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1 Introduction

An interesting open problem in mathematics is the question of when a q

hypergeometric series is modular. This question is far from being solved

completely, but a useful first step is to consider the following problem. Let

A be a positive-definite symmetric r x r matrix, B a vector of length r, C a

scalar, each rational, and define

n’An+Bn+C

fA,B,c(q)= () ()
(1)

ni
nr)E(Z>o)

where (q)n = fJ(1 — q). It is convenient to note that fA,B,c(q) =

qCf0(q). This series converges for q < 1. Problem: describe the set

of such A, B, C for which (1) is a modular fmmction. For r = 1 this question

has been answered completely by Don Zagier [1]. A conjecture suggested by

one of us [1, 2] attempts to partially answer this question by suggesting a

condition that the matrix A must satisfy in order to guarantee the existence

of B and C that lead to (1) being modular. A brief summary of progress in

this direction, as well as a description of the conjecture itself, is given in A.

The conjecture, its background, and related topics are discussed in detail

in [1, 2] from the points of view of physics and mathematics respectively’.

1One of us (W.N.) would like to apologise for the title of this paper, hut it might he

too confusing to use a more oblique name.
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In many cases Nahin’s conjecture correctly predicts values of A which

give rise to modular fA,B,c. However, even in such cases, there is no simple

way to calculate the corresponding values of B. The conjecture claims such

values exist hut gives no indication of how to compute them. Of course one

could search systematically through numerous potential B-values, each time

computing the corresponding function fA,B,c’ and checking modularity, hut

this is a slow process. It would he useful to have an algorithm that computes

suitable B-values for a given matrix A. This paper takes a first small step

in this direction.

In the context of modularity, series of the form (1) first arose as characters

of rational conformal field theories (RCFTs), see [3]. To explain characters

of this form, the corresponding RCFTs must be understood as limits of more

general integrahie quantum field theories (QFTs), see for example [2] * These

are integrable massive perturbations of CFTs, no longer themselves confor

mally invariant. Integrable QFTs can he studied by means of the thermody

namic Bethe ansatz (TBA), see for example [4] and references therein. For

time current status of research see [5] and its references. Using the TBA ap
proach, information can he extracted from a massive integrable QFT once its

scattering matrix is known. This includes the values of B and C. The matrix

A of (1) is essentially the phase difference of the integrable QFT S-matrix

between large positive and large negative rapidity, while the equations (8) of

Nahrn’s conjecture (see A) are a limiting case of the TBA equations. If A

comes from an integrable deformation of a CFT, one could potentially find

the characters (and appropriate values of B and C) by reconstructing the
scattering matrix from A, but little is known about the feasibility of this

approach for general A.

While this will be an interesting approach for future study, the current

paper is concerned with a simple comparison between RCFT characters aiid

q-series of the form (1). Approaching the problem of modular q-series froni
the point of view of conformal field theory puts a wealth of tools at our
disposal, most importantly reliable formulae for calculating CFT characters.

Formulae for calculating minimal model characters are given in [6], while
the technique for calculating coset characters is described in [6, 7]. I\/Iany

choices of the matrix A correspond to particular models in conformal field
theory, and where such models can he successfully identified their characters
should be closely related to the series (1). For such choices of A, values of

B and C can he chosen and the series (1) compared directly to characters

of the correspondmg CFT model. This is a fairly straightforward process as
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it involves nUmerically checking equality of q-series (up to a certain order),

rather than the tedious process of checking modularity. For a particular

choice of B and C, if (1) is equal to any linear combination of CFT characters,

then it is necessarily modular, and we have thus succeeded in finding suitable

values of B and C. This paper studies two particular families of matrices A,

both chosen for their close links to conformal field theory. For each family,

a numerical study of a number of exaniples establishes a pattern for the

B-values. While our results are not an algorithm for computing B given a

general matrix A, they do suggest that a niore comprehensive search for such

aim algorithm may be worthwhile.

The paper is laid out as follows. Section 2 describes the families of ma

trices A and their links to CFT. Section 3 discusses the method used to

search for B-values. Sections 4 and 5 contain the results of these searches,

including general formulae for calculating B-values. A number of interest

ing phenomena arise during these calculations and are mentioned briefly in

section 5. Nahm’s conjecture, while not central to this paper, is certainly

relevant, and is stated in A. B contains asymptotic formulae used in the

search for B-values.

2 The relationship between the matrix A and

conformal field theory

2.1 Pairs of Dynkin diagrams and CFT

Certain integrable models can be described by pairs (X, Y) of ADET Dynkin

diagrams2. Such models have equations of the form x = (1 — x)4, where

A = C(X) ® C(Y)’, C denotes a Cartan matrix, and 0 is the Kronecker

product of two matrices. The effective central charge is known or conjectured

to he
/

r(X)r(Y)h(X)
Cff, 1 )

= h(X) + h(Y)

where r denotes the rank, and h the dual Coxeter number of a Lie algebra.

See [8] and references therein. The pairs (A1,T) and (A1,A71) are studied

in this paper, with correspondimig matrices given by A = C(A1) 0 C(T)’

and A = C(A1)® C(A77)’ respectively. These particular famnilies are chosen

because they can he identified with known CFTs, see sections 2.2 and 2.3.
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Furthermore, matrices A of this form are among the easiest to deal with

computatiorially because of the oiie-dimensional factor C(A1).

2.2 Minimal models

By equation (2), the model (A1,T) has effective central charge

Ceff(Ai,Tn) = 1—
2n+3’

The (p, 2)niinima1 model has effective central charge

Ceff = 1 —

Choosing p = 2mi + 3 allows the (2n + 3, 2)niinimal model to he identified
with the model described by the pairs of Dynkin diagrams (A1, Tn,) Sonic
aspects of this family were studied previously in [3]. For more information
on minimal models see, for example, [6].

2.3 Coset models

By equation (2), the model (A1, An.) has effective central charge

2n
Ceff(Al,An)

= n+3

The coset model (2)rj+i/7(i) has central charge

3(n+1)1 2n

— n+3 n+3

This e(Iuahty of central charges is good evidence that, for unitary models, the
model described by the pair of Dynkin diagrams (A1,A) is exactly the coset
model (2)+i/(i). For more details on coset models see, for example, [6, 9].

2ADE Dynkin diagrams correspond to tile classical simple Lie algebras A, = u(n + 1)
and = .o(2n), and tile exceptional Lie algebras E6, E7 and F8. The ‘tadpole’ diagram
Tr is got by folding the diagram A27. in the middle to get a pairwise identification of

vertices Tr = A2r/Z2. The Cartan matrix of T,. is identical to that of Ar except for the
entry C(Tr)rr = 1. Its dual Coxeter number is h(Tr) = 2’r + 1.
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3 The search for suitable B-values

The foLlowing method is used to search for B-values:

1. Choose a matrix A.

In this paper we consider only those matrices described in section 2.1.

2. Identify the corresponding conformal field theory.

As described in sections 2.2 and 2.3.

3. Calculate the OFT characters.

A thorough description of the methods used to calculate CFT charac

ters can be found in [6]. To save space we don’t repeat the description

here as the methods are standard and comprehensive overviews are

available in the literature.

4. Choose a range over which to search for B-values.

To start we assume that each component of B satisfies b1 Z, aiid

search over the range —8 < b 8. As necessary, the search is extended

to include b E Z/2, b E Z/3, b E Z/4. . . . The choice of denominator

usually changes as the choice of A changes. (As the rank of A, and

hence the length of B, increased it was necessary to restrict the scope

of the search to —2 < b < 2 for computational reasons, however for

the examples studied this range still allowed us to find appropriate

B-values.) The search continued until no further B-values could be

found.

5. Ue asymptotic formulae to immediately eliminate many of the poten

tial B-values.

Useful information can be obtained by studying the asymptotic be

haviour of fA.B,c(q) as q —* 1. For example Don Zagier [1] used asymp

totics to prove Nahni’s conjecture for rank 1, although unfortunately

this method is too computationally intensive to be usefully applied

to larger rank at present [10]. In the present paper two asymptotic

formulae are used to quickly exclude many potential B-values. Both

formulae are stated in B, hut for a detailed description of their ori

gins see [1, 11, 12]. The first formula (9) originated in the PhD thesis

of Michael Terhioeven [11] and calculates C given B. The second for

mnula (10) doesn’t seem to be stated explicitly in the literature but was
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calculated by the authors of this paper using exactly the methods de

scribed in [11, 12]. Both formulae are used to speed up the search for

B-values as follows: for each B-value under consideration, check firstly

that it satisfies equation (10), and secondly that it gives rise to a ra

tional value of C using equation (9). Any B-value that doesn’t satisfy

these conditions can be immediately excluded. This quickly rules out

a large number of unsuitable B-values.

6. For remaining B-values calculate ,fA,B,c and compare to known CFT

characters.

Use (1) to calculate fA,B,c (with C calculated using (9)). This series

is compared numerically (in most cases to order 20) to known CFT

characters. If fA,B,c is equal to a linear combination of CFT characters

for any value of B then we have successfully identified a B-value that
leads to modular fA,B,c.

4 The family A = C(A1)®C([) and the (2ri+

3,2)—minimal model

This section examines matrices of the form A = C(A1) ® C(T1)1. The
corresponding CFT is the (2n + 3, 2) minimal model, see section 2.2. For
n = 1, 2, 3,4.. . we calculate the appropriate B-values using the method of
section (3), until a general pattern emerges for the B-values. One exaniple
and the general pattern are reported below.

4.1 Example - the (5, 2)—minimal model

A = C(A1)®C(T1)’ = 2, B = (b1) E Q, CE Q, and the q-series (1) is given
by

°° n+b, ni

fA,B,c q0
ni=O

qjn1

The (5, 2) minimal model has two distinct irreducible characters:

(5,2) = q(1+q2+q3+q4+q5+2q6±...),

=
q(1+q+q2+q3+2q4+2q5+3q6+...),
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A search for B-values (with —5 5) gives the following results:

C = — B = (0) = fA,B,c =

ii (9)

B=(1) = fA,Bc=xi,{

4.2 A general pattern of B-values

For the matrix A = C(A1)® C(T)—’, a general formula emerges for B-values

that lead to modular fA,B,c. There are n + 1 such values, each of length n:

B = (0,00,...,O,O,0),

B = (0,O,O... .,0,O,1),

B = (0,0,0,...,0,1,2),

B = (0,0,0,...,i,2,3),

B = (0,0,1,...,n—4,n—3,n—2),

B = (0,l,2,...,ri—3,ri—2,n—l),

B = (1,2,3,...,n—2,n—1,’n).

5 The family A = C(A1) ® C(Akl)’ and the

coset i(2)k/7(1)

5.1 Coset characters and their relation to the functions

fA,B,c

The aim of this section is to investigate exactly how coset characters are re

lated to the q-series fA,B,c of (1). Comments are made based on patterns that

emerged from the study of members of the family A = C(A1) 0 C(Ak_l)’

It appears that tIme fA,B,c are equal to sums of coset characters, and that

suitable sums of characters can he predicted from the equation

Ic
(Ic) (k)

x (q, u) = X{l;m}(q)Kn (q, u), (3)

rn=—k+1
m+iO mod 2
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where denotes an (2)k character, K denotes a (1) character, X{1;m}

is a character of the coset (2)k/i2(1), and ‘a is a variable independent of q.
(3) is a set of k+1 equations describing the decomposition of(2)kcharacters
into sums of products of a coset character and a (1) character. See [6] for
more details. As a result of field identification, see [6], half of these equations
are redundant (don’t pro cluce any new coset characters), therefore it is only

- (k) (k)necessary to study the equations for the su(2)k characters0 ,.

.

when

k is even, and the equations for the su(2)k characters x0 . . . , when k

is odd. This can perhaps be seen more clearly in the examples of section 5.2.
For the 12 examples studied, values of B and C have been found that make

t4,B,c equal to the sum of coset characters

X{l;rn}, (4)
in=—k±i

m+lmO mod 2

for each 1 = O,1,2,..., when k is even, and for each 1 = O,l,...,1

when k is odd. We are curious whether this is true for all matrices A whose
corresponding CFT is a coset model. No similar statement has been found
in the literature. If (4) turns out to be a method for relating the series fA,B,c

to coset characters in more general cases it will be important to understand
its role in conformal field theory, This will be an interesting project for the
future.

5.2 Calculation of B—values — Examples

Example: The coset(2)2/(1)
The coset (2)2/i(1) is the niodel described by the pair of Dynkin diagrams
(A1,A1). The corresponding matrix is A = C(A1)®C(A1) = (2) 0(1/2) =

(1). B = (b1) Q, C Q, and the function fA,B,c is given by

°°

fA,B,c
= q0

(c
nj=O

For this coset model the decomposition (3) consists of the three equations

= +

8



(2)
= +

(2) (2)
= X{2;O}Ko + X{2;2}R9

so that by (4) we expect to find fA,B,c equal to the sums of coset characters3

X{o;O} + X{O;2} or 2X{1;1},

for some choices of B. The search of section 3 gives the following results:

C = — B = (0) fA,B,c = X{O;O} + X{O;2},

B
= (—i) fA,B,c =

Example: The coset (2)4/(1)

The matrix A corresponding to this coset is

/ 3/4 1/2 1/4 / 3/2 1 1/2

A = C(A1)® C(A3)’ = (2) ® ( 1/2 1 1/2 1 = ( 1 2 1

1/4 1/2 3/4 J 1/2 1 3/2

By (4), we expect to find fA,B,c equal to the linear combinations of coset

characters

X{O;O} + 2{O;2} + X{O;4} or 2X{ii} +2X{13} or 2{9.o} +2X{2;2}

for certain choices of B. The search of section 3 gives the results:

C = — B = (0,0,0) = {O;O} +2X{o;2} + X{O;4}’

c = { B = 1: 1:: fAB,c = 2{i;i} +2X{1;3},

C = B
= (—i, —1,) f,c =2X{2;o} +2X{2;2}.

3Note that field identification results in only three distinct coset characters:

X{O:O} = q (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 5q9 + 7q’° +...),

X{o;2}
= q(1±q±q2±q3±2q4±2q5±3q6±4q7±5q8±6q9±...),

=

4We have not described all B-values that result in fn,n,c = X{o;o} +2X{o;2} + {O;4}•

It turns out that the infinite family of vectors (3k/2, 0, —3k/2), k E Z, are also B-values

in this case. This will be discussed in more detail in section 5.6.
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5.3 A general formula

Calculations similar to those of section 5.2 were carried out for the cosets

i(2)12/(1), from which a general pattern of suitable B-
values emerged. In this case the B-values can he read directly from the
matrix A. For a matrix A = C(A1) 0 C(Ak_l)’, whose corresponding CFT
is the coset model (2)k/i7(1), the set of B-values that lead to modular

fA,B,C are

and B=—C(Akl)*

o each column
is a B-value

5.4 Is this the complete set of B-values?

Whether section 5.3 describes all B-values for a matrix A =

seems to depend on whether k is odd or even. For odd k, the search of sec
tion 3 has found no B-values in addition to those described in section 5.3.
This is not the case for even k, where there exist a number of additional B-
values that lead to modular fA,B,c. The structure of the linear combination
in (4) seems to be a clue to the number of suitable B-values we can expect
to find. Notice that for odd k none of the linear combinations in (4) has
a comnmomi divisor 2 among the character multiplicities. For even k many
of these linear combinations can be simplified by dividing the entire combi
nation by a common integer divisor. In such cases there seem to exist new
B-values corresponding to each new linear combinations. This is seen more
clearly in the example of section 5.5. As in section 5.1, these conclusions are
drawn based on carefully studying a number of examples. While the patterns
are very interesting, we don’t currently have a good understanding of why
such patterns arise. This is certainly worthy of further study and we hope
to undertake such work in the near future.

5.5 An interesting example: the coset (2)4/(1)

In example 5.2 we saw that for certain choices of B the series fA,B,cy was
equal to the following linear combinations of coset characters:

X{o;o} +2X{o;2} + X{O4} or 2X{ii} +2X{i;3} or 2X{2o} +2X{22}.

10



Here the second and third linear combinations can be divided by 2 to give

X{1;1} + X{1;3} or X{2;O} + X{2;2}.

Again, there exist values of B arid C for which fA,B,c is equal to these

combinations.

= { B
JA,B,C = X{i;i} + X{1;3}

4’ 2’ 4

= 24 B “ ‘o 5fA,B,c = X{2;O} + X{2;2}

‘ 2’ ‘2)

This phenomenon is not unique to the example (2)4/(1), hut seems to

occur for the matrix (2)k/(1) whenever k is even.

5.6 Infinite Families

For A = C(A1) ® C(A3)’ there exist infinite families of (B, C) values all

resulting in the same fA.B,c. We describe two such families and give an

explicit formula for the series fA,B,c in each case. This shows that all such

(B, C)—combinations lead to the same value of fA,a,c, and also proves that

fA,B,c is modular. In this case A is given by

1 1
2 2

121
113
2 2

In a recent talk [13], Sander Zwegers stated that a matrix A’ of rank 2 could

be extended to a matrix A of rank 3, and B and C chosen appropriately so

that L4,B,c = .fA’,B’,C’ Using his method, the 3 x 3 matrix A above is an

extension of the 2 x 2 matrix

3 1

2 2
1 3
22

5We have not mentioned all B-values that result in IA,B,c = X{2;o} + X{22} It turns

out that this equation is satisfied by the infinite family of B-values 0, k E Z.

This is discussed in section 5.6.
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f4’,B’,c” for this matrix is given explicitly in [1], and it follows that, for k

=

= X{O;O} +2X{o;2} + X{O;4},
nEZ

___

=
= X{2;O} + X{2;2}

nEZ

It is entirely possible that other cosets from the family (2)k/(1) also admit

such infinite families. The searches undertaken in the current paper have not
found further infinite families, but there is no reason to suggest they don’t
exist for larger values of k.

5.7 Duality

Defluie A* = A’. If there exist B E Q7’ and C E Q such that fA,L,c is
modular, there should also exist B* Q and C* E Q such that fA*,B*,c is
modular, see [1]. Having determined which (B, C) make fA,B,c modular, the
corresponding (B*, C*) are given by

C*=BtAB__C.

Example f using duality - the coset (k +i)2/(1)k

In section 5.3 B-values were calculated for the coset (2)k/(1). The inverse
of the matrix A for this coset is

A*
= A = C(A,) ® C(A).

This is the matrix of the model described by time pair (ilk, A,). (More pre
cisely it is the matrix of this model up to a permutation which doesn’t effect
solutions of the ecluations (8) of the model.) The corresponding B-values are
given by

= A’B = (c(A,)’ ® C(A)) (—C(Ak)’) = —C(A,)’ ® I = ® Ik,

where I denotes the identity matrix. Hence, the coset i(k +i)2/(i)k has
B-values

0

0 1
and B*=

0 each column
is a B-value
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6 Conclusions

This exploratory paper was motivated by the question of when a q-iiypergeornetric

series is modular. A specific r-fold q-hypergeometric series fA,B,c was cho

sen and the following question asked. Given a matrix A, how can B and C1

(if they exist) he calculated so that fA,B,c is modular? In the past, much

work was done to suggest constraints on the matrix A, hut little was known

about the structure of suitable B-values. The aim of this paper was to

better understand the B-values, in particular to investigate whether they

followed certain patterns. As a first step all calculations were carried out for

two particular families of the matrix A, namely A = C(A1) ® C(T)—1 and

A = C(A1) ® C(Akl)* Both families were chosen for their close ties to

conformal field theory. The main results of the paper were formulae for cal

culating B-values appropriate to each of these families. These results arose

from a simple numerical comparison between RCFT characters and q-series

of the form (1). They indicate a relationship between B-values arid repre

sentation theory which needs to be explored further. In some cases, however,

the canonical B-values related to the Lie group representations come together

with infinite families of associated ones which have no explanation yet. The

successful search in the case i’ = 1 [1] reduced the determination of A, B, C-

values to a set of algebraic equations. When infinite families exist, these

equations will have corresponding continuous families of solutions, so that

the algebraic equations alone cannot suffice for finding B-values and have

to be supplemented by integrality conditions. The present calculations have

also brought to light interesting relationships between coset characters arid

the series (1), see sections 5.1 arid 5.4. We plan to study a wider selection

of cosets arid matrices A to see whether these relationsliips hold in general.

If they do, it will be exciting to try to understand these patterns and to

explain them in the context of conformal field theory. Although the question

of when a q-series is modular can he viewed purely as a number theoretical

problem, this paper has shown that new light can be shed on the problem by

approaching it from the point of view of conformal field theory. An interdis

ciplinary effort in tire future may he a good strategy in the hunt for a better

understanding of the overlap between q-series and modular functions.
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A Statement of Nahm’s conjecture and some

relevant definitions

The Bloch group This is the definition given in [1]. Let F be a field.

Consider the abelian group of formal sums [z1] + . . . + [z,], with z, . . . z.,

F — {0, 1}, satisfying

Z(zj) A (1- z) =0. (5)

For all x, y F — {0, 1} with xy 1, this group contains the elements

1 ri—r1 l—yl
[xj+[1—x], L1]+ [x]+[y]+ [ — J +

1 — j
+[l—xy]. (6)

The Bloch group is defined as

B(F) = {[zi] + . .. + [z,1,] satisfying (5)} / (subgroup generated by the elements (6))

Modular function A function which is invariant under z —* for all
cz+d

( a
belonging to sonic subgroup of finite index of SL(2, Z).

Conjecture A.1 (Nahrn’s conjecture) Let A = (A) by a positive def

inite symmetric r >< r matrix with rational entries, B e Q, and C E Q.
D/ine an r-ftld q-hyperqeoraetric series fA,B,c by

q
fA,B,c(q) =

r (q)1 .. . (q),
‘ (7)

where (q)n, = fl (1 — qi). For i = 1 r we can consider the system

= r

(1
— )A3 (8)
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of r equations in r unknowns. For a solution x = (x1 ,...,Xr) of (8,), define
= [xi]+. . .+[x] e Z(F), where F is the number fieldO(xi,. . . ,x.). Then

there exist B E QT and C E Q such that fA,B,c(q) is a. modular function, if
and only if is a torsion element of the Bloch group 8(F) for all solutions

x=(xi,...,xr) of (‘8,).

More precisely, consider the system u = L1 4iv where expQui) +
exp(vj) = 1, and uq, v E C for i = 1, 2 , r, which is essentially the loga
rithm of (8). For a more detailed discussion of the solutions of (8) see [1, 2].
ahm’s conjecture is correct for the case when r = 1, see [1]. For r = 2 and
r = 3 extensive computer searches have been carried out, both by Michael
Terhoeven [11] and Don Zagier [1]. These searches confirmed the conjec
ture for hundreds of cases. In one direction (the ‘if’ in conjecture A.1) there
exists no counterexample, but in the other direction (the ‘only if’) Masha
Viasenko and Sander Zwegers have recently found a number of counterexam
pies [10], a single one for rank 2, and certain families for larger rank. Clearly
a deeper understanding is necessary and may result froni ongoing work. Any
new niathematical treatment should take into account [14]. Froni a different
point of view, Hua.ng and Lee [15] compile a complete list of positive definite,
symmetric 2 x 2 matrices with integer entries such that all complex solutions
to the equations (8) are real, and explain how this could be a useful approach
to studying Nahm’s conjecture.

B Asymptotic formulae

The first of the asymptotic formulae used in this paper can be found in
Michael Terhoeven’s PhD thesis [11], and is a formula for computing C given
a symmetric matrix A of rank r and a vector B = (b1

=
()‘

xj
+1(b)

(1
)9Fii

+

+
(—‘‘

1(b
— (1
)2FiiFii&(bi) Xix.

i,j=i J I .1

——

F3
1 1 X

FFF
X3

(9
12(1—x)2 ii(lx)2 $(1—x)2

u
(1_x)2[
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Here x = (x’, x2 ,...,‘r) denotes the unique solution of the set of equa

tions (8), that satisfies 0 < x < 1 for i = 1, 2 ,...,r. The matrix F is defiled

as

F=

and. denote Bernoulli polynomial, so that

1 2 1 • 391

Using Michael Terhoeven’s method [11, 12], we derive a second asymptotic

fornmla:

\_ (

_______

1 2(b) x(1 + xj)o =

6(1
— )23(bi)

—

2 (1 —

‘F2 b
x+4x+x 1 F3XZ+hlXi+hlXi+Xi

— &(
(1 —

,)4
— 48 (1 — w1)5

+
1

2(h)

(1 _r)2

+

(1
)2l(bJ)1

‘

+
+

(1 )2 (1 r/)2

+
(

+ ii (b)
(1
)2i(bi)

(1 ,.)2

+ ii(bi)(1
2(i,)3

+
,.)21(2)(.)3

+ 1(b)
(1 ,.)2 + 12i(1
)2i(b)(1)3

+±F (b)xl+2 ‘ +1FF F2
x

12 (1 —

,)3 (1
—

,)2 16 (1
— x)2 (1 — x)4

+
1
F3F••

x+4x+x
+

1

12 JJ(1_x)2 (l—xj)4 48
° (i—x)3 (l—xj)3

+

i,3,k=I

-

,
l(bk)1

k

-F1FiF,
(1 )2 (1 ,)21() (1
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1 1 I
-

(1
)2l(bi)

( _.)2 (1— Xk)2
—4F13F

(1— x)2” (1 _x)2
(1:

1 2 ii Xk(1+Xk) 1
F F F

j

— FjjFjjkFkk

(1 — )2 (1 — x)2 (1 — )3
— jk kk

(1 — )9 (1 — )3 (1
—

1 x x(I+x) Xk
‘F2F2F

x x(1+x) Xk
— FiiFijFjk

(1 — x)2 (1 — x3 (1
—
x2 —

ij jk ik
(1 — x)2 (1 — x)3 (1

— Xk)2

-

(1 2 (ix3 (1 X
-2FJF2kFkk&(&312&(b)

(1 2 (1 -x,

—F7FFkhl(b2)1

—x1 (1 —r)2 2k
—F11&(b1)1

—x (1 —x2 (1 7k)2

1 x x(l+x) Xk
1F F3 1

x(1+x) Xk

— x1 (1 —

xj)3 (1
— — 6 kQ1(i)1

—
xj (1 — x)3 (1

—
xk)2

+
( 3FF11(b)1

(1

Xk

(1
)2l(bl)1

+ jkFj,Fk1
(1

—

x)2 (1 —

x)2 (1
— Xk)2 (1 — x1)2

+
(1 )2 (1

,2 (1 _Xk)2 (1
_)2

1 2

___________________________________________

+ ijF kI 11(1
— x)2 (1 — x)2 (1 — )2 (1 — xt)2

+ FJFjkFjl(b)1
—x (1
)2&(bk)1

_Xk i

+ FIFJFjiFkkFll
(1 )2 (1 E)2 (1 Xk)2 (1 i)2

1 9 Xj
+-FFF FF

8
i jk i ki

(1
—

x)9 (1 — x1)2 (1
—

xk)2 (1
—

x1)2

+ FijFjkFjlFkkFll&(b)
1 (1 —x)2 (1 Xk)2 (1 x1)2

+
—x (1 _x)2 (1 xk)2 (1 Ti)2

+
_x. (1 .)2 (1 Tk)2 (1 _xi)2

+FiiFiikl(1
x)9

(
)2&(bk)11(b1)1). (10)
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