a physical subspace Hh5 C H, a formally defined set of physical interacting

observables, and the physical S-matrix Sphys are defined via the homology of the BRS-transformation. It is

then shown that these physical quantities depend neither on the representative point of the ground state of

the classical energy chosen above nor on the the gauge fixing term. Eventually Sphys is shown to be unitary.

In thhis step the BRS-invariance is again the key ingredient. The BRS-charge is often expressed in terms of

the only formally defined interacting quantum fields. Due to its conservation it can, however, be expressed

in terms of the free asymptotic fields as well, Since these are perfectly well defined the latter method is

superior. Moreover, it is exactly this asymptotic BRS-invariance which is needed to proof unitarity of Sphys’

This suggests our approach to massive Yang-Mills theories: We will not take any reference to the classical

theory. So, neither the classical gauge group Giocai nor the concept of spontaneous symmetry breaking will

enter our reasoning. Instead, we immediately start with the quantum theory , defined by given asymptotic

massive gauge and ghost fields and by the generator of the causal S-matrix, T(’)(x). This we demand to

be invariant under asypmtotic BRS-transformations, and we give a classification of all all T(’)(x) with this

property. Since we do not employ the notion of spontaneous symmetry breaking we have no reason to include

scalar fields in our discussion from the very beginning. Instead, we derive the presence of these fields by a

purely algebraic condition.

The paper is organized as follows: The next chapter deals once more with massless Yang-Mills theories

showing that the interaction (1.2) admits gauge invariant generalizations and giving a complete list of them.

Chapter 3 starts the investigation of massive Yang-Mills theories. We study theories with only gauge and

ghost fields and construct their gauge invariant interactions. We will see, however, that the BRS-charge fails
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to be a differential operator in this case. Chapter 4 shows how to cure this defect: Scalar fields have to be
included in the definition of the BRS-charge to restore its nilpotency. This changes the gauge transformations
and we have to determine the gauge invariant interactions once again. It turns out that the scalar fields
couple to the gauge fields with predicted strength. Chapter 5 shows how to incorporate matter fields into
the theory. It is proven in chapter 6 that gauge invariance implies unitarity of 5phys There the relation
between anomalies and unitarity is clarified, too. The critical discussion can be found in the last chapter.

2. Gauge Invariant Interactions of Massless Yang-Mills Fields

Here we will generalize the interaction of massless Yang-Mills and ghost fields given by (1.1). So we
have to classify their possible interactions T := T(’)(x). We will restrain the form of these interactions by
requiring it to share the following structural properties with the interaction specified in (1.1):

1.) We demand the interaction to be normalizable. Then only normal products of three or four fields can
appear in T. In the case of three fields one of them may be differentiated once.
2.) The interaction of the ghost and gauge fields shall be of Yang-Mills type, i.e. the coupling of the gauge
and ghost fields, which are in the adjoint representation of the global Group G, shall be proportional to the
structure constants fabc.

3.) We constrain the interaction 1’ to be invariant under the global group G. Thus t.he tensor of the stucure
constants has to he contracted with three coloured fields. This excludes a posteriori the coupling of four
fields in T. This is quite satisfactory. For, in the next order causality and gauge invariance will create
these quartic couplings without further ado. The seagull graph in scalar QED and the four gluon coupling
in Yang-Mills theory, for example, are generated this way.

4.) We require T to have vanishing ghost charge, i.e bqqT = 0. This makes the two ghost fields u and ft

always appear together and particularly implies that T is a bosonic operator.

5.) We will not give up invariance of T under the proper Poincaré group P, of course. Thus all Lorentz
indices have to be contracted. This implies that one of the three fields coupled in T has to be differentiated,
because otherwise the number of Lorentz indices would be odd.
6.) In order to have a pseudo-unitary S-matrix T should be anti-pseudo-hermitian.

There exist exactly four linear independent interaction terms T fulfilling these conditions:

T1
‘

: lCfabcAaAbF : , T2 : iefabcAa1bac

T3d4f
iefabcApaaM uu: , : iefabc8Aub fir: (2.1)

and any real linear combination of these terms fulfils these conditions, too. We therefore set

(2.2)

with a priori arbitrary real constants j.

Now we demand, in addition, gauge invariance, i.e.

dQT = (2.3)

Since T is different from the expression (1.2), T” := T(’’(x) will be different from (1.28), too. It shall,
however, retain the following structural properties:

1’.) Normalizability: Only normal products of three or for fields may appear in T. In the case of three
fields one may be differentiated once.

2’.) T’ shall be of Yang-Mills type, i.e. the coupling of the gauge and ghost fields shall be proportional to
the structure constants fabc.
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3’.) G-invarinance: All colour indices in TM have to be contracted. This, again, excludes the appearence of

normal products of four fields in T’.

4’.) TM must have ghost charge —1. This implies that either one u and no or two u and one are present

in TM and that TM is fermionic.

.5’.) P-covariance: All Lorentz indices except i have to be contracted.

6’.) TM should be pseudo-hermitean.

These properties follow naturally from the corresponding properties 1.)-6.) of T and eq.(2.3). There exist

exactly six linear independent terms fulfilling these conditions:

T : CfabcUaAvbF : , T : —efatcuaA8vA

T : —efabcuaAvbG : , T : efabcuaub8Mfic

T =: efabduaaMubur :,Tdf : efabc8vuaAvbA : (2.4)

Here we have introduced G := 8MA + 0MA. Any real linear combination of the six expressions above

fulfils the requirements 1’-6’, too. We therefore set

b

(2.5)

j=1

with a priori arbitrary real constants /3j.

To study (2.3) we need

dQT1 =: CfabcAtaôvUbF,’ dQT9 =: Cfabc (AMaUbaMaurt + dMUaUbd

dQT3 =: ef,b,.(4Ma8M0b4 + aMtLaa ttbUc) : dQT4 0 (2.6)

efatp (AMad,iUbF + AMaUb 8T4’ =: Cfabc (A bdM8VA + AadMtLbduAc):,

efabc (AMaavubG + 4Ma Ubd 8.4) : , dMT4 =: Cfabc8MUatbdMUr

3MT5 =: efab(UMuaaMubfic +d1UaltbôMUr) : , aMT6 =: efabc(—AMaoMubavA + AMaavitbaMA) : (2.7)

To derive these formulae we have used that the fields obey the wave equation. By inserting them in (2.3)

we get a system of linear homogeneous equations for the coefficients cj and i3j. Due to its homogeneity we

can certainly choose freely the overall normalization of these coefficients, and we do that in setting 1.

The solution of the equations turns out to have three additional free parameters which we call n, , and -y.

The general solution is:

(2.8)

(2.9)

Let us now study the structure of these expressions. We first remark that the special choice cv — —3 = —4
leads us back to the original interaction (1.2). Setting, in addition, = 0 also reproduces (1.28). This choice

is distinguished by its minimality: Firstly, there are only two terms in T and TM. Secondly, only four

elemantary fields are used: A, F, u, and dO. The other four elementary fields G, d . A, du, and 0 do

not appear at all. This shortens lengthy higher order calculations and the very elaborate proof of gauge

invariance in all orders [1-4j by a considerable amount.
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Another preferred choice is a =13=7=0. This gives

2’ = ief: (_jA4ArFr — ApaUb â (2.10)

7” = ef : tia (AoFr + A’8A + Ub b (2.11)

This T has an additional symmetry: It is invariant under the ghost charge conjugation C, [5]. This unitary
operator reflects the gauge charge:

C,Q,C;1 = —Q, (2.12)

and acts on the ghost fields in the following way:

C,ua(z)Ci’ = lila(s) , C,,ilafr)C1 = iuafr) (2.13)

This implies indeed:
C,TC;’=T (2.14)

and the choice a = ft = 0 is the only one making this equation hold true. This T is actually not only
invariant under ghost charge conjugation; it is in’Qrariant under SU(1, 1) - “rotations” in ghost space, too [5].

The three parameter freedom in T, 7” has the following interpretation:

I.) The terms in T which are multiplied by a: Ta, are a pure divergence:

Ta = —T2 — T3 + T4 = 8, (Iefabc : Au,ñ) : 1! OH” (2.15)

Since is z - independent, their gauge variation is a pure divergence, too:

OqTa = dQOpH = Op (dqH”) = OTt (2.16)

where

(2.17)

are exactly that terms in 7” which are multiplied by a. It follows that the couple (Ta, T) fulfils (2.3)
separately.
II.) The term in T which is multiplied by /3: 2), is a pure gauge, i.e. a dQ-boundary:

2) = Ti = dqL , Li—efaoc : uaübüc: (2.18)

Since dQ is a differential operator it is also a dQ-cycle, i.e gauge invariant:

dqTp = 0 (2.19)

It can, therefore, freely be added to T without invalidating (2.3).
III.) The terms in 2” which are multiplied by 7: are a conserved trilinear current:

= Tf’ — 2T’ + Ti,’ — 2T’ = 2O{: efabcuaA’A; :}tK” , OK” = 0 (2.20)

It follows that they can freely be added to T” without invalidating (2.3).

The discussion above allows to reformulate (2.8, 2.9) as

T=Tj+(T2—Ta)+aOH”+fldQL,

T”=Tt+2t-(2T+T()+adQH”+7K” (2.21)

In the next chapter we will study how these structures change if the gauge fields and ghost fields are massive.
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3. A Direct Route to Massive Yang-Mills Fields
To construct a theory of massive Yang-Mills fields we have to use free asymptotic massive gauge and

ghost fields:

(8.8 + M2)A(x) (8 8 + M2)a() = (88 + M2)fia( ) = 0 (3.1)

[A(x), A(y)]_ = iabgDM(x
— y) (3.2)

{Ua(), Ub(Y)}+ = Z6abDM(
—

y), {a(), Ub}+ = {fla(), b(Y)}+ = 0 (3.3)

where D1, the Pauli-Jordan commutation function for mass M > 0, appears. The free massive field strenghts

are defined as in (1.4). We have given all coloured fields the same mass, since we do not discuss breaking

of the global group G here, while the ghost and the gauge fields have the same mass because they transform

among each other under gauge transformations.

The nonvanishing of the mass lvi has simple but far reaching consequences: While (1.8) remains true,

[8,LA(x),F(y)] =0 (3.4)

(1.7) is altered to

[81A(x), 8A(y)]_ iM2abDi(X
— y) (3.5)

Let us define the gauge charge Q by

Q f (3.6)

r0=const.

While this is the same expression as in the massless case, it is, of course, a different operator, because now

the quantized fields in the integral are the massive ones. Its square is given by

= {Q,Q}+ = f d3 f d3i

x0=const. yo=const.

.{[8A(x), 8A(y)] 8o 8o (ta(X)Ub(y)) + (8 4(y)8A(x)) 8ro 8yo{na(x), ub(Y)}+} (3.7)

and this is due to the nonvanishing commutator (3.5) unequal to zero, in contrast to the massless case (1.10).

Instead it is given by . —

= M2Qu ,
j J d3Ua(X) 80 a() (3.8)

o =const.

The charge Q has been discussed in the framework of the ghost charge algebra in [5]. So Q fails to be a

differental operator and homological notions do not apply. This applies as well to the gauge variation dQ,

which is defined by (1.19) also in the massive case: (1.20) is changed to

4 = iM2 (3.9)

where 6, is the derivation induced by Q. The algebraic Eqs. (1.11-1.19, 1.21-1.24) remain true in the

massive theory, while the gauge variation of the basic fields changes from (1.25)-(1.27) to

dQA(x) = j0ua(), dqF(x) = 0, dQ (8A(x)) = iM2a(), (3.10)

dqua(x) = 0, dqfia(X) = —i8A(x) (3.11)

Now we look again for the general gauge invaraint interaction, i.e. any couple (TT”) fulfilling the

general conditions discussed in the preceding chapter and dQT = We can take over the expressions
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(2.1) and (2.4) and the Ans.tze (2.2) and (2.5). Since, however, the fields in these expressions are now
massive (2.6) and (2.7) change to

dQT1 =: efabcApa8vubF” : , dQT2 efabc +8p,L1aub8Uc)

dT3 =: efabc(4a8Ub8vA + dtUa8UbUc) : , dQT4 =: efabc1i2taubfi : (3.12)

0T =: efabc (Aa8uUbF” + 4aUb88vA): , 8T =: Cfabc (AUb08vA + A8ub8A):

efabc (Aa8vUbG +4aub88vA) : , 8T =: efabc (8aUb8fic
— 1i2)

=: Cfabc (8 Laô1iUbfic +8UaUb8c — MUaUbUc)

Cfabc ( 4pa8b0uA + Aa8vub8A): (3.13)

This leads to the result

T= T1 + (T2-T3)+8H,

T = T +T — (3.14)

where H’ and K are the expressions defined in (2.15) and (2.20).

The result has the same structure and interpretation as (2.21) in the massless theory, but for one

difference: There is no free term of the form j3 dL here. The reason is clear: Since d fails to be a

differential operator such a term would not be gauge invariant. Since this term is absent, no analogon of

the minimal choice exists in the massive theory. A Gg - symmetric interaction T, however, does exist, and

is again uniquely given by setting n = 0. For this case, the expressions T and T are identical to those

in the massless case. So one might say that this additional symmetry has stabilized the theory against

perturbations by mass terms.

We have succeeded in constructing gauge invariant interactions for massive Yang-Mills fields. This

theory, however, has no physical interpretation. For, we will see in chapter six that the not abundanable

unitarity of the physical S-matrix is only guaranteed if both equations: dQT = 8T and Q2 = 0 hold true,

hut the latter one fails here, These problems have also been studied in the canonical framework [7].

We would like to point out that the theory defined above may none the less be quite useful: It is a

gauge invariant infrared regulator for the massless theory, and a properly done comparsion of the two can

give important results.

Knowing now exactly where the straightforward approach to massive quantized Yang - Mills fields fails
we will not find it to difficult to cure this problem. This is done in the next chapter.

4. The Algebraic Introduction of Scalar Gauge Fields

From (3.7) we learn that the the reason why Q fails to be a differential operator is simply the nonvan

ishing commutator (3.5). Consider now dimG hermitean free quantized Klein-Gordon fields 1la(X) which

are, like the gauge fields A and the ghosts fields Ua and a, in the adjoint representation of G and which

have the same mass as these fields. They obey

(8 ‘8 + M2)ha() = 0, [ha(s), hb(y)] —6abDM(X y) (4.1)

Their commutuator has the opposite sign to (3.5). It follows that the fields 8A(x)+Mha(.r) have vanishing

commutators with themselves:

[8A(x) + Mha(), 8A(y) + Mhb(y)]_ = 0 (4.2)

This suggests the following new definition for Q:

Qt f (4.3)

c0=const,
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For, this implies

= J d3 f d3{[8A(x) + Mha(), 8A(y) + Mhb(y)]_ 8o dyO (tta(.r)ub(Y)) +

r0=const. yoconst.

+(ôA(y) + Mhb(y)) (aA + Mha()) 8o dyo{a(), tb(Y)}+} = 0 (4.4)

So we have managed to recover this important algebraic property which, together with gauge invariance,

guarantees unitarity of Sh! Note that all eqs. (1.11-1.20) hold true anew.

The gauge variations of the elementary fields are given by

dqA(x) = jdOZIa(X) , dha(X) = iMtta() , dqUa(.) = 0 , (lQa(X) = i(8A(x) + Mha(.r)) (4.5)

Consequently,

dQ8[LA(x) = jM2ta, dqF(x) = d(8A(x) + Mha()) = 0 (4.6)

We see that the scalar fields ha() are effected by the gauge variation d and that they appear in the gauge

variations of other fields. Hence it is appropriateto call them scalar gauge fields. We will see in chapter six

that these fields are unphysical, i.e. their projections onto vanish.

We now have to determine the possible gauge invariant interactions (T, T°) once more. We will not

dispense with the structural conditions discussed in chapter 2. These conditions, however, can now be fulfiled

by more expressions J and T than in the preceding chapters, since the presence of the scalar fields allows

for the constructions of new terms. We give the following complete list:

T1 : lCfabcAaAvbF : , T2 : —iefabcAabduc : , T3d4f —iefabcAad°ubfic

T4 : iefabc8Aztbfic : , : iefabcMhaubOc : , T6 : ZCfabcAahb d h : (4.7)

efabrzaAjjbF T : CfabcZLaA0vA : , : —efatcuaAvtG

CfabcUaibd0Or : , =: : , : Cfabcd”ZtaAvbA

T’: —efatcMuaAhc (—efuht h (4.8)

Using

dqTi =: CfabcAadVtLbF”’ : , dQT2 =: Cfabc (A0aUbd [aA + Mh] +d0’UattbdUc)

dT3 =: Cfatc (4oa3ut [a11A + Mh] + dua8ubiic) : , dT4 =: efabc (_M80Aubh + 1/1tta11bUc)

dT5 =: Cfabc (M8oAubhc — MUaUbUc)

dqTs =: Cfabc (8iiaht8hc — 1iAjaUb8hc — MA0ahbdUc): (4.9)

80T =: efabc (A1ia8vitFj’ +40abddvA): , =: efabc (A b38v4 + Ad td4):

=: Cfabc(40advUbG” +40aUbddvA) : , =: efatc — M2UaUhfir) :

00T =: efabc (8ua8irttflc + dttatLb8ZLc — A’iThaLbLLr) :

efatc ( 40adttb8vA + AadvutdA):,

80T =: CfatcilI (84ubh + A80ubh + Autdh):,

Cfabcha3Ubdhc (4.10)
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we find the general gauge invariant interaction as follows:

T = T1 +( - )T2
— ( + n)T3 +(n + /3)T4 + /3T5 + T6 =

=Tl+(T2—T3+T6)+nOH+/3dQL (4.11)

= (1 + 7)T — ( +n+27)T+7T +T —( + n)T — 27T — +

(4.12)

where

H° : tCfabrALibUr :, —efabcuaubfic : , i 2/3 {: Cfab a44 :} (4.13)

We notice that the term I’ enters in T with a fixed coefficient. This term describes the interaction of
the scalar gauge fields ha with the Yang-Mills fields Thus the strength of this interaction is fixed by
the condition of gauge invariance. The free terms multiplied by c, /3, and have the same interpretation as
in the massless case: /3,Hb’ is a pure divergence, dQL is pure gauge, and K’ is a conserved current. The
condition of Cg-invariance on T uniquely fixes n = 3 = 0. Since the current K is not related to the gauge
structure of the theory, 7 = 0 is certainly a sensible choice, too. In this case the interaction is given explicitly

by

T = iefabc: {_A0a4i;bF — AaUb 0 Uc + A,ahi 8 hr}

= : ita {AbF + Ub 8 + — hbahC} : (4.14)

We have now succeeded in constructing gauge invariant interactions of Yang-Mills fields, ghost fields,
and scalar gauge fields. In the next chapter we study how these fields couple to matter fields.

5. The Coupling of Matter Fields
All fields we have studied so far, the Yang-Mills fields A, the scalars ha, and the ghosts Ua and Ua

may be called gauge fields, since they transformform among each other under the gauge variation dQ. Now
we will study additional fields, which we call matter fields. We will study scalar matter fields: (adjoint
fields: and Dirac matter fields: (Dirac-adjoint fields: = L’7). i is an internal index numbering
different fields, while the bispinor indices n for the Dirac fields are always supressed. Let us assume that the
fields , j transform under a certain irreducible representationR of G in which the hermitean generators
are given by The matter fields will form bilinear currents in the following way:

1.) The scalar fields constitute the currents

=: tRi3 j: (5.1)

If we demand strictly G-invariance, all fields q5j should have the same mass ms:

(5.2)

In this case the currents are conserved:

= 0 (5.3)

Let us, however allow for G-breaking in the mass sector of the scalar matter fields, i.e. replace (5.2) by

(/3. /3i + (m2)iJ) = 0 (5.4)
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where (m.) is the positive mass-square matrix of the scalar fields in R. Then (5.3) does not hold. Instead

wefind
8S =: i [(m),Ra]’ çj: (5.5)

2.) The Dirac fields form two kinds of currents. The vector currents are defined by

=: (5.6)

while the axial currents are given by —

=: : (5.7)

Strict G-invariance would require that all Dirac fields in R have the same mass mD:

(i7ô—rnD)li’i=O (5.8)

In this case the vector current would be conserved and the divergence of the axial current would be the

pseudo-scalar
= 0 , = 2m : Ri75j : (5.9)

Let us, however allow for G-breaking in the mass sector of the Dirac matter fields, i.e. replace (5.8) by

(i80 —(InD)°)WJ =0 (5.10)

where (mD) is the hermitean mass matrix of the Dirac fields in R. Then (5.9) does not hold. Instead we

find
II —. ii . 5/I J.

wt [(mD), Ra]_ j : , =: {(mD), Ra}+ i5j : (5.11)

The interaction T, T constructed in the last chapter contains only gauge fields. So let us call it Tgauge,

Tauge from now on. We now add to it Tnlatter, T,atter to desribe the interaction of the matter fields with

the ghost fields:

T = Tgauge + Tmatter T = Tauge + Tratter (5.12)

Trnatrpr is constructed by coupling the above currents to the gauge fields: Let us introduce the total current

J i(esS + evV + eX) (5.13)

and set

Tmatter = JA/Ia + (5.14)

The dots indicate that we will soon add other terms to this expression. For, let us study gauge invariance.

Since Q (4.3) is entirely composed of gauge fields it commutes with the matter fields and their currents:

dQ/ = dQ4’ = dQJ = 0 (5.15)

This leads to

(/qTnatter = JaL + dQ() = {_Jtt} + (ôJ) Ua + 1iQ(•)
(.5.16)

The first term on the right hand side of this equation is already a divergence. The second term vanishes if

the currents J, are conserved hut is not a divergence otherwise. So it has to be compensated by the third

term, i.e. we get the condition

dq() =
— (8/LJ) Ua (5.17)

which is easily solved by

...=iM1(a/IJ)ha (5.18)

Such we have found the following gauge invariant interaction of the matter fields with the gauge fields:

Tmatter = I {JAa + 4i’tJha} , Ttr = dQTmattr = (5.19)
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Let us interpret this result. In the case of conserved currents the matter fields couple only to the Yang-
Mills fields and this interaction has the same form as the coupling of matter fields to massless Yang-Mills
fields [15]. More interesting is the case of nonconserved currents: There the matter fields couple to the
scalar gauge fields, too. We conclude that the scalar gauge fields are a very important part of the whole
theory: They allow a consistent treatment of massive Yang-Mills fields and of nonconserved currents at
the same time. ‘Ve also notice that the coupling of the nonconseved currents to the scalar gauge fields is
proportional to the inverse mass of the gauge fields. That is only possible if this mass does not vanish, which
is in agreement with experiment: The conserved strong vector currents couple to massless (though confined)
gluons while the nonconserved weak axial currents couple to the massive weak bosons!

Let us remark that the currents S, l’, and X couple with different coupling constants Cs, cv, and
ex to the Yang-Mills fields, as described in (5.13, 5.14). We also have always used the same irreducible
reprentation R for the matter fields. This is, of course, not necessary: The scalar fields will generally occur
in other representations than the Dirac fields and the vector currents will generally be made out of fermions in
representations different from those to which the fermions constituting the axial currents belong. Moreover,
the representations R need not to be irreducible. Instead, they can be the direct sum of several irreducible
parts. The above formulae remain true if one defines the total current (5.13) as the sum of all currents in the
various representations I?. Then each representation I? can have its own coupling constant CR. We remark,
however, that this is a typical first order phenomenon. The condition of gauge invariance in second order will
certainly give restrictions on the various coupling constants which seem to arbitrary at the moment. This
also happens in massless Yang-Mills theory, where the gauge invariance of certain second order tree graphs
implies the equality of the Yang-Mills self-coupling constant with the one in the coupling of the Yang-Mills
fields to rnattei.[15].

We now have carefully studied the possible interactions of quantized Yang-Mills fields, ghost fields, scalar
gauge fields, and scalar and Dirac matter fields. Though only working in first order T’ we have discovered
very interesting structures. To complete the theory, we would have to study gauge invariance in all orders,

eq.(1.30). Before we take on this Herculean task we like to know what we get if we succeed. It is the unitarity
of Sphys This is shown in the next chapter.

6. Gauge Invariance and Unitarity of the Physical S-Matrix

Tjnitarity of the physical S-matrix in the case of massless Yang-Mills fields was proven in [4]. Here we
treat the massive case, i.e. the interaction constructed in the two preceding chapters.

Let us begin with discussing the Krein structure [5,8,16,17] in the Hilbert-F’ock space of the gauge fields.
The massive Yang-Mills fields are quantized as

A(x)
=

dk {e(k)aA,a(k)e + c(k)aa(k)e} (6.1)

k is always on the mass shell W:

k(k0,),k0+[( + M2]4
,

dkd4f
, 6(k —

k)d42ko(2)36(3) (— P) (6.2)
2k0(2ir)

are four polarisation vectors satisfying

k11
, g e(k)e(k) =

kk
e(k)e(k) = - [g

- f2]
ge(k)c(k) = g, e(k) = e(k) (6.3)

OA,a(k) are 4(dimG) standard (distributional) bosonic annihilation operators [12,17,18,19] acting in the
Hilbert- Fock space

3 dimG

HA = v {o a1
[L2(M, dk)j} (6.4)
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which is equipped with the standard positive scalar product (a, b)A. The operator O denotes the adjoint

of 0 with respect to this scalar product. The Fock space operators fulfil

[aA,a, ab(k)]_ =6A6abô(k — k’) (6.5)

The number operators for a given polarization A are defined by

NA fdka)a(k)a(A)a(k) (6.7)

The Krein operator .J4 in HA [5,8,16,17W] is defined by

(6.8)

It defines a pseudo-conjugation 0K [4,5,12,16,17] of an operator 0 by

04JA0JA (6.9)

Sometimes the form < a,b >A:= (a, JAb)A is called an indefinite scalar product. We will not follow this

terminology here. The word orthogonal (hermitean, unitary) will always mean orthogonal (hermitean, unit

ary) with respect to the positive inner product. Otherwise we say pseudo-orthogonal (pseudo-hermitean,

pseudo-unitary).

The gauge invariant physical Yang-Mills fields have only the three transversal polarisations:

(AhS)(x) = f dk {c(k)aAa(k)e + e(k)aa(k)e} , dqA5 = 0 (6.10)

and the commutator

alL 9V

[(Aj8)(x), (Ah)(y)]_ =
— [g + 6ab()Dm(X

—
g) (6.11)

The unphysical Yang Mills fields are given by

(Aunphys)(X) A(x) — (Aphys)(x) = aaA(x) (6.12)

The following conjugation properties are easily checked:

— —
— i+ j —

ri — .ri , 1phys phys — Ziphys , riunphys
— unphys — — unphys

We also note -

3A — a4 = d(Aphys) — av(APhys) = (F)K = (F) (6.14)

dp(Aunpys) (34 = — (8A (6.15)

The representation of the proper Poincaré group 14 in HA is defined by

UA(a, A)A(x)UA(a, A) = AA(Ax + a), UA(a, A)QA = QA (616)

where Q4 is the vacuum in HA. It is pseudo-unitary:

UA(a,A)UA(a,A)R = 1 (6.17)

and, since it commutes with JA:

JADA(a, A)JA = LJA(a, A) (6.18)
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unitary as well:

UA(a,A)UA(a,A) = 1 (6.19)

The last two equations fail in the massless case where c(k) cannot be chosen covariantly.

Next we come to the hermitean scalar gauge fields which are quantized in the usual way:

ha(s) f dk {bae + bte’} = (6.20)

as operators in the Hilbert-Fock space

° I dimG

Hh=V+ {L2(M,dk)]a} (6.21)

with standard positive scalar product (a,b)h. We have

[ba(k), bt(k’)]_ ab k’) (6.22)

We do not introduce an additional Krein structure in Hh. This is equivalent to saying that Jh = 1 and that the
two conjugations agree over Hh: 0K = O. The same is true for the two forms over Hh: < >=

The representation of P in Hh: Uh(a, A) is unitary. The total number of scalar gauge particles is given by

Nh fdkb(k)ba(k) (623)

Now we consider the ghost fields. They have been extensively studied in [5]. So we summarize only the

most important formulae here. The ghost fields

J (1k {ci,a(k)e + ctia(k)e} fla(X) = fdk {c_i,a(k)e’ + ca(k)e’} (6.24)

are defined in the filbert-Pock space

c° ( dimG
Hg ={+ [L2(M,dk)]ja} (6.25)

with positive inner product (a, b)g. The index i distinguishes ghost from antighost particles. We have

{ci,a(k), cb(k’)}+ = ijab6(k — k’) (6.26)

The Krein operator in Hg is defined by

Jg = 1NqP (6.27)

Here Ng denotes the total number of ghost and antighost particles:

Ng = fdkCa(k)Ci,a(k) (6.28)

while F is defined by

P
= J dk {c(k)ci(k) +c1(k)ci(k)} (6.29)

Again one considers the indefinite form < , >g : (, Jg) and defines 0K JgO+Jg, The representation

of P in Hg: (]g(a, A) is unitary and, since it commutes with Jg, pseudo-unitary as well [5].
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The scalar and Dirac matter fields are quantized in their own Hilbert-Fock space Hmatter in the usual

way. The scalar product in this space is again positive and the Krein structure Jmatter is the unit operator.

The representation Umatter(a, A) is unitary.

The Hubert space H of the total system is the tensor-product of the spaces above:

HHA®Hh®Hg®Hmatter (6.30)

The Krein operator and the representation of P factorize accordingly:

J=JA®Jh®Jg®Jmatter (6.31)

U,A) =U4,A)® Uh(a,A) 0 U(a,A) 0 Umatter(a,A) (6.32)

This U is unitary and pseudo-unitary, since it commutes with J. The positive scalar product in H is denoted

by (a,b) and HtI :=(a,a), <a,b>:=(a,Jb), 0K : JQJ.

Our next task is to study more closly the gauge charge Q (4.3). It is expressed in momentum space as

Q = Mf dk {Ctia(k) [ao,a(k) + lba] - [ata(k) + ib(k)] cia(k)} (6.33)

Its adjoint Q is given by:

= Mf dk {Cta(k) [—aoa(k) + lba(k)] + [0a(k) ib(k)] c_i,a(k)} (6.34)

Q and Q+ are both pseudo-hermitean i4 invarinat differential operators:

Q2 (Q)2 = 0, Q = , (Q+)K
, U(a,A)QWU(a,A)’ = Q(+) (6.35)

We now follow Razumov and Rybkin [8] who showed that the physical filbert space of a gauge theory

with quadratic BRS charge Q can be defined as

def += kernel {Q, Q } (6.36)

Razumov showed the equivalence of this definition with the more conventional one using equivalent classes

in semidefinite metric spaces [7]. Razumovs definition is advantageous because it realizes as a concrete

subspace of the filbert space H which has a clear particle interpretation. To work this out we only have to

calculate the above anticommutator. We find:

{Q, Q+} = 2[No + Nh + Ng]2N (6.37)

i.e. N is the number of longitudinal Yang-Mills fields plus the number of scalar gauge fields plus the number

of ghost and antighost particles. Thus all these particles are unphysical. The only physical particles are the

transverse quanta of the Yang-Mills fields and the matter particles.

The spectrum of the number operator N are the natural numbers and 0:

N=nP (6.3$)

where P is the orthogonal projector on the subspace with n unphysical particles. (6.36) means that the

orthogonal projector on is given by P0:

P0H (639)



The operator N can be inverted on the orthogonal complement of its kernel:

N’ 0P0 + , NN = NN = (1 — Pphys) (6.40)

Since Q and Q+ are P invariant, so are N, N’, and P:

U(a, A) {iV; N’; P} U(a, A)’ = {N; N’; P} (6.41)

We also note that N, P, and N’ commute with Q and Q+:

[Q(+), N]_ = [Q(+), P]_ = [Q(+), N’]_ = 0 (6.42)

We now follow again [8] and introduce the following subspaces of H:

def def + def def +HK = kernel Q , H-+ = kernel Q , HR = range Q , H+ = range Q (6.43)

Let us study the relations between these spaces and Let E Hphy. By

0= {Q, Q}0) = lIQ0 12 + IlQII2 (6.44)

we find

= HK fl HK+ (6.45)

Since Q2 = (Q+)2 = 0 we have

HR C HK, HR+ ç HK+ (6.46)

Let aK HK, R+ HR+. Since

(.KR+) = (KQ) = (QK) = 0 (6.47)

HK and HR+ are orthogonal to each other, and replacing Q by Q+ shows that the same holds true for HR

and HK+:

HKIHR+ , HR.LHK+ (6.48)

Combining this with (6.46) gives

HR±HR+ (6.49)

while (6.45) now implies

Hphy5.LHR , HPhYSIHR+ (6.50)

We conclude that the three spaces HR, and HR+ are all mutually orthogonal. Let now E H. Then
we can write

= P0+ (1 — Po)a = Po+ NN’a = Po+ QQN’a+ +R + R+ (6.51)

where E fR “H, and aR+ E HR+. This shows that the filbert space H is the direct orthogonal

sum of the three spaces HR, and HR+:

H = +1 HR +± HR+ (6.52)

Since the first two of this spaces are subspaces of HK and the third is orthogonal to it we can also write:

H = HK +1 HR+, HK = Hph Ef3 HR (6.53)
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i.e the physical Hubert space is also given by

= HK eL HR (6.54)

Moreover, since and HR+ are subspaces of HK+ and this space is orthogonal to HR one can also write

H = HK÷ 3± H, HK+ Hhy i H+ (6.55)

i.e. we get one more characterization of as

= HK+ e± HR+ (6.56)

The orthogonal decompositions above were already given in [8], and, in the specific context of mass-

less Yang-Mills theories, in [4]. We denote the orthogonal projections on {HhS; HK; HR; HK+HR+} by

{Po; PK; PR: P1+: PR+} and the vectors in these spaces by {o;gK;R;K+;R+}. From the preceding

ecluations we find:

POPR=PQPR+=PRPR+=O, Po+PR+PR+=1, Po=P,PR=P’PR+=P+ (6.57)

PR = QQN’ , P+ = QQN’ (6.58)

Let us now study the strucure of some important operators with respect to the orthogonal decomposition

(6.52). The operators Q and Q+ map the complements of their kernels onto their range. This gives:

Q = PQP+, = PR+QPR (6.59)

Thei (6.37) implies that the decomposition of N and N’ are given by

= PN’P + PR+N’PR (6.60)

Let now I be a gauge invariant operator, i.e. ciqI = 0. Then HK and HR are stable under the action of I,

that is

IPK = PK IPK , ‘PR PRIPR (6.61)

Thus we get

I = PoIPo+PIPR+ +PRIPO +PRIPR+PRIPR+ +PR+IPR+ (6.62)

Next we use the pseudo-hermiticity of Q and QK to get information about the Krein operator J. Let

HK, .R Qc E HR. Then we have

@K’ =< tt-, Qc >=< >= 0 (6.63)

This means:

PKJPR=0 (6.64)

Tiking the adjoint gives:

PRJPK = 0 (6.65)

Using Q+ instead of Q in the argument above gives

= R+K+ = 0 (6.66)

A direct inspection of J in (6.31) gives the additional information that J agrees on with the unit

operator:
P0JP0 = P0 (6.67)
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The last four equations are summarized in

J = P0JP0+ PRJPR+ + PR+JPR (6.68)

The second of eqs. (6.53) means that HK can be interpreted as a linear fiber bundle: Hh5 is the base
space and the fibers are the elements of HR. Eqs. (6.64,6.65) show that the fibers are pseudo-orthogonal to
any vector in HK. Moreover, writing K = tt + according to the orthogonal decomposition (6.53) gives

<K’K >= (6.69)

This shows that that the form <,> agrees on with the positive form (, ), that it is positive semidefinite

in HK, and that its kernel as a quadratic form in this space are the fibers:

HR=kernel <,>K (6.70)

where <, >K means the restriction of the form <, > to HK. So we get another expression forHh:

= HK e± kernel <,>K (6.72)

The form <,>K is constant along the fibers in both arguments separately:

(6.73)

and the same holds true for the matrix elements of any gauge invariant operator I with respect to this form:

<cILK +R,ICK +R) >K=< tK,’K >K (6.73)

This allows to choose any linear cross section H5 in HK, i.e. any subspace of H which is a (pseudo-orthogonal

but generally not orthogonal) complement of HR (in HK) as a realization of the physical filbert space. The

scalar product in H5 is the restriction of the form <,> to this space, and there it is positive definite. All this

spaces are unitarily equivalent, and the matrix elements of gauge invariant operators do not depend on the

section chosen, So one might also consider the equivalence class of all this spaces and that is what is usually

done in the literature [7]. \‘Ve prefer to use as a concrete realization of the physical filbert space since

it is the only section which is orthogonal to the fibers and which allows for a simple interpretation of the

quanta of the elementary fields as physical or unphysical particles. The projections onto the sections along

the fibers are also called gauge transformations. For and only for it, they agree with the orthogonal

projection.

We now consider again operators A, B, C’’ over H. We define the orthogonal projection of A on

H05: A0 by

A004tP0AP0 (6.74)

A0 is still an operator from H toH. It is zero on the orthogonal complement of Hh6: Since this

zero is certainly not very interesting we define A0h to be the restriction of A0 to

def — -

Aphys = (A0
)LHPh

(6. to)

The map A A00 is certainly linear:

(A)phys = Aphys , (A + B)ph5 = Aphys + Bphy (6.76)

More interesting is the projection of the product of two operators. We calculate:

P0ABP0 = P0A(P0± PR + PR+)BPQ =P0AP0P0BP0+P0AQQ+N1BP0+P0AN1Q+QBP0 (6.77)
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Let us concentrate on the second summand: X. Since P0Q=0 we can replace AQ by {A, Q}±. We take the

anticommutator if A is fermionic and the commutator if it is bosonic, This gives

X = Po{A,Q}jQN’BPo (6.78)

Now we use p0Q+ = 0 to replace that by

X (6.79)

And finally we use = 0 to write

x p0 [{{A,Q}±,Q+} ,N] BP0 (6.80)

There are always two commutators and one anticommutator in this expression. Thus it can be uniquely

written as
X =P0(TA)BP0 (6.81)

where the triple variation ‘T is (lefifled by

TSdl (6.82)

Here (N’) is the derivation induced by N, and d and d(q+) are the antiderivations induced by Q and

Q, repectively (see chapter 1). Note that the triple variation of gauge invariant operators vanishes. In the

same way the third summand in (6.77): Y is written as

=P0A(’IB)P0 (6.83)

We thus have found the important projection formula:

AplusBphys (AB) — {(‘TA)B + A(IB)}PhYS (6.84)

This implies

Theorem I: The product of the physical projections of two operators with vanishing triple variation,

especially of two gauge invariant operators, is identical to the physical projection of their product. The

physical projection of a group (of an algebra) of operators with vanishing triple variation, especially of gauge

invariant operators, is a representation of this group (algebra).

Next we consider the physical projection of the pseudo-adjoint AK of an operator A. So we have to

study
P0A’P0=P0JAJP0 (6.85)

Now we use that (6.68) implies
p0j jp0 = = P0 (6.86)

to conclude:
p0 4K p0 =P0AP0= (P0AP0) (6.87)

which means
(4K)

= (Aphys) (6.88)

Thus we have found

Theorem II: The physical projection of the pseudo-adjoint operator is identical to the adjoint of the

physical projection of this operator. The physical projection of a pseudo-hermitean operator is hermitean.
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Combining the two theorems above gives:

Theorem III: The physical projection of a pseudo-unitary operator with vanishing triple variation,
especially of a pseudo-unitary gauge invariant operator, is an unitary operator.

Now we are well equipped to tackle unitarity of the physical S-matrix, The interaction T’)(x) con
structed in the preceding chapters is anti-pseudo-hermitean:

(T(1)(x))K
= —T3(x) (6.89)

This guarantees the pseudo-unitarity of S[g] [1142,15]:

5[g]5K[g] = 1 (6.90)

This is [11] equivalent to

T(I)TK(J) = 0, VN 0 (6.91)
Il J = N

Here T(I) means T(n)(1, . . .
, xj), TK(J) means (T(8)(x1,.. .

, xjj)K, where r+s = n, and the sum runs
over all direct decompositions of the set N = {1, . . ‘, n} into two subsets I = {ii, . ‘ ‘,

i} and J = {j1, ‘ ‘ ‘,js}’

Let us now assume that gauge invariance holds true in all orders, i.e. we have

4fl

= 8kT(n) (6.92)

Taking the pseudo-conjugate of this equation gives:

dQ (T) = ak (T))K
(6.93)

Then (6.84,6.88) and (6.90-6.92) imply

Tphys(I)(Tphys(J)) =

IeJ=X

W3(X)
def

{—61(k)(6N1)d(q+)Tk(I)) TK(J) + Oj(k)T(I) ((N1)d(Q+)T(J)) }phys (6.94)

re

where
def 11, ifkql

6’(k) =
0, if k I

(6.95)

This is the exact pert urbative, pre-adiabatic expression for the unitarity of the physical S-matrix. If the
adiabtic limit:

Sphys = urn (S[])h (6.96)
g—1

exists and has the same analytic properties as in the saclar theory discussed in [13], and if the boundary

terms f 8kw vanish, (6.94) will imply

5physys = 1 (6.97)

We note, however, that this adiabatic limit may have additional subtleties if the heavy gauge particles are
coupled to light matter, since then the gauge fields become unstable, i.e are not really asymptotic fields.

Let us end this long chapter with a short discussion of P-invariance. The remark after (6.32) and eq.

(6.41) immediately imply that U(a, A)ph is an unitary representation of P, while the P-invariance of

U(a,A)S[g]U(a,A)’ = S[ga,A]
,

g(x)g (A1(x — a)) (6.98)

21



and (641) lead direct to

U(a, A)S[g]hSU(a, A)’ = S[ga,Ajphys (6.99)

which is the P-invariance of the physical S-matrix.

The situation is different in the massless case where J is not P-invariant. However, the three theorems

above and the projection formula (6.84) hold true in this case, too. Since Q is P-invariant also in the

massless case, the theorems show that U(a, A)phys 5 indeed an unitary representation of P, while the P

invariance of S[g] and (6.84,6.88) implie that (6.99) is violated only by boundary terms. The latter should

vanish in physical quantities like cross sections, for example.

7. Discussion

We first have shown that the interaction of massless Yang-Mills fields studied in [1-4] admits generaliz

ations. Then we have constructed gauge invariant first order interactions between massive Yang-Iills fields,

scalar gauge fields, and matter fields. We have shown how invariance under ghost charge conjugation fixes

the interaction uniquely. The scalar gauge fields had to be introduced for a pure algebraic reason, i.e. to

have Q20. Moreover, we have proven that gauge invariance implies unitarity of the physical S-matrix and

that the latter is Poincaré invariant. However, gauge invariance were only shown to hold true in the first

order. This is certainly not enough. Before we can claim to have a completely consistent theory we have

to proof gauge invariance in all orders, i.e. the absence of anomalies. We intend to tackle this labourious

though important task in future publications.

The analysis of unitarity has shown that all scalar gauge fields are unphysical. This means that our

(pure) gauge theory is not a Riggs-model. One could, of course, introduce a physical scalar particle in the

matter sector of the theory. But there seems to he no logical reason for doing so (unless one finds out that this

would be the only way to avoid anomalies) since, in contrast to the Riggs model, the matter sector and the

gauge sector are independent structures in our theory. Our theory has structural similarity to Stueckelberg

type gauge theories. There [20] all scalar gauge fields are unphysical, too. We remark, however, that our

theory is not identical to the Stueckelberg models discussed in [20], it differs from them in the detailed

structure of the propagators and couplings. Stueckelberg type theories are most often discussed under the

aspect of classical gauge symmetry and gauge independence while BRS-invariance is only a derived concept.

We have followed a completely different route and have made (free) BRS-invariance a first principle. This

seems appropriate since it is exactly this invariance which implies unitarity. All Stueckelberg models studied

in [20] where either nonrenormalizable or nonunitary. This was shown by direct calculation, but the reason

why remained a mystery. Our model is renormalizable by construction, and unitarity follows from gauge

invariance. So, should it fail to he consistent, we know at least why: There have to be anomalies. One could

then study these anomalies to learn how to avoid them.

To proof unitarity of the physical S-matrix we have extended Razumov and Ryhkiné investigation of

quadratic BRS systems [8] by giving the important projection formula (6.84). This formula shows that the

triple variation ‘T is more inporta.nt for the algebraic structure of the theory than the gauge variation is.

Indeed, it follows from our calculations in the last chapter that a theory which is not gauge-invariant but is

invariant under the triple variation 7’ would still have an unitary physical S-matrix! Thus one might call

anomalies of gauge invariance which do not violate triple invariance weak anomalies and anomalies which do

violate it strong anomalies. Well, it could happen that all known anomalies are strong ones, but this is far

from obvious, A careful algeraic analysis of anomalies with respect to the triple variation is certainly worth

doing, and we plan to investigate this interesting structure in the future.

Another thing which one has to do before our theory can make contact with “physics” is the extension

to the nonsimple group G = T.’(2) and an analysis of global G-breaking which allows for different masses of

the various gauge fields.

Let us summarize: A direct algebraic analysis of massive quantized Yang-Mills theories done in the

framework of causal perturbation theory and free of any classical notions as spontaneuos symmetry breaking

has naturally led to the construction of a Riggs free model of massive gauge fields and has revealed new

interesting algebraic structures. Further investigations remain to be done.
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