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Abstract

ATM traffic is complex but only simple statistical models are amenable to mathematical

analysis. We discuss a class of queuing models which is wide enough to provide models

which can reflect the features of real traffic, but which is simple enough to be analytically

tractable, and review the bounds on the queue-length distribution that have been obtained.

We use theni to obtain bounds on QoS parameters and to give approximations to the

effective bandwidth of such sources. We present some numerical techniques for calculating

the bounds efficiently and describe an implementation of them in a computer package

which can serve as a tool for qualitative investigations of performance in queuing systems.

1 Introduction

The nature of VBR and other classes of ATM traffic is complex; different classes of traffic

have very different characteristics, and the impact of the traffic on the networks designed

to carry it is poorly understood. On the other hand, the behaviour of queues fed by

probabilistic traffic models has been examined and analysed in some detail and a lot of

results have been obtained for some simple classes of model. In this paper, we consider the

case of Markov Additive Processes (MAP’s), a class of traffic model which is wide enough

to provide models which can capture qualitatively the features of real traffic but which

is simple enough to be analytically tractable. We can construct models which reflect a

particular characteristic observed in ATM traffic, such as burstiness, and apply the analytic

results to them; by doing this, we can develop intuition about how the characteristic in

question affects queuing systems in general.

In Section 2, we review some results from the probability literature which show that,

when fed by MAP’s, the distribution of the queue-length has exponential tails. This can

be exploited by constructing a simple bound of the form

[Q > bj

where is the asymptotic decay-rate of the tail of the distribution, and is a constant

chosen to make the bound valid for all values of b. We show how this simple bound on

the queue-length distribution can be used to put bounds on different Quality of Service
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(QoS) parameters for the queue and how this leads naturally to the concept of effective

bandwidth of a source. This is the the minimum bandwidth that must be allocated to a

source in order to guarantee a given QoS requirement.

It is important to know how easily these bounds can be computed; in Section 3, we show

how to calculate p and ã for MAP’s. One attraction of the method is that the complexity

of the calculation is independent of the number of sources present in the traffic stream

arriving at the queue. This gives a great advantage over estimates derived from a complete

solution of the model queuing problem: these generally require the analysis of matrices

whose dimension is proportional to the number of sources. We present some numerical

techniques for evaluating the analytical expressions efficiently, with particular emphasis

on the expression for Y. Finally, we illustrate these techniques by calculating the bound

for a simple two-state Markov chain in Section 4 and outline how they are implemented

in an interactive computer package. Although the models we analyse may not be useful

as detailed models of real ATM traffic, and we certainly do not propose them as such, this

package can serve as a useful tool in the qualitative evaluation of performance of queuing

systems. It is also useful as a pedagogical tool, helping to illustrate some examples of

simple queues and allowing the user to visualise the general behaviour of queues, thereby

building valuable intuition.

2 Theoretical background

In order to develop some intuition for the behaviour of queues in the buffers of ATM

switches and multiplexors, we analyse a simple situation: the buffer is of infinite size,

the service capacity is a constant s per unit time and the arrivals to the buffer have a

simple (Markovian) statistical nature. The arrivals of ATM cells are not independent: if

a cell arrives in one tick of the clock, it is highly likely that another cell will arrive in the

next tick, or after some fixed delay. For data traffic, this is because large packets from

higher level protocols must be segmented, each generating a burst of cells; for voice traffic,

this is due to regular digital sampling. The simplest class of traffic models which exhibit

correlations is that of Markovian arrivals. These models are flexible enough to capture

the general features of ATM traffic, and yet are tractable enough to allow us calculate

accurate bounds quickly.

2.1 The two-state model

Buffet and Duffield [1] considered a two-state Markov model: at time T, an input line

connected to a buffer can be in one of two states. One (XT = 1) corresponds to the arrival

of a cell in the present clock-cycle, and the other (XT = 0) to no cell arrival. The bursty

nature of the arrivals is captured in the dependence of the distribution of the arrivals in

the present clock-cycle on what happened in the previous clock-cycle. If a cell arrived just

previously, then the probability of another cell arriving is high, close to 1; if, however, no

cell arrived, then the probability of a cell arrival is small. We express this dependence

precisely in the transition matrix:

( 1—a a a = P[XT=1IXT_1=01

d 1_d)’
where

d = P[XT=0IXT_1=1]
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The closer a and d are to zero, the burstier the model is. Buffet and Duffield analysed the

queue formed when a superposition of these arrivals at a buffer is served at a constant rate

s. Using martingale techniques, they obtained a simple upper bound on the queue-length

distribution:

[Q > b] <çoe.

Fig. 1 shows the typical form of the logarithm of the queue-length distribution, and the

corresponding Duffield-Buffet bound.

WT = a(Xt) —sT

t=1

Duffield again uses martingale techniques to derive an upper bound of the form

(1)

and shows that the decay constant Y is optimal in that it also provides an asymptotic lower

bound:

lim log {Q > bj
—.

b—+oo b
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Fig. 1. The Duffield-Buffet bound

so and 5 are determined by the parameters a, d and s through a single transcendental

equation. The equation is simple to solve numerically in a few iterations, yielding a fast

bound on the probability of the queue exceeding any given length.

2.2 General Markov models

Duffield [2] extended these results to any queue driven by a Markov Additive Process

(MAP). The workload WT of the queue is defined to be the total arrivals up to time T less

the total service available up to time T. With. a MAP there is some controlling Markov

process XT and the activity of the source in time-slot T is a(XT), so

T

3



The structure of the prefactor is important in allowing us to derive our bounds quickly:

in the case of some models, if there are a large number, L, of independent and identically

distributed sources feeding into the buffer, then

= e1L

where is characterised by the prefactor for a queue fed by a single source and served at

rate s/L. This allows us to extend the bounds derived in the simple single source case to

any number of sources without further computational effort. In most models, the prefactor

for a homogeneous superposition is not exactly exponential in L but it is always true that,

if L is large, ço can be well approximated by e” where is determined by the statistics

of a single source served at rate s/L. Incidentally, it also illustrates the economies of

scale available through statistical multiplexing: if > 0, then adding another source, and

increasing the service rate to maintain constant load, reduces the probability that the

queue exceeds any buffer size by a factor of es’. See [3] and [4] for more details. We can,

therefore, characterise the general bound for the queue fed by a large number L of sources,

F [Q > b] <e__6b

by just two constants, i and 6’, where the problem of determining them is independent of

the size of the system.

2.3 Queues in finite buffers

These bounds hold for queues with infinite waiting space, but the upper bounds are also

useful for the finite buffer case. If we denote the queue in an infinite buffer by Q, and

the queue in a finite buffer of size B by QB, then F [QB > b] <F [Q > b], and so we can

use any upper bounds on Q for QB too:

IP[QB > b] <oe_öb.

For large buffer size B, these bounds will obviously be as good as for the infinite buffer

case; for small buffers, however, they may not be tight enough. Toomey [5] has studied

the problem of MAP’s queuing in finite buffers, and has shown that the distribution of a

queue with integer arrivals and service has the general form

F [overflow] = coe0B + cie_61B +...

Each of the decay constants 6’j is an eigenvalu of a certain operator, and the coefficients

may be determined by solving for the corresponding eigenvector. The smallest eigenvalue,

6’o, corresponds to the decay constant 6 of the Duffield-Buffet formula (equation 1). This

suggests a practical procedure of starting with the smallest eigenvalue, and solving for as

many as are necessary to refine the bound to the desired degree.

2.4 The effective bandwidth approximation

In ATM networks, the buffer sizes are generally fixed and the service available is variable. It

is natural, then, to ask questions about how much service we need to allocate to guarantee

a certain quality of service. Since the size of the fixed buffer determines the maximum cell

delay variation the problem is to ensure that the cell-loss ratio will be less than some target

4



value. We call obtain bounds on the cell-loss ratio in a finite buffer using our bounds on

the queue length distribution.

The probability that a queue in a finite buffer of size B overflows is bounded by the

probability that the corresponding queue in an infinite buffer exceeds length B:

[QB overflows] <[Q > B]

The expected number of cells lost per clock-cycle due to buffer overflow is given by

E [no. of cells lost] = E [no. of cells arriving while QB overflows] [Q overflows].

To a very good approximation, the arrivals are independent of the state of the queue, and

so the expected number of cells arriving while QB overflows is approximately the mean

activity of the sources. The cell-loss ratio is the ratio of the number of cells lost to the

total number of cells arriving, or

L R
— E [no. of cells lost]

— E [no. of cells arriving]

— E [no. of cells lost]

— mean activity

giving

C.L.R. W[QB overflows] <çoe.

We want to try to bound the minimum service rate required to guarantee that the cell-loss

ratio will be less than some acceptable target ratio.

minimum required service = mm { s : C.L.R. (s) t }

We can approximate this minimum by using the bound on the C.L.R.; in the case where

is close to 1, this yields the effective bandwidth function a

a(t) = rain { s : < t }
= min{s : S(s) —log(t)/B}

is significantly less than 1, we improve our approximation and define the refined

effective bandwidth function by

Uref(t) = min{s : 1og(s) — (s)B log(t) }

In either case, the effective bandwidth gives a conservative bound on the minimum required

service.

3 Calculation techniques

3.1 Calculating S

The queue process is completely determined by the arrivals process and tile service rate,

and therefore, not surprisingly, we calculate the asymptotic decay rate of the queue-length
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distribution, à, from the asymptotics of the distribution of the arrivals. First, we define

the scaled cumulant generating function A of the arrival process, as

A(9) := Jim 1ogE [e0Z=it)].

T-*oo T

A(9) is, by construction, a convex function. It is easy to verify that the slope of A at

0 = 0 is the mean arrival rate, and that the asymptotic slope is the maximum achievable

arrival rate. For the queue to be stable, the service rate must be greater than the mean

arrivals. Furthermore, for the queue to be non-empty, the maximum arrivals must exceed

the service rate. S is found by solving for the positive root of the equation

A(O) = sO, (2)

Since A(O) is a convex function, the stability conditions for the

root will exist (see Fig. 2) and will be unique.
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Fig. 2. The scaled cumulant generating function

We start solving this equation by examining the structure of the expectation for a finite

state MAP. Let XT be the controlling Markov chain, N be the number of states of XT,

and a(x) be the increment to the arrivals at the queue when XT is in state x. Consider

[e8 =i because of the Markovian property, we may write

E [e0 a(X)] = a(xt) il [X = X1 = Xt_1 I [X1 = xi],

xi=1 XT=l t=2

where Xt labels the state of the chain at time t. We now pair each of the exponential

factors eOAt) with the corresponding transition probability by defining

:= eOat [X = X_1 = (no)xi :=eO1)p[X1
=x1].

-2 -1 0
0
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The T summations of the product of these factors is nothing other than T — 1 matrix mul

tiplications written out explicitly; the expectation may now be written in matrix notation

as

E [e0Zit)]
=

()T_1
it, (3)

where i is the transpose of a vector containing l’s in each column. The matrix P0 is

called the twzsted transition matrix because it is the transition matrix P twisted by the

exponential factors eOa(). Thus we have that is given by

(8) = urn log H
(p)T

1i1]
T—*oo T

= logp(o),

where p(P) is the spectral radius of Po. If XT is ergodic (stationary, recurrent and

irreducible), then p(P) is the maximum modulus of the eigenvalues of P0. The problem

of determining 1 is then the following: find the unique 6 > 0 such that

logp(Po) =58

We have developed a number of different ways of solving this problem, outlined as follows.

The Powell method

We may take a direct approach, using techniques from linear algebra to evaluate the largest

eigenvalue of Po as a function of 8. The equation )(8) = s8 is then readily solved using a

simple bisection algorithm. It turns out that one competitive method for determining the

spectral radius of a matrix is the Powell method. The spectral radius p(A) of a matrix

A is defined by p(A) := sup lAvi/Ivi, so that after a large number n of iterations of A,

Avj p(A)v. To find p(A), one starts with a random initial vector, v0 say, and forms

the iterates of A applied to it:

v1 := Av0, v2 := Avi, ...
:= Avk_l = Akv0.

p(A) is then estimated as the ratio of the moduli of successive vectors in the sequence:

p(A) = jvk/Ivk_1I. If A has other eigenvalues close in modulus to p(A),_then this estimate

will only converge poorly. In this case, a better estimate is p(A) = lJjVk±1J/Jvk_lj. The

choice of v0 can also strongly affect the convergence of this method. For example, if vo

is an eigenvector of A which contains no component in the direction of the eigenvector

corresponding to p(A), then the method will not converge at all. For practical purposes,

a good choice of initial vector is suggested by Equation 3: the vector rr0 is the stationary

measure of the controlling chain X, and hence the eigenvector of P0 corresponding to

eigenvalue 1. By the Perron-Frobenius theorem, 1 is the largest eigenvalue of P0 and so,

for small values of 8, 7r will be close to the eigenvector of P8 of corresponding to eigenvalue

p(P8). The Powell method will then converge rapidly, quickly yielding a good estimate of

The determinant method

An alternative approach is to start with the eigenvalue equation for F0: is an eigenvalue

of P0 if det(Po — aI) = 0, where I is the identity matrix. We are looking for the value
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of 8 which gives logp(P) = sO, i.e. p(P0) = eS&. Since p(P9) is an eigenvalue of F0, we

could also look for solutions to

det(P0 — e801) = 0. (4)

In general, there will be many values of 8 such that F0 has eigenvalue eSO, but we know

that 1 will be the smallest positive such 8. Since calculating determinants is a lot cheaper

numerically than calculating eigenvalues, the roots of Equation 4 are a lot easier to find

than the root of Equation 2. However, we have very little information about the form of

det(P0 — esOl) as a function of 8. It is difficult to know precisely how many zeros it has,

and whether or not any particular solution to Equation 4 is the smallest positive one. We

can, however, test any solution Oo found by using a single evaluation of using the Powell

method: Y = 8o iff A(00) = soo.

The root-tracking method

This method is based on the observation that the eigenvalues of F0 are smooth functions of

0, and the knowledge that, for Markov chains, the eigenvalue of largest modulus at 8 = 0

is the eigenvalue of largest modulus for all values of 0. Let us call this eigenvalue a(0). It

satisfies the eigenvalue equation

f(0; a(0)) = 0, where f(0; a) = det(P8 — aI),

and is a smooth function of 0, and so

ãf dc
(0; a(8)) + —(0; a(O)) = 0.

Noting also that a(0) = 1, we may calculate a(0) by solving the first order O.D.E.

da 8f ãf
= —(0;a(8))/-—(8;a(8))

starting with the initial value a(0) = 1. The attraction of this method is that the numerical

solution of O.D.E.’s is a subject which has attracted much attention. Because of this, there

are a great many powerful and well-tested methods for solving them; see Press et al. [6]

for an illuminating review and more references. In practice, the accuracy of the solution

need not be that great; it is sufficient to track a(0) approximately as it initially decreases

with increasing 8, until it exceeds e0. (Recall that loga(8) = A(8) and look again at

Fig. 2.) The value of 0 at which this occurs may then be used as an initial point in a

Newton-Raphson solution to Equation 4 from the previous method. The expressions for

the partial derivatives of f are, in general, quite cumbersome, and so this method is best

suited to models in which the determinant in f may be explicitly evaluated.

3.2 Calculating the prefactor p

We saw how the scaled cumulant generating function ) is the logarithm of the largest

eigenvalue of the twisted transition matrix_P0. [2] shows that we can calculate the prefactor

p from the corresponding eigenvector of Po as follows.

Let v(s) be the eigenvector of P6(3) of eigenvalue

v(s)P6(S) = ev(s).
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This is a vector with a real component v(s) corresponding to each state i (1 i < N) of

the controlling Markov chain; we take v(s) to be normalised so thatv1(s)+.. .±vjv(s) = 1.

Vve denote by E those states of the Markov chain such that the activity of the source while

in those states exceeds the service rate 8:

a(x)>s}.

The prefactor p is then simply
1

p(s) = max
xEE v(s)

3.3 Homogeneous superpositions

Suppose that the arrivals consist of a homogeneous superposition of sources, that is, the

total arrivals in a time slot come from the sum of the activities of L independent and

identically distributed Markov chains X:

atotal(XT) = a(X) +... + a(X).

In this case, the state space of the controlling Markov chain XT is the product space

{ 1, 2,... N
}L

and the transition matrix is the L-fold tensor product of the common

transition matrix of each source.

Calculating 6

Consider the scaled cuinulant generating function of the arrivals process. The arrivals can

be written as the sum of the arrivals from each of the L sources:

a(Xt) = a(X’) +... + a(X).

Since the L Markov chains are independent, the expectation in the scaled cumulant gen

erating function breaks up into a product of L terms,

E [eQ
a(Xt)]

= E [eQ a(X(’)] . .

. E [eQ
a(X(L)]

and, since they are identically distributed, we have

E [eQ a(Xt)]

= ( [e°
a(X(’)]

L,

giving

logE [e0i
a(Xt)]

= L logE [e°t=i
a(X(’)]

Thus the scaled cumulaiit generating function for the total arrivals is

= LA(1)(O),

where )(1)
is the common scaled cumulant generating function of all the sources. To find

for the superposition, we need to solve Equation 2 which is, in this case, equivalent to

solving

A’(O) = (s/L)6.
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Calculating

Since the transition matrix has a product structure, so do the twisted transition matrix

and its eigenvector v(s) of maximal eigenvalue. We can exploit this structure to obtain a

prefactor p which is itself an L-fold product:

= e,

where j call be determined from the eigenvector (of maximal eigenvalue) of the

twisted transition matrix of a single source. Details are given in [2].

Thus, to calculate our simple two-parameter bound in the case of a homogeneous super

position of L sources, we need only solve Equation 2 and calculate the corresponding

eigenvector for the case of one source.

3.4 Calculating effective bandwidths

As we have seen, 6(s) is the unique positive solution of the equation

= sO (5)

so that,

)6(s))
=

6(s)

Now, the effective bandwidth function is defined by

u(t) = mill { s : 6(s) — log(t)/B }

where I is tile highest acceptable loss-ratio. If öt is the fraction on the right hand side of

the inequality then J(6t) is the value of s for which

6(s) =

and so

= A(6)/6.

In general, the refined effective bandwidth function is difficult to evaluate explicitly since

both 6 and ji are functions of s; however, it is still readily calculated numerically.

4 Implementation

4.1 Calculations for a 2-State Markov Model

For the case of a 2-state Markov model, calculating t and 6 reduces to a numerically

solvable transcendental equation. We need to examine the maximum modulus of the

eigenvalues of the twisted transition matrix. For the 2-state model this is a simple problem.

Assuming the activity in state 1 be 0 and in state 2 to be 1, and the transition probabilities

to be as defined in section 2.1 , tile matrix in question is

= ((1 - a)

e°(1- d))
(6)
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We can easily solve the eigenvalue equation for this matrix and determine the largest

eigenvalue

(1—a)—c e0a
—

d e°(i—d)—c —

a2—(1—a+e°(1—d))a+e(i—a—d) = 0

Solving this equation for , we get

= [1_a+(i_d)e0±(i_a+(i_d)e0)2_4(1_a_d)e0]

= log(amax)

= 1og[i_a+(i_d)e0±(i_a+(1_d)e0)2_4(1_a_d)e0]
—log2

The effective bandwidth is now easily calculated by using this expression for )(9) in equa

tion 3.4. In order to find ö(s), we must solve Equation 5 numerically. As discussed in

section 3.2, so(s) is found from the eigenvector, v(s), of the maximal eigenvalue of

Since we are dealing with a simple on-off model, we have that

1

V2(S)

We know from equation 5 that the maximal eigenvalue of is e(s); thus we are looking

for the value of v2 in the equation

(v1 V2)PS() = e(vi v2).

Taking the equation corresponding to the first column of the matrix, we get

— 1 + a

d

and, using the normalisation that v1 and v2 sum to 1, we find that

ed(s) ± a — 1
p(s)

= C8(8) + a + d —

4.2 A proposal for an interactive tutorial package

The numerical techniques for evaluating and p which we outlined in Section 3, and

illustrated above for the two-state model, are very efficient. We have tested them by

implementing them in C on a 66MHz Intel 486 for various different MAP’s and, even for

moderately large state-spaces (N=iO0), 6 and p can be evaluated in a negligible amount

of time (less that is). This suggested that an interactive package could be built around

these routines; such a package could exploit the excellent graphical capabilities which

even modest PC’s possess today. We have designed such a package: it allows the user

choose from a range of Markov models, allows them to specify the parameters of the

model (such as mean activity, burstiness and so on) and the service rate of the queue

and displays the bound on the queue-length distribution and various QoS parameters.

Since the calculations are effected almost instantaneously, the user can play around with

mnany different scenarios, allowing them to develop intuition about what the impact of the

different characteristics of the traffic is on its queuing behaviour. The package is licensed

for free use am,id is available for ftp from ftp://ftp.stp.dias.ie/DAPG/
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5 Conclusion

In this paper, we considered the queuing behaviour of arrivals processes called MAP’s

which have an underlying Markov structure. We reviewed some results from the probability

literature which show that, when fed by MAP’s, the distribution of the queue-length has

exponential tails. We exploited this by constructing a simple bound of the form

iP[Q> b] <soe_,

where cl is the asymptotic decay-rate of the tail of the distribution, and cp is a constant

chosen to make the bound valid for all values of b. We showed how this simple bound on the

queue-length distribution can be used to put bounds on different Quality of Service (QoS)

parameters for the queue and how the concept of effective bandwidth arises naturally.

We showed how to calculate s° and 5 for MAP’s and presented some numerical tech

niques for evaluating the analytical expressions efficiently. We illustrated these techniques

in the case of a two-state Markov chain and outlined how these techniques have been used

to implement an interactive tutorial package.
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