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PREDICTING QOS PARAMETERS FOR ATM TRAFFIC USING

SHAPE-FUNCTION ESTIMATION.

Cormac Walsh’ and N.G. Duffield2

1 Introduction and Summary

This paper addresses the provisioning of service capacity and buffer space in an ATM multiplexer of a

large number of VBR sources. The aini is to guarantee sufficient quality of service (QoS). specified here

in terms of the cell loss ratio (CLR), while at the same time making maximal use of system resources.

Multiplexing gain is available in shared resources due to the statistical properties of the individual

traffic streams which share the resources. For example, if one doubles the number of (identical) sources

to be multiplexed, one need not, generally, double the rate and buffer size in order to maintain the

same CLR..

Our method is to use empirical traffic statistics, which could be measured online, in order to predict

these multiplexing gains. The prediction is done on the basis of the following scaling behaviour of

queue-tail probabilities which has been shown to hold for a very general class of traffic models [1. 2, 4].

For an infinite buffer fed by N independent identical sources served at rate Ns, the frequency with

which the queue Q1V exceeds a level Nb satisfies the logarithmic asymptotic

log P[QN > Nb] —NI(b), as N oc. (1)

where the shape function 1(b) depends on s and the detailed traffic characteristics. Although this

estimate is formulated for the asymptotic behaviour of tail probabilities in an infinite buffer. it is

conservative: it gives an upper bound on the CLR from a buffer of size Nb. (Actually, in some cases the

difference itself can be estimated). Moreover, as we shall discuss, corrections for finite N are available

(see [3, 9]). Another useful property is that (1) does not require that b, the buffer allocation per source,

be large. Thus it can be used to describe cell-level, as well as burst-level, queueing behaviour. In this,

it is distinguished from the large body of results about asymptotic behaviour of tail probabilities for

large b, aiid the consequent effective bandwidth approximation (see [6, 10] and references therein).

The format of the paper is as follows: in section 2, we describe the basis for (1); in section 3, we

describe an estimator of the shape function I; in section 4, we review a scheme proposed by Courcou

betis, Fouskas and Weber [3] to estimate the CLR which makes use of finite N corrections to scalillg

behaviour of the kind shown in (1); in sections 5 and 6, we compare tile accuracy and the reliability of

the two by applying them to both simulated and to real ATM traffic.

2 The Shape Function

We model an ATM switch as a single server queue with N (possibly heterogeneous) stationary and

ergodic arrival streams, {A’, . . . , When we scale N, we shall assume the sources are served

at constant load so that the service rate is sN for some constant s. Define tile finite-time curnulant

generating function (finite-time CGF) for each source i at each time t as

:= log EeH (2)

Tile finite-time CGFs are related to the effective bandwidth of the source: a(z)(9) = 9_i
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We make the assumption that the finite-time CGF for the combined traffic stream exists in the

limit as N — cc:

:= lim ulogEe0iH.
N—oo Nt

Furthermore. we require that this limit exists uniformly for all t sufficiently large. This assumption is

satisfied by i.i.d. superpositions and also by heterogeneous superpositions where the proportion of each

type of source is held constant. In the case of independent heterogeneous superpositions of J types

of sources indexed by j E {l,... , J}, we have that (9)
= where Pj is the proportion of

sources of type j. Under these assumptions, (1) holds with the shape function I given by

1(b) = inf (tA )*(b + st) (3)

where f(x) := supeR{xy —

f(y)} is the Legendre-Fenchel transform of the function f; see [1, 2, 4].

The time r = arg inft>o (t)\t)* (b) at which the infimum above is attained may be interpreted as the most

likely timescale on which the buffer overflows.

3 The Shape Function Estimator (SFE).

Given a sample realization {X1,X2,. . .} of a traffic stream we may estimate the finite-time CGFs of

its source as follows. First form all blocks of length t:

X1 :
=

X, X2 :
= i=2

Assuming stationarity of the arrival process, we use these overlapping blocks to get an estimate of

by replacing the expectation in (2) with an empirical mean:

where K is the number of blocks formed. We assume that the sources are independent and so we may

combine the estimates to form an estimate of \t:

Then for each t we merely perform the infimum and Legendre transform, mirroring (3), in order to

form the estimate

1(b) := inf(t,t)*(b+st)

It is worth distinguishing this procedure from that of [5] where, for some (large) T, was used to

estimate the limiting CGF, )(9) = limnt÷(9), and hence estimate the (large buffer asymptotic)

effective bandwidth by d(6) := 6’AT(0). There is a tradeoff here in choosing a value for T: too small

a value and AT(9) will not be close enough to A(6), too large a value amid the variance of the estimator

will be large (see [7]). Also, it is difficult to automate the choice of block size. However, we shall see

that the shape-function estimator does not suffer from this problem. Once we have an estimate of the

shape-function, we may use it to predict cell loss ratios; the CLR is estimated by the shape fztnction

estimator (SFE):

CLR(b)



4 The Empirical Loss Rate Estimator (ELRE)

Courcoubetis et. at. [3] propose an estimator of the CLR which is also based oi the large N asymptotics

of the system. The ELRE essentially involves the direct estimation of the cell loss rate for subsets of

the N traffic sources by simulatmg the queue with the appropriately scaled buffer size aild service rate.

Denote the number of sources in the th subset by N and the observed CLR, of this subset by
.

Then

parameters A.B, and C are chosen so as to best fit a curve of the form A + B log N + CN to the graph

of log I vs. N1. The CLR, (N), may then be calculated for any N:

log(N) = A+BlogN+ CN

The parameter C corresponds to —1(b) above, so we may compare these estimates directly. The

B log N term is motivated by the Bahadur-Rao refinement to large deviation asymptotics for sums

of independent random variables; see also [9]. The authors of [3] recommend using non-overlapping

subsets of sources (each source is included in no more than one subset). They (10 this because they

want the CLR estimates to be independent in order to facilitate a x2 goodness-of-fit test.

5 Comparisons for Model-based Simulations

We compare the estimators’ prediction of the CLR and of the shape function for model traffic. The

traffic model we use is the two state discrete time Markov model. This model produces a cell every clock

cycle while in state 1 and no cells while in state 0. The transition probabilities are P(X÷1 = 1X =

0) = 1 — P(X1 = 0IX = 0) = 1/16 and P(X1 = 01X = 1) = 1
— P(Xrj+i = lXrj = 1) = 3/16.

With these parameters the model is positively correlated; cells tend to arrive in bursts, in this case of

mean length 16/3 clock cycles.

We generated 100 different sets of samples, each of 20 independent sources. The left hand side of

figure 1 shows the interquartile range of the predictions of the CLR for 30 sources based on measurements

of 20 sources. The ELRE does better than the SFE; as we might expect from the discussion in the

introduction, the SFE is conservative in estimating the CLR. However, we can also calculate the shape

function I numerically for the model and compare it with the estimates of it obtained using both

schemes (I in the SFE, —c in the ELRE). The quartiles are shown on the right hand side of figure 1.

In each plot, the horizontal line represents the true value of the shape function evaluated at the relevant

buffer size and service rate. The estimates from the SFE are seen to be tightly clustered about the

true value, their spread decreasing as the sample size is increased. The estimates from the ELRE also

improve with increasing sample size. However, their spread is always greater than those from the shape

function estimator and, furthermore, they exhibit bias. This bias is not consistent: the shape function

may be over or underestimated at different b. We found the bias to depend critically on the range of

source numbers over which the log vs. N curve was fitted; a different range was used for each sample

size and so the bias changed accordingly.

Obtaining an accurate estimate of I is particularly important in applications where extrapolations

are made to values of N which are far greater than the number of samples used: this is because, even

for the ELRE. the shape function estimate C becomes dominant for large N. These considerations

may be relevant in provisioning capacity of a large number for VBR sources on the basis of observed

characteristics of a small set of source models or traces. However, for moderate N, the corrections

A + B log N in the ELRE give better predictions. For this reason we are now experimenting with a

combined estimator tl1at fits a two parameter curve of the form A + B log N — I(b)N to the graph of

log I vs. N where 1(b) is now a constant determined by the shape function estimator. This estimator

should provide a narrower spread of estimates than the empirical loss rate estimator while avoiding the

bias of the pure shape function estimator.

6 Trace driven simulations

To conclude, we shall apply the estimators to real ATM traffic. We chose to use the well known

‘Starwars’ video data set produced by Garrett and Vetterli [8]. Using the number of cells per slice



(there are 30 slices per frame so the slice time is approximately 1.4ms), we split the traffic into 100

(lisjOmt segments of equal length and multiplexed them together. We then applied the estimators to

the resulting traffic stream as we did for the traffic produced from the model. Note that we are not

testing predictions of future cell loss here, we are merely checking to see if the two estimators give us a

consistent picture of the shape function of this traffic set. Figure 2 shows both estimates of the shape

function plotted against buffer size for a particular service rate. It is seen that the two estimators agree

reasonably well especially at moderately large buffer sizes.
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Figure 1: Interquartile range of loss estimates and shape function estimates

Figure 2: Estimates of the shape function of “StarWars”
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