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§1. Introduction

Measures with random weights arise naturally in statistical mechanics. By

measures with random weights we mean measures of the form

m=ZXjSaj,

where the a ‘s are fixed points and the Xi’s are random variables. These are to be

contrasted with empirical measures where the opposite is the case, the X ‘s being

fixed numbers and the a ‘s random variables. While there is a large literature on

large deviation results for empirical measures (see, for example, [2] and [3]), not

many people have addressed the problem of large deviations for measures with

random weights. This problem has been studied mainly in the context of the

Bose gas [4, 5]. For the Bose gas the points a represent different momenta or

energy levels, while the random variables X represent the number of particles at

each a corresponding to Bose statistics. The present paper is motivated by the

results of [4]. While we follow the general outline of [4], here we are interested in

studying the problem in an abstract setting, isolating what is general from what is

dependent on Bose statistics. We succeed in proving the large deviation principle

for a large class of measures with random weights and obtaining the corresponding

rate function in an explicit form. A benefit of our general approach is that the

results of this paper also apply to the Fermi gas [6] and the spherical model. We

shall decribe these, together with the Bose gas, after we have set up the problem.

Let o be a positive Borel measure on the closed haifline R+ and for s E R we

define

ln / e3(dy). (1.1)

Let -y sup{s E R : ir(s) < c} and assume that y > —co. The function w is

lower semi-continuous, convex and on (—co, -y) it is C. We shall assume that if

< co, then lim3t7 ir’(s) =

Let X be a locally compact Hausdorff space and let be a function mapping

X into R. We assume that satisfies the following conditions:

Hypothesis 1..

(1) is continuous.

(ii) — has compact level sets; i.e. for each b < co, the set {x E X : —(x) b}

is compact.

(iii) O supZEx(x) <7.
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For each n E N let {x(n) : j = 1,2.
. .} be a countable subset of X and let

a € R be such that a —÷ cc as n —+ cc. We assume that if A is a compact subset

of X, then I{i E N : x(n) E A}f is finite, where I denotes cardinality. Define

a measure ,u on X by the formula

(a’{j N: x(n) A} (1.2)

for every Borel subset A of X. Let be the family of continuous functions g

mapping X into R and satisfying

*

supg(x)<7
zEX

and

sup g(x)
- a(x)I <b

zEX

for some positive real numbers a and b depending on g.

The following more or less standard definitions are used in this paper:

A positive Borel measure xl on X is a positive Radon measure if

(i) v(K) <cc for every compact subset K of X.

(ii) For every Borel set A C X

ií(A) = inf{zi(V) : A C V, Vopen}.

(iii) For every Borel set A C X such that A is open or v(A) <cc

u(A) = sup{v(K) : K C A, Kcompact}.

A positive Radon measure xi is said to be regular if (iii) is satisfied for every Borel

setACX.

A measure xi is said to be a bounded Radon measure if it can be expressed in the

form 71 = 2 where v and 2 are positive bounded Radon measures.

Let E be the space of bounded Radon measures on X. For m e E and f E

let

(m,f) I f(x)m(dx). (1.3)
Jx

We can define a norm II on E by the formula

IImII sup{(m, f) : f E Cb(X), 11fI100 = 1}.

Let E be the set of positive bounded Radon measures on X. We note that if

m e E, then m is regular and IlmIl = m(X). Here we equip E with the narrow
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topology. The narrow topology is the weakest topology for which the mappings

m i.— (m., f) are continuous for all f in Cb(X).

In order to formulate our large deviation theorem, we shall also assume that

there is a positive regular Radon measure ,u on X satisfying the following condi

tions:

Hypothesis 2.

(1) supp=X.

(ii) For each g E

L (g(x)I(dx) < and f (x)l’(g(x))(dx)

(iii) For each g E ,

urn I (g(x))(dx) = / (g(x))(dx).
°°Jx Jx

The following lemma gives some useful consequences of Hypothesis 2. Because

the lemma follows fairly easily from the convexity of ir, we do not give the proof

here but save it for an appendix.

Lemma 1.1 Suppose that Hypothesis 2 is satisfied. Then the following statements

hold.

(1) For each g E

<.
Jx

(ii) For eachgEc andfECb(X)

urn f f(x)’(g(x))(dx)
= f f(x)’(g(x))(dx).

n—* x

(iii) If {c } is a sequence of real numbers converging to zero, then for each

gecandfeC6(X)

urn c f {(g(x) + cf(x)) -
= f f(x)’(g(x))(dx).

x x

(ii) . . .
For each n N let {X : j = 1,2. . .} be positive independent random

variables, x5) having distribution o5, where

(Tz)
. e(’i’o(dy)

(dy)
= fR e(())Y(dy)

(1.4)
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Let P be the corresponding product measure on R and let i {w

X5(w) <co}. Since

E(Z X5) = a f ‘((x))(dx) (1.5)

j’ x

and the integral in (1.5) is finite by conditions (ii) and (iii) in Hypothesis 2, we

have P(2) = 1. For each w E 2, define the bounded measure L(w,.) on X by

the formula

L(w,A) a1 (1.6)

for every Borel subset A C X. L takes values in E. Finally let K be the

probability measure induced by L on E; i.e.,

KtPoL’. (1.7)

One ofour goals is to prove that the sequence of probability measures {K} on

E satisfies the large deviation principle. Before formulating this, we will specify,

in three important examples that arise in statistical mechanics, the quantities o,

and x(n) appearing in the general definitions.

The Bose Gas

For the Bose gas o is the counting measure, (A) fA fl NI. Hence for s <0

(s) =ln (eis) = —ln(1 — e3).

Thus y = 0. We also set X Rd and (x) a
— lix 112 for some a < 0. Hypothesis

1 is satisfied. The set {xj(n)} is {2irnk : Ic E Zd}, so that if a = n, then

j.t converges in the sense of Condition (iii) of Hypothesis 2 to ,u (2w)_drn,

where m is Lebesgue measure on Rd. Hypothesis 2 is satisfied. In this model

the measures in E are interpreted as the occupation densities for the momentum

states corresponding to {nik : Ic e Z”}.

An important objective in statistical mechanics is to obtain the grand canon

ical pressure p in the thermodynamic limit. For some Bose models, p can be

expressed in the form

p urn —in e K(dm),
n—*oo a Js

4



where C is given by the formula

G(m) Cm LL v(s, x’)m(dx)m(dx’). (1.7a)

Here ( R and v is a bounded, continuous, positive definite function mapping

X2 into R. If the topology on E is chosen so that C is continuous, then one can

use Varadhan’s Theorem [1, 2] to obtain a variational expression for p. A suitable

topology is the narrow topology.

The Fermi gas

For the Fermi gas o(A) A fl { 0, 1 } ,
7r(s) ln(1 + e3)

(so that y = cc) and (x) c — (x2 for some R. The other quantities are

the same as for the Bose gas. Hypotheses 1 and 2 satisfied.

The Spherical Model

In this model

(dy) dy.

Hence for s <0

n(s) = lnf e = _ ln(—s).

Thus ‘y = 0. Let {ci,c2,... , cd} be a basis for Rd and let A be the Bravais lattice

generated by this basis:

A{mici : mZ’}.

For n E N let A be the subset of A given by

A : mE {—n,—n + 1,... ,n

We define a to be the number of lattice points in A; that is a = (2n + 1)’.

We also choose a positive function u : A ‘—p R such that EYEA ‘u(y) < cc. Define

{b1,b2,.. . bd} to be the basis of Rd satisfying (ci, b) = 27rc5jj, and let A be the

parallelepiped

Ar : x E Rd, xjj , i
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Define a function : A’ R by the formula

.21
(x) u(y)sin x,y).

yEA

We set X A and (x) a — (x) for some a < 0. Hypothesis 1 is satisfied. Let

A be the lattice reciprocal to A: -,

= {(2n + 1)’ mb : m {—n, —n + 1,. . . , n —

The set {x(n)} then is equal to A, so that converges in the sense of condition

(iii) of Hypothesis 2 to ,u C1m, where in is Lebesgue measure on A’ and C is

the volume of AT. Hypothesis 2 is satisfied. This completes our presentation of

examples.

We return to the general development, recalling the probability measures

on E defined in equation (1.7). The first objective of this paper is to prove that if

E is equipped with the narrow topology, then the sequence of probability measures

{K} on E obeys the large deviation principle [1, 2]. We recall that the sequence

of probability measures {K} on E is said to obey the large deviation principle

with constants {a} and rate function I : E -* [0, c] if the following conditions

are satisfied:

(LD1) I is lower semi-continuous;

(LD2) For each b < , the level set {m E: 1(m) b} is compact;

(LD3) For each closed set C

limsupa’lnK(C) —1(C);

(LD4) For each open set G,

liminfa’ lnK(G) —1(G).
l-4c0

Here we have used the notation

1(A) inf 1(m) (1.8)
rnEA

for a non-empty subset A of E and we set 1(0) co.

Let us go back to the example of the Bose gas discussed earlier and assume that

the functiom C on E given in equation (1.7a) is continuous in the narrow topology
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on E. Then the large deviation principle for {K} and Varadhan’s Theorem give

a variational formula for the pressure p; namely

p lim inf e(m)Kn(dm) = sup {G(m) — 1(m)].
TZ-*DO a E mEE

Knowledge of the minimizers of this variational expression can give great insight

into the physical properties of the equilibrium states of the model. Clearly, an

explicit form for the rate function I is very helpful in the study of the variational

problem. The second objective of this paper is thus to obtain an explicit formula

for the rate function in the general case.

This paper is set out as follows. In Section 2 we shall prove that {K} satisfies

the large deviation principle (Theorem 2) and give an explicit formula for the rate

function I. (Theorem 3). The proofs of Theorems 2 and 3 depend crucially on the

Approximation Theorem, stated in Theorem 1 and proved in Section 3. Lemma

1.1 is proved man appendix.
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§2. Large Deviations

In this section we prove the large deviation principle for the sequence of mea

sures {K} and obtain an explicit form for the rate function I. These results are

based on the Approximation Theorem which is stated in Theorem 1 in this section

and proved in Section 3. The large deviation principle is stated in Theorem 2.

Let V {f: f E Cb(X), sup((x) + f(x)) <}. For f E D, define

C(f) in
JE

emKn(dm) = in E{exp( f(x(n))X)}. (2.1)

J1

Then

C(f) = I {(x) + f(x)) - w((x))}(dx). (2.2)
Jx

If we define

C(f) lim C(f), (2.3)
n -+

then by condition (iii) of Hypothesis 2

C(f) = f{(x) + f(x)) - (x))}(dx). (2.4)

Note that by using the convexity of ir and Lemma 1.1 (i), one may easily check

that C is continuous with respect to the supremum norm on V. For in E E

we define

1(m) sup{(m,f) - C(f)}. (2.5)
fED

In Theorem 2, we shall prove that I is the rate function in the large deviation

principle for {K}.

For f V define

p(x) w’((x) + f(x)) (2.6)

and

m(dx) w’((x) + f(x))z(dx); (2.7)

i.e. m is the element of E which is absolutely continuous with respect to ji and

has density pf. In Section 3 we shall prove the next theorem.

Theorem 1. (Approximation Theorem) Let u be a positive regular Radon

measure on X satisfying Hypothesis 2. Let m be an element of E such that 1(m)

is finite. The following conclusions hold.
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(a) If m is absolutely continuous with respect to 1u and has density p, then there

is a sequence {f} in V such that

1. urn f p(x) —p(x)(dx) 0,
n-+c x

2. urn I(m) = 1(m).
TL —‘

(b) If N is a neighbourhood of m and e> 0, then there exists f e V such that

1.

2. I(m) — I(m)i <.

In order to prove the large deviation principle, we shall also need the following

four lemmas. Choose a number E (co, -i’) and for each k N define the function

fk : X —* K by the formula

10 if(x)—k+,
fk(x) —k((x) + k — )/2 if —k + —1 <(x) <—k + , (2.8)

I k/2 if (x) -k + -1.

We note that

0 f(x) k.

If(x) <—k+, then
1 1

fk(x) k < -

Since — e(x)) > 0, when (x) —k + , we have fk(x) = 0 < —

Therefore for all x E X

fk(x) +(x) (x) +) +) <7,

and so fk E V. Let fmar() supJ>1 fk(x). Then

O<frnaz()

Note that frnax need not be in V. For M> 0 define

fl{rrz F : (rrl,fk) M} {m E E : sup(m,fk) M}

k1 k1

and

limit “}
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and put fl Bw. M is clearly closed. We shall prove that WM is

compact after the next lemma. We need the following definition.

Definition: A set C E is uniformly tight if given e > 0, there is a compact

subset r c X such that m(rc) <e for all m E

Lemma 2.1 The set ‘M is uniformly tight.

Proof: Let m E &w. Then (m,fk) M for all k e N, and so

k f m(dx)= J fk(x)m(dx) (m,f) M

{z:(z) <—(k+1 —i’) } {x:(z)<—(k+1 —) }

for all k E N. Hence given > 0 there exists n E N such that m{x : e(x) <

—(n+ 1 —)} < for alim in i; but {x : (x) —(n+1 —)} is compact by

condition (ii) of Hypothesis 1. This completes the proof of the lemma with

F{xX:(x) -(n+1-)}.

We now prove that W1 is compact.

Lemma 2.2 The set WM is compact in the narrow topology.

Proof: Since WM C BM, the set is uniformly bounded; since WM C M,

the set WB is uniformly tight. Since X is a locally compact Hausdorff space, it

follows from Prokhorov’s Criterion (Theorem 1 of Number 5.5 of [7]) that WM is

compact.

In order to prove the upper large deviation bound, we want to show that the

sequence of measures {K} is exponentially tight; that is, given L E (0, cc) there

exists a compact subset AL of X such that

limsuplnK(A) —L.

This is carried out in the next lemma.

Lemma 2.3 The sequences of measures {K} is exponentially tight.
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Proof: For each M E (0,) the set W1 = BM fl M is compact and WXf =

B U c. Hence it suffices to prove that

urn limsup1lnK(B1) = — (2.9)

and

urn iirnsupinK(fl1)=—. (2.10)

Choosing a E (0,7 — we have

K(B1)
= f K(dm)

< f eIm_M)Kn(dm)

{TnEE:IImB>M} {mEE:IImjI>M}

em_M)K(dm) = e_aMeCui.

Therefore

iirnsup±lnK(B) —aM+C(a)..
and since a > 0, the limit (2.9) follows.

We have

JE

e SuPk>1(mfk)K (dm) in f a J fma)m(dZ)K(d)

<_ in
IE

e I _(z))m(dr)K(dm)

=cn (-
= L { ((x)

+
- (x))} (dx).

Hence

iimsup±inf e81(mKn(dm)
a E

(9 11)

f { (x)
+

- (x))} (dx) A <.

Since by Chebyshev’s Inequality

eM

fE

e SUPk1(mfk)K(dm),

we have

limsup*inK(1) A — M
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and the limit (2.10) follows. This completes the proof of the exponential tightness

of the sequence {K}.

The next lemma is needed in the proof of the large deviation lower bound.

We shall use the following notation. For rn E E and f V let

I(m,f) (m,f) -C(f).

Lemrna2.4 ForfEV

I(mf) =

that is, for rn = m the supremum in the definition of I(mf) is attained at f.

Proof. For fixed x E X, define g: R ‘—+ R by the formula

g(y) ‘((x) + f(x))y - w((x) + y).

Then

g’(y) = w’((x) + f(x)) - ‘((x) + y)

and thus g’(f(x)) = 0. But g is concave and therefore g(y) g(f(x)). Letting

y = h(x), where h D, and integrating with respect to u, we get

Jg(h(x))(dx) fg(f(x))(dx).

This equivalent to

f w’((x) + f(x))h(x)(dx) - C(h) f w’((x) + f(x))f(x)(dx) - C(f)

or

I(m,h) I(m,f).

It follows that I(mf) = I(mf, f), as claimed.

We are now ready to prove the large deviation principle.

Theorem 2. The sequence of probability measures {K,} on E’ satisfies the large

deviation principle with constants {a} and rate function

1(m) = sup{(m,f) -C(f)}.
fED
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Proof: We first verify (LD1)-(LD2). I is lower semi-continuous because the supre

mum of a family of continuous functions is lower semi-continuous. Hence (LD 1)

holds. To prove (LD2) (compact level sets of I), we first note that the lower semi-

continuity of I implies that the level set Sb {m e E : 1(m) < b} is closed. For

f e V and m in Sb wehave

b 1(m) (m,f) C(f). (2.12)

Choosing a E (0,7
— o) and putting f(x) = a, we have

b aUmW
- f ((x) + a) - (e(x))) (dx).

It follows that if M is chosen large enough so that

M > a (b + f{(x) + a) - (x))}(dx))

then Sb C BM. Also putting f fk in (2.12) (the function fk is defined in

equation (2.8)), we obtain

b (m,fk) - C(fk).

But by definition of the constant A (see equation (2.11))

C(fk) = f{w((s) + fk(x)) - (x))}(dx)

f (x
+

- (x))}(dx) = A,

Hence (m, fk) b+A for all k 1. It follows that S& C for all M A+b. We

have thus proved that, for M sufficiently large, the level set Sb is a proper subset

of WM and that Sb is closed. It follows from Lemma 2.2 that Sb is compact. Hence

(LD2) holds.

We now prove (LD3), the large deviation upper bound for closed sets. Lemma

2.3 proved that the sequence of measures {K} is exponentially tight. Hence by

Lemma 2.1.5 in Deuschel-Stroock [3], it suffices to prove the large deviation upper

bound for compact subsets of E. In order to carry this out, we follow Lemma

VII.4. 1 in [2] and make use of the next lemma, whose proof is essentially identical

and therefore omitted. We merely remark that this lemma uses the continuity,

with respect to the supremum norm II , of C at 0.
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Lemma 2.5 Given f E V and /3 E R, define H(f, /3) by the formula

{rn E E: (m,f) - C(f) /3}.

Let K be a compact subset of E. Then for any number /3 < 1(K) there exists a

finite set fi,... , ft of non-zero elements of V such that

K C

The rest of the proof of (LD3) is standard; we give it for the sake of complete

ness. Let K be a compact subset of E. For each /3 < 1(K) we have by Lemma 2.5

and Chebyshev’s inequality

K(K) K(H(f/3))

r

e_Cj)+ I em1K(dm)

j=1

Hence

limsup1lnK(K) —/3.

Since this holds for all /3 < 1(K), we have

limsup±lnK(K) —1(K).

This completes the proof of the large deviation upper bound for the compact set

K. Thus (LD3) holds.

We now prove (LD4), the large deviation lower bound for open sets. Let G

be an open subset of E. If 1(G) = cc, then (LD4) holds for G. So we suppose

that 1(G) < cc. Then for each > 0 there exists a measure in E G such that

1(m) < 1(G) + . By Theorem 1(b) there exists f V such that E G and

I(mf) <1(m) + , so that

I(m) <1(G) + 2e. (2.13)

Now let

GEGfl{mEE :
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and for n E N define the measures on E by the formula

(dm) e{(fm)_(f)}K(dm)

Recalling that

IE
emK(dm)

we see that K is a probability measure on E. We shall prove that for all ri

sufficiently large Kfl(GE) > .. Since GE is open and m G, there exist

fi,... , fr e Cb(X) and 3 > 0 such that

N6 fl{m E E: (f,m —m)l <6} C G.

Define the function g: E — RT by the formula

g(m) ((g(m))i, (g(m))2,... , (g(m))),

where for each j E {1, 2,... , r}

(g(m))j (f,m mi).

Then define Q K og1. For real numbers 1, s,. .. ,Sr, the Laplace transform

of the probability measure Q is defined by the formula

,r)
e_Ej=l3itiQn(dt)

= IE
eE=i sifim_mf)k(dm)

e13imexp [an {c(f_ ‘sf) — cn(f)}]
j=1

By Lemma 1.1 (iii)

1ima {c ( i)
_C(f)} = _f +f(x))(dx)

(ff)

Hence for (si,s2,.. ,3r) E F

urn (s1,s2,. ,3r) 1
n—co

15



and so by Chebyshev’s Inequality

urn Q{W \ [_S,6]r} = 0.
n —

Since

Kfl(GE) R(N6) = K g_l({_5,]T) = Q([_6,)

and Q([—6, S]’) —* 1 as n —+ cc, we have that Kfl(GE) > . for all n sufficiently

large. Now

K(G) K(G) =

fG

e_ mf)(dm) e_(mf_n(Ge).

Therefore by Lemma 2.4, we get

liminf in K(G) C(f) — (mi, f) — = —I(m) — —1(G) — 3.

The last inequality follows from (2.13). Since is arbitrary, (LD4) holds. We have

completed the proof of the large deviation principle for the measures {K} with

rate function I.

As we remarked in Section 1, one application of large deviations in statistical

mechanics is the use of Varadhan’s Theorem to obtain a variational formula for

the grand canonical pressure or the canonical free energy density. The variational

problem is not studied here, but clearly it is very desirable for applications to

have an explicit form for the rate function. The rest of this section is devoted to

obtaining an explicit form for the rate function I, analogous that found in [4] for

the Bose gas.

We split off that part of the measure m which is singular with respect to

,u and deal with it separately. For m E, let m = m3 + ma be the Lebesgue

decomposition of m with respect to into the singular part m, and the absolutely

continuous part ma; let p be the density of ma so that ma(dx) = p(x)1u(dx). Define

U: E —p [0, cc] by setting U(0) = 0 and for m 0

U(m) f f( — (x))m(dx) < cc,

if7=cc.

We recall that sup{s R : ir(s) <cc} and that by condition (iii) of Hypothesis

1, SUPZEX (x) <7.

The next lemma gives a useful formula for U(m).
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Lemma 2.6 For aiim E, supfEv(m,f) = U(m).

Proof: Clearly if m = 0, supfEv(m,f) = 0. Take in E E, in 0. Suppose

= cc and let f(x) = c for all x X. Then f E V and (m, f) = cmW; thus

supfED(m, f) cfm and since c is an arbitrary real number supfe-p(m, f) = cc.

Now suppose 7 <cc. Since f V, sup(f(x) + (x)) <7 and so

sup(m, f) - (x))m(dx). (2.14)

In order tO complete the proof we show the opposite inequality. Let S E (0,7 —6)

and for n E N fl((7 — So)’,cc) define

f(s)(7-(x) -n’)An

for all x E X. Then f72 E V and f,- 0 and by Lebesgue’s Monotone Convergence

Theorem

lim(m, fn) = f(7 - (x))m(dx).

Hence

sup(m,f) (7-(x))m(dx).
fED X

The proof of the lemma is complete.

Lemma 2.7 For each m E E,

1(m) = U(m3)+ I(ma).

Proof: If m3 = 0 there is nothing to prove, we may therefore assume that in3 0.

For all f E V,

I(m,f) = (m,f) - C(f) = (m3,f) + (ma,f) - C(f)

= (m3,f) + I(ina,f) <U(m3)+ I(ma,f).

Thus 1(m) <U(m3)+ I(rria).

In order to complete the proof, we show the opposite inequality. Let r <

U(m3) and choose g E V such that (g, m3) > r. Let B be a subset of X such that

mg(Bc) = 0 and ,u(B) = 0 so that m3 is concentrated on B. For ri. E N choose

compact subsets K,. C B such that m3(B \ K,) < and choose open subsets O,,

such that B C O,, ma(On) < and p.(O) < -. We recall that this is
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possible because ma and m, are bounded Radon measures and therefore regular.

By Urysohn’s lemma there exists a funètion r E C’(X) such that 0 < T(x) < 1

forallxEX,r(x)=1forxeKandT(x)0forxeO. LetfEDand

define fT E V by

f(x) Tn()9(X) + (1- r(x))f(x).

We then have

(m, f) = (m3, g) + (ma, f) + f{i - r(x)}{f(x) - g(x)}m3(dx)

+frn(x){g(x) -f(x)}ma(dx)

Since 1 —T(X) =Ofor xE K andm3(Bc)=0,

7 {l -r(x)}{f(x) -g(x)}m3(dx)
= f {1 - r(x)}{f(x)

X X\K?l

= f {l - r(x)}{f(x) - g(x)}m3(dx).
B\K

Similarly since r(x) = 0 for x O and ma(B) 0,

J r(x){g(x)
- f(x)}ma(dx)

= f T(x){g(x) -

= f T(X){g(X) - f(x)}ma(dx).
Q \ B

Thus

(m,f) = (m3,g) + (ma,f) +f {1 -r(x)}{f(x) -g(x)}m3(dx)
B\I

+ f rn(x){g(x)
- f(x)}ma(dx)

O\B

(m3,g) + (rna,f) - 2{IfII V gj}rn3(B \ K)

- 2{JfIl V g}rna(On)

4
> r + (ma, f) - {UfII V IIgII}

Hence liminf....÷(m,f) r + (ma,f).

Now since the function ((x) + t) is a convex function of t E R, we have for

each x E X

(x) + f(x)) r(x)(x) + g(x)) + (1 - r(x))w((x) + f(x)).

18



Therefore

C(f) f r(x){w((x) +g(x)) - w((x) +f(x))}(dx) + C(f)

f (x) +g(x))(dx) +f (x) +f(x))I(dx) +C(f).

Thus by condition (ii) of Hypothesis 2 and Lebesgue’s Dominated Convergence

Theorem

lim sup C(f) C(f).
n—*c’o

It follows that

1(m) liminf((rn, fn) - C(f)) r + (ma, f) - C(f)

and so 1(m) r + I(ma). Since r is an arbitrary number less than U(m3), we get

1(m) U(m3)+ I(ma).

This completes the proof.

For use in the next section, we note the following simple corollary of Lemma

2.7.

Corollary 2.8 If m E E satisfies 1(m) <cc and if7 = cc, then m3, the singular

part of m relative to 1u, equals 0.

Proof: By Lemma 2.7, we must have U(m3) <cc. If m3 0, then since cc,

we would have U(m3) = cc. We conclude that m3 = 0.

In the next theorem we give an explicit form of the rate function I in the large

deviation principle. Let lr* : R —+ (—cc, cc] be the Legendre-Fenchel transform of

ir; that is

sup(ts — w(s)).
3<7

For t E R and r <7 let

J(t, r) *(t)
— rt + (r).
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Note that J(t, r) 0 and that t I; J(t, r) is lower semicontinuous.

Theorem 3. For each m E E, let ma and m3 be respectively the absolutely

continuous part and the singular part of m in the Lebesgue decomposition of in

relative to ,u. Then

1(m) = U(rn3)
+ f J(p(x),(x))(dx)

where p(x)

Proof: By Lemma 2.7, 1(m) = U(m3)+ I(ma). Hence we must prove that

I(ma)
= L J(p(x), (x))(dx)

Define J(t, r; s) = t.s — ir(s) — it + w(r) for t R, T <7 and s <
‘,

so that

J(t, r) = sup J(t, r; s).
3<7

If f E V then

(ma,f) -C(f) = (ma,f) -f{w((x) +f(x)) -ir((x))}(dx)

=

f(x)p(x)(dx) - f {ir(e(x) + f(x)) -

=

J(p(x), (x), f(x) + (x)(dx)

J(p(x),(x))(dx).

Therefore I(ma) Ix J(p(x),(x))(dx).

In order to complete the proof we must show the opposite inequality. If

I(ma) = cc, there is nothing more to prove. Suppose I(ma) < cc. By The

orem 1(a) there is a sequence {f} in V such that if p = p, then p con

verges to p in the L’-norm with respect to u and if m (dx) = p(x)u(dx), then

I(mf) = I(ma). The sequence {pn} has a subsequence {p} which con

verges pointwise p, 1u-a.e. Now since t i’ J(t, r) is lower semi-continuous we have

f J(p(x),(x))(dx) f liminfJ(pfl(x),(x))(dx)
x

liminff J(p(x),(x))(dx)
k—cc x
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by Fatou’s Lemma. But by Lemma 2.4

I(m) = I(rn,f)

f f(x)m (dx) - C(f)

= J {fn(x)pn(x) + (x)) - (x) + f(x))}(dx)

=

+ f(x))p(x) - (x) + f(x))} - (x)pn(x) + (x))}(dx).

Since for s < -y, w*(wl’(s)) = sr’($) — ir(s) and p(x) = ir’((x) + f(x)),

= ((x) + f(x))p(x) - (e(x) + f(x)).

Therefore

I(m) f[(((x)) - (x)pn(x) + w((x))j(dx)

= f J(p(x),(x))(dx).

Thus we have

f J(p(x),(x))(dx) 1iminfI(mk) =

x

This completes the proof.

In the next section we prove the Approximation Theorem, Theorem 1.
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§3. Proof of the Approximation Theorem

In this section we shall prove Theorem 1. We first prove Theorem 1 (a)

and then show that Theorem 1 (b) isa corollary of (a). In part (a) we want

to approximate the density p of a measure m that is absolutely continuous with

respect to ,u by the density .pf of a measure m with f E V. We recall that

w’((x) + f(x)),

so that the range of f must be a subset of the range of yr’. In the first lemma,

Lemma 3.1, we prove that if rnE E is such that 1(m) is finite and m is absolutely

continuous with respect to with density p, then p(x) must be within the range

of ir’ almost everywhere with respect to . The idea of the proof is that if t E R

is outside the range of ir’, then the Legendre-Fenchel transform 7r*(t) is infinite.

Let the range of ir’ be (P1, P2); i.e. p lim_ ir’(.s) and P2 = limst7 rr’(s).

•These limits exist since ir’ is monotonic.

Lemma 3.1 Let m E E andp(x) -(x), where ma is the absolutely continuous

part of rn in the decomposition relative to . If({x X p(x) > p} U {x e
p(x) <pi}) 0, then 1(m) =

Proof: For s,s e (—,‘) we have

(s) — w(s) (s —

and therefore for p E

ps — ir(s) (p — ir’(s))s + sir’(s) — 7r(s). (3.1)

Let s <0 A -y. Then for p < p’ and s <31

ps — (s) (p — p)s + s’(s) — w(s1). (3.2)

Let C {x E X : p(x) <P1} and suppose (C) > 0. Let Co {x E X p(x) <

p1—1}andforn=1,2,... let

C{xEX:pi—
1

>p(x)pi—}.
n+1 n

Then C = U>0C and therefore for some ri, p(C) > 0. Thus there is an e > 0

such that ,u{x X : p(x) < Pi — } > 0. Since ,LL is a regular measure, we can

also then find a compact set K C {x : p(x) < Pi — } such that ,u(K) > 0. Let
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C1 1flfrEK(X) and c2 supZEK(x) and choose s <

Again since u is regular, we can then find an open set 0 such that K C 0

and m(0 \ K) < By Urysohn’s Lemma we can find r Cb(X) such that

Or(x) lforallxEX, r(x)=lforxEKandr(x)=OforxEOc. Let

(s—c2 (x) >c2

g(x) s—(x) c e(x)
Is—c1 (x)<c1

and let f(x) r(x)g(x); then f V. Since g satisfies .s — c2 g(x) s — c1 <0

for all x E X, f satisfies

5—C2 f(x) 0

for l x E X. By Lrnma 2.7, 1(m) = U(m3)+ I(ma) I(ma). (Note that the

proof of Lemma 2.7 does not use Theorem 1.) Now

I(ma) I(ma,f)
= 1K +(x)) -(f(x) +(x))}(dx)

-1K - (x))}(dx) (3.3)

+ f p(x)f(x)
+ f {(x)) - (f(x) + (x))}(dx).

O\K O\K

Since f(x) 0,

I(ma) 1K + (x)) - (f(x) + (x))(dx)

-1K - (x))}(dx)
+ f p(x)f(x).

Thus by (3.2), since f(x) + (x) = s for x e K

I(ma) (Jsf
- Ji ‘(s) - (si))(K)

- c2JmII + (s
- c2)m(0 \ K)

- f ((x))I(dx)

= (Is - s’(s) -(s1))(K) - c2UmU _‘_f I(x))(dx).

Letting s —+ — we get I(ma) = -: and therefore 1(m) = oc.

Suppose i{x X : p(x) > p2} > 0. Clearly this is not possible if P2 =

Therefore we can assume p2 <cc. One of the assumptions in Section 1 was that

if -y <co, then p2 = cc. Therefore here we can take -y = cc. Then from (3.1) with

i =0,wegetfors0

ps — (s) (p — p2)3 — w(0). (3.4)
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By an argument similar to the above we can choose a compact set K C {
p(x) > P2 + } such that (K) > 0. With the same definitions of c1 and C2 we let

s > (0 V C2). Since the measure I7r((x) + s
— ci)I(dx) is regular, we can find an

open set 0 such that K C 0 and fo\K rr((x) + s — ci)u(dx) < 1. Let g and f
be defined as above. In this case 0 s — g(x) s — c1 and thus

0<f(x) s—ci (3.5)

for all x X. Using (3.3) and the fact that f(x) 0, we get

I(rna) f {p(x)(f(x) + ()) - w(f(x) + (x))}(dx)

- f {p(x)(x) -(x))}(dx) + f{w((x)) - (f(x) + (x))}(dx).

Thus by (3.4) we get

I(ma) (es - w(0))(K)
- c2ImU

- f w((x) + s - ci)p(dx)
+ f w((x))(dx)

O\I( 0

(es - w(O))(K)
- c2IImI -1 f (x))(dx).

Letting s —* cc we obtain I(ma) = cc amd hence 1(m) = cc. The proof of the

lemma is complete.

Lemma 3.2 If m e E and 1(m) <cc, then f (x)lm(dx) <cc.

Proof: We prove that j’ I(x)m(dx) = cc implies 1(m) = cc. Suppose first that

< cc. If f (x)Im(dx) = cc, then since

_

(x) = If - (x) -71,

we have J(7 — (x))m(dx) = cc. If — (x))m3(dx) = cc, then 1(m) = cc

by Lemma 2.7 since I(ma) 0. Suppose J(7 — (x))ma(dx) cc. Then since

(‘ — (x))rna(dx) is a Radon measure, given r E R there exists K, a compact

subset of X, such that

[(7 -(s))ma(dx)>
J K

Define f: X R by

f(x) {(7 -
(x))} A {(7 -
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Then
1

0 <f(x) <y — inf(y))
— yEIc

for x E X and

(x) + f(x) < + (x)) < + )

for all x E X; hence f E V. Also f(a) = — (x)) for x K. Thus

I(ma) I(m, f) (x))ma(dx) - f{(x) + f(x)) - (x))}(dx)

r
- f{I(7 + (x)))}+ Iw((x))I(dx).

Since r is arbitrary, I(ma) . But U(m3) 0, and so by Lemma 2.7 1(m) = co.

Suppose that
“

= co. By Corollary 2.8, if m3 0, then 1(m) co. (Note that

the proof of Corollary 2.8 does not use Theorem 1.) Therefore we can assume that

m3 = 0. Iff (x)m(dx) = co, then at least one of the quantities Ix+(x)m()
and IxEL(x)m@) is +co. Suppose fx+(x)m(dx) = co. Given r E R there

exists K C X, a compact subset of X, such that
‘K +(x)m(dx) > r. Define

f(x){(x)}A sup+(y)
L yE K

Then f e V and

1(m) I(m, f) r
- f {(2(x)) -

{x:(x)O}

r -f I(2(x))
- f Iw((x))I(dx),

and thus since r is arbitrary, 1(m) = co. Similarly, if J _(x)m(dx) = co, given

r E R there exists K C X, a compact subset of X, such that
‘K

(x)m(dx) > r.

The same argument works with the function

f(x) {(x)} A sup (y)
tyEK

In this case

1(m) I(m,f) r
- f {w((x)) -

{z:(z)<O} —

r - J Iw((x))(dx) - f (x))I(dx),
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and again, since r is arbitrary, 1(m) = cc.

We shall now proceed with the proof of Theorem 1 (a).

Proof of Theorem I (a):

Let rn E be absolutely continuous with respect to u and let p(x) =

We first treat the case when p = P2 = po say. In this case by Lemma 3.1

I(m) < cc implies that p(x) = Po bL-a.e. On the other hand we must then have

7r’((x)) po for all x E X. Therefore p(x) = pf(x) ,u-a.e. with f(x) 0 and

Theorem 1 (a) is immediate.

We now suppose that 0 Pi <P2. Then does not consist of a single atom,

for otherwise 7r’(s) would be constant. If o does not consist of a single atom, then

w”(s) > 0 and w’ is strictly increasing. Therefore ir’ is invertible on (p p2).

Let f(x) ir’)(p(x)) — (x). If f V, the conclusion in Theorem 1 (a)

is true since then p = f. However in general f V and we have to make some

approximations. We first approximate p by a continuous function since we want

f(x) (7r’)’(,(x))— (x) to be continuous. Also we have to trim ,6 so that

,3(x) is in the range of pr’.

For rz E N, n> (p2 — piY’ let

/ —1 —1A={nVI() (nA(p2-n )I}.

Since 1(m) <cc, we have by Lemma 3.2

(x)Im(cLr) <cc.

Define the measure

(dx) (1+ (x)I)(dx).

Since J\.. p(x)12(dx) < cc, for each ri E N we can find E C(X) with compact

support such that

f (x) - p(x)J(dx)
x

(see for example Rudin [8], Theorem 3.14). Then it follows that

f (x) - p(x)(dx)
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and

‘V

(x) - p(x) (x)(dx) <A2

Now we trim in a suitable way. For each n N, n > (p2 — pi)1 and each

x X let /3(x) 7r’((x) — n) and y(X) (7r(x) — n) V (n A [P2 —

OPi </3(x)<-y(x)<p2forallxEX. Let

{x E X : (x) <(x)},

{x e X : (x) (x) 7n(X)},

{x X : (x) > (x)}.

n’J)). Then

Define ff1, e V by

f(x) {
(‘)‘((x)) - (x) =

(‘)‘((x)) -

(‘)(7n(X)) -

x E E,

sEE.

Note that since has compact support and f(x) —n for x 0 supp, f7.,. is

for all x E X. Let p pfn; that is, let

xEE7,

p(x) (x) x E

t.. i’rz(x) x E.

density p is still a good approximation to p; that is, we want to prove that

L p(x) - pn(x)J(X) f p(x)-(x)(dx)+ /
JE,uE

p(x) - p(x)u(dx).

bounded. Also it is easy to check that

If(x) <I(x) + A

Let m m’; that is m(dx) p(x)u(dx). We want to show that the trimmed

f p(x) — pn(x)I,u(x) tends to zero as n tends to infinity. Now
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Also

f p(x)

fE

f p(x) -,6()f(dx)
+ f p(x)

{z: (z)Vp(x) <i3(x) } {z: (z) <j3,(z) <p(z) }

= f ((x)-p(x))(dx)+ f (p(x)-(x))(dx)

{z:(r)vp(x)<(z)} {r:(z)<(r)<p(z)}

< f ((x)-p(x))(dx)+ f p(x)-(x)I(dx)

{.r:p(x)) <3(x) } {x:3n (z) <j3, (z) <p(x) }

• f (n(X)P(X))(dX)+fP(X)_Pn(XH(dX).

{z:p(x))<3(x)}

Similarly

fE jp(x) - p(x)(dx)

E>

- (x)l(dx)

+ f (p(x) - n A (p -

{z:p(z)>nA(p2—n)}

Thus

f p(x) - pn(x)f(X) p(x)
-

± f (w’((x) - n) - p(x))(dx)

{z:p(z) <i’((z) —ri) }

+ f (p(x)-nA(p2-n’))(dx).

{z:p(z)>nA(p2—n’)}

We consider the three integrals in the last display separately. For the first

integral, we have

fJp(x)_(x)J(dx) <A2 O as fl
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Since by Lemma 3.1 ,u{x p(x) < pi} 0, we have for the second integral

f {‘((x)-n) - p(x)}(dx)

{z:p(z)<1r’((z)—n)}

f {w’((x) - n) -p1}(dx)
± f

{r:p(x)pa } {z:p <p(r).<7r’((r)—n)}

Both terms tend to zero as ri — cc by Lebesgue’s Dominated Convergence Theo

rem.

For the third integral we have to consider the cases P2 = cc and p2 < cc

separately. If P2 = cc, then

f (p(x) - n A (p2 - n’))(dx) f(p(x) - n)(dx)

{x:p(r)>nA(p2—n’)} {x:p(z)>n}

fPxdx

{z:p(x)>n}

which tends to zero by Lebesgue’s Dominated Convergence Theorem. If p2 < cc,

since by Lemma 3.1 {x : p(x) > p} = 0, we have for all sufficiently large ri

f (p(x)-nA(p2-n’))(dx) fp(x)(dx)+ f
{z:p(x)>nA(p2—n ‘)} X {z:p2>p(z)>p2— }

Again these integrals tend to zero, the second by Lebesgue’s Dominated Conver

gence Theorem. Therefore

lim f Ip(x)-p(x)I(x)=O.

It is easy to deduce now that rn —+ rn in the narrow topology. For g

I(m,g) - (m,g) g(x)(pn(x) - p(x))(dx) f Ip(x) -p(x)(dx).

Therefore m — rn in the narrow topology.

To complete the proof of Theorem 1(a) we have to prove that lim I(m) =

1(m). Since m = we have by Lemma 2.4

I(rn) = (m,f) - C(f)

= (ma, fn) — (m, f) + I(m, fn)

(m,f) - (m,f) +1(m).
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{*_d<(x)d<d:X} x

du
(xp)(x)d(I(x) ) / + (xp)il((x) +

{td=(z)d:x}

(xp)(x)d(I(x) + lII) f + (xp)(I(z) + 5

(xp))((1u - d) V u
- (x)d)(j(x)I + I) /

‘o < Zd

‘o > c/ maio{J DUJGAUOD p9urTnoc[ q oiz o spua t{DtT{M

{u<(x)d:z} {zz<(x)d:r}

+ I) f 5 (xp)l(u
- (x)d)(I(x)?I + ) f
{(1_u—d)vu<(z)d:z}

(xp)(( - d) v - (x)d)(I(x)I + I) f
uu ‘ d .11

{( .u —d)v u< (r)d:x}

- d) v u
- (x)d)(I(x)?J + I) / + v(i + J 5

{(x)UJ<(z)d:}U

((x)UL (x)d)(J(x)l + I) / + v(i + 5

{(x)UJ.5()d:z}uU

+ I) + (xp)(x)d - (x)ud)(I(x)I + II) / +
{(I)u1<(z)dx}U

(xp)((x)J
- (x)d)(I(x)I + I) /

v(T + dI) + (xp)(x)ud
- (x)dI(j(x)l + s

(xp)I(x)ud - ()udI(I(x)

+

5

-
(x)ud)((x)

- ) f>
U

(xp)((z)_ (x)d)(i)uJ<f

JOJ3IJ pU% (x)d> (x)ud ‘- x o; oj

— < (x)?— u (x)uf ut — d) V > (u — (x)), pu x



Both terms tends to zero as n —* cc and thus limsupfl.DO((m, f,) — (m, f)) S 0.

This completes the proof of Theorem 1 (a).

We now turn to the proof of Theorem 1(b). The proof proceeds by a sequence

of reductions. First we show (Lemma 3.3) that if m E and 1(m) < cc, then

and 1(m) can be approximated by E E and I(m(l)) respectively, where

the singular part in the decomposition of relative to has compact support.

We then show (Lemma 3.5) that analogous approximations can be made using a

measure rri’ that is absolutely continuous with respect to u. Then Theorem 1,

part (b) follows from part (a). Lemma 3.4 is used in Lemma 3.5 in approximating

1(m) by I(m’).

Lemma 3.3 If m E E and 1(m) <cc, then there is a sequence {m()} in E such

that m(T converges to m, I(m() = 1(m), and the singular part in the

decomposition of each relative to , m, has compact support for each n.

Proof: If -y = cc, then by Corollary 2.8 m3 = 0. In this case we set = m for

all n and we are done. Now suppose 7 <cc. Let {K} be a sequence of compact

subsets of X such that K C K,- and m(X \ K7) < . We can find such a

sequence {K} because m. is a Radon measure. Let th(T1(dx) 1jc(x)m3(dx). If

f E C6(X), then

((fl)

f) - (m3, f) If It

Therefore fri( —+ m in the narrow topology and consequently + ma

converges to m in the narrow topology. Now

U(m) U(th) = f( — (x))th(dx) = f(7 — (x))1K (x)m3(dx).

Thus by Lebesgue’s Monotone Convergence Theorem

lim (U(m)
= f (— (x))m3(dx) = U(m8).

n-+cx x

Therefore by Lemma 2.7

lim I(m) = urn U(m) + I(ma) = U(m3)+ I(ma) 1(m).

This completes the proof.
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Lemma 3.4 Let m be a measure in E having compact support. If N is a

neighbourhood of rn, f E C(X), and > 0, then there exists n-i’ N such that m’

is absolutely continuous with respect to and satisfies

f f(x)m(clx)
- f f(x)rn’(dx)

Proof: Let K suppm. There are . .
. E Cb(X) and 5> 0 such that

N’ {m’: (m’,fj) —(m,fj)I <5, i = 1...rz} C iV.

Let S’ < IImIImjn(e, 5). Since K is compact, there exists a finite number of open

sets V1,. -. , V,. such that K C and for j = 1... r

sup f(x) — inf f(x) <5’, i = 1. . .

xE

and

sup f(x) — inf f(x) <5’.

By condition (i) of Hypothesis 2, the support of ,Li equals X. Hence 1(Vj) > 0 for

j = 1 .. . r. We can find compact sets K1,... Kr C X such that 0 < ji(K) <

and K C V for j = 1. . . r. This is possible because u is a Radon measure and

each Vji is open. Define subsets U1, . .. U,. of X by U1 V1 and Uj \ U..1 for

j = 2,...r . Then U,j C Vj, U, fl Uy = 0 for j j’ and K C Let

m’(dx) m(UJ)1H(d)

j=1

Then

m(U) inf f(x) f f(x)rn’(clx)

r

m(U) sup f(x)

and

m(U) inf f(x) ff1(x)rn(cLr) m(Uj) sup f(x).

Therefore for i = 1.. . n

ff1(x)m(dx)
- f f(x)m’(dx) <lmIS’ <S.

Thus m’ E N. Similarly

J f(x)rn(dx)
- f f(x)rn’(dx) <Urn U’
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The proof of the lemma is complete.

Lemma 3.5 If m E stisfies 1(m) < cc, then for any neighbourhood N of rn

and any e > 0 there. is a nieasure rn’ e N which is absolutely continuous with

respect to and which satisfies 1(m) — I(rn’)I < e.

Proof: If
‘

=cc, then we may. choose m’ = m, and we are done. Now suppose

that < cc. By Lemma 3.3 there exists a measure ftz E N such that fi has

compact support and II(th) — I(rn) < 4e. Since I is lower semi-continuous, there

is a neighbourhood M of fi such that if thE M, then

1
1(m) > I(th)

Thus if th EM, then

I(th) > 1(m) —

Let L {m’ E E : m’ + tha E N fl M}. L is a neighbourhood of ñ5 and therefore

by Lemma 3.4 there exists m’ E L such that m’ is absolutely continuous with

respect to and satisfies

- (x))m’(dx)
- f(7 - (x))3(dx) <. (3.6)

Let m(2) m1 + ma. By definition of L, since m’’ L, we have m2

m’ + a E N fl M and therefore

I(m(2)) 1(m) —

On the other hand, by formula (2.14), Lemma 2.7 and formula (3.6)

(9) (9) (1) —I(m - ) = supl(m - ,f) = sup{(rn ,f) +I(ma,f)}
fED f ED

- (x))m’(dx) + I(a)

- (x))(dx) + I(a) +

= U(3)+ I(tha) +

1
= I(7) +
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Thus the measure m’ = E N is absolutely continuous with respect to ,Li and

satisfies 11(m) — I(m’)l < . This completes the proof of the lemma.

Proof of Theorem 1 (b): Fart (b) of Theorem 1 follows from part (a) by Lemma

3.5.

The proof of Theorem 1 is now complete.
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Appendix

Proof of Lemma 1.1

Since ir is convex, we have for any two real numbers a and b in (—, -)

(b - a)’(a) <(b) - w(a) <(b - a)’(b). (A.l)

(i) Suppse that g and choose e > 0 such that g + E . Putting

a g(x) and b. g(x) + e in (A.1) we get

ir’(g(x)) ir(g(x) + ) -

Therefore

L (g(x))(dx)
‘ f {(g(x) + + w(g(x))}

Thus by Hypothesis 2, condition(ii)

I ‘(g(x))(dx)
ix

(ii) Let g E and f Cb(X). Choose > 0 such that g + f . Putting

a g(x) and b g(x) + ef(x) in (A.l) we get

f(x)ir’(g(x)) ir(g(x) + f(x)) - ir(g(x)).

Therefore

f(x)’(g(x))p(dx)
‘ L + ef(x)) - (g(x))} p(dx).

Thus by Hypothesis 2, condition (iii)

iimsupf f(x)’(g(x))(dx)
‘ L fr(g(x) + f(x)) - w(g(x))} (dx).

Using (A.1) again, we obtain

f {(g(x) + ef(x)) - (g(x))} (dx) f f(x)’(g(x) +

It follows then that

iimsupf f(x)’(g(x))(dx) f(x)ir’(g(x) + f(x))(dx).
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Using part (i) of this lemma and Lebesgue’s Dominated Convergence Theorem,

we see that

urn f f(x)w’(g(x) + f(x))(dx)
= f f(x)’(g(x))(dx).

—+o x

Therefore

f(x)(g(x))(dx) L f(x)’(g(x))(dx).

The other inequality

liminff f(x)’(g(x))(dx) J f(x)’(g(x))(dx)
n-+c x x

follows by a similar argument by putting b = g(x) and a = g(x) — f(x) in (A.1).

(iii) Let {c} be a sequence of real numbers converging to 0. Let g E ç and

f E Cb(X). We first suppose that c > 0 for each n. From (A.1) we get for n

sufficiently large

f
f fr(g(x) + cf(x)) - (g(x))} (dx) (A.2)

f f(x)w’(g(x) + cf(x))(dx).

By part (ii) of this lemma the left hand side of the inequality (A.2) gives immedi

ately

L f(x)’(g(x))(dx) liminfc’ f fr(g(x) + cf(x)) - (g(x))}

(A.3)

Given e > 0, then for n large enough so that cIIfI < we get from the right

hand side of (A.2)

c f {(g(x) + cf(x)) - w(g(x))} (dx)

f f(x)’(g(x) + (dx) -f f(x)’(g(x) - (dx).

This follows from the fact that ir’ is an increasing function. Thus by part (ii) of

this lemma

limsupc’ f fr(g(x) + cf(x))
— (g(x))} (dx)

f(x)’(g(x) + (dx) -f f(x)w’(g(x) - (dx).
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By Lebesgue’s Dominated Convergence Theorem and part (i) of this lemma we

then have

limsupcn’ f {w(g(x) + cf(x)) - (g(x))} (dx) L f(’(g(x))(d

(A.4)

Combining the inequalities (A.3) and (A.4) we get

lim f fr(g(x) + cf(x)) - (g(x))} (dx)
= f f(x)’(g(x))(ds).

(A.5)

If c <0 for each n we can replace c by —c and f by —f in (A.5) to obtain the

same result. This completes the proof of Lemma 1.1.

C
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