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Abstract We present in a path integral framework a new class of gauges for QED that

are both temporal and yet do not display the notorious singularity of the naive temporal

gauge. These gauges follow from a generalised radiation gauge, where the Coulomb gauge

fixing is “smeared” out. We show that the use of two gauge fixings necessitates the

incorporation of gauge dependent Coulomb interactions. The correctness of our theory is

demonstrated in two ways: we can reduce to the true degrees of freedom and we show that

it reproduces electron-positron scattering in lowest order perturbation theory. Although

Landshoff’s a prescription for the temporal gauge can be understood as a limit of our

class, extra terms also appear. It is seen that these terms are necessary to obtain the

periodic Wilson loop at finite temperature correctly.
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1. Introduction

In recent years there has been much interest in non-covariant gauges[hl and, in particular,

in the temporal gauge[21. In the normal path integral approach to this gauge one introduces

the following gauge ftxing Lagrangian:

_(.A)2, (Li)

where ij is a vector (1, 0, 0, 0). This leads (in the limit —÷ 0) to the vector propagator

D k2 k 2’ — i +k
.77 j —

+ 2
.11

This propagator is truely temporal, i.e. D01 = = 0. Furthermore, from the Faddeev..

Popov trick one readily sees for non-abelian theories that the ghost-gluon vertex is pro

portional to , and hence one observes that the ghosts decouple. These simplifications

are the main reasons for the interest in temporal (axial) gauges. However, the naive appli

cation of these Feynman rules is not possible because of the singularity in the vector

propagator. A regulator must be introduced.

It was long thought that the principal value (PV) prescription on the non-zero part of

the propagator, i.e. D1, was the correct way to regulate the above longitudinal singularity

until Caracciolo, Curci and MenottiJ showed that this fails to reproduce the Feynman

gauge result for a rectangular Wilson loop in order g4. These authors proposed a temporal

propagator which however, violated time translational invariance. This and similar propa

gators have now been derived many times[]. However, since they have no straightforward

momentum space representation they are not very tractable.

Various possible regularisations of the D, of (1.2) were then suggested more or less ad

hoc by various authors[1,51.A systematic approach was introduced by Cheng and Tsai[61,

who pointed out that regulating the propagator necessitates regulating the entire D,Lv

structure and the Faddeev-Popov determinant if one wants to retain gauge invariance.

They concluded from diagrammatic arguments that if the vector propagator is

=
—- [g, — a,(k)k + k,LaV(—k)] , (1.3a)

and the product of the outgoing ghost propagator and the ghost-vector vertex is

[(a.k — 1)k — k2a] , (1.3b)

2



then the on-shell scattering amplitude and the matrix elements of gauge invariant operators

are independent of the choice of a. It is easily seen that all standard gauges, e.g. the

Lorentz class, can be expressed in this way. Using this theorem for the PV prescription one

sees that there are corresponding regularisations of both temporal gluons and of the ghost-

vector vertex. Although these corrections naively vanish as the regulator (e) is removed,

loop integrals yield . terms, and it is imperative to keep E finite until the very end of the

calculation. Cheng and Tsai showed that if this is done the Wilson loop can indeed be

calculated with the PV prescription. Indeed their formalism opens a floodgate of possible,

equivalent regularisations. (A Faddeev-Popov formalism which leads to the Feynman rules

(1.3) can be found in Ref. 7.)

However, as stressed by Cheng and Tsai, longitudinal gluons must be included in the

Feynman rules for all the regulators they consider and, in practically every case, ghosts do

not decouple. Hence they cannot be considered temporal gauges in any traditional sense.

A prescription which offers all that one could want of temporal gauge perturbation theory

was presented by Landshofft8], and called by him the a prescription. Here the vector

propagator is

D
—

(14 )

k2
g,

—

k.i72 + a2 ,

. a

which is trudy temporal It may therefore be rewritten as

= [s
— k2+a2]

,
= 0.

(1.4b)

Ghost fields are neglected in this prescription. Using (1.4) and taking a —
0 first at the

very end of the calculation3,Landshoff has been able to rederive the correct result for the

Wilson loop to order g4.

This propagator is very similar to that for free photons in the radiation gauge{1 where

two gauge fixings are present (A0 = 8A2 = 0)

f7 1\1 11. z.2

—

)4?7j, + 7i.?7 —
— ‘‘ (1 5)

—
Ic2 —

k.2 1c2

However, the inclusion of matter fields or interactions is incompatible with the standard

derivation of (1.5).

In fact this prescription remains unproven. It is clear that it cannot fit into the

class of gauges proposed by Cheng and Tsai — the i7), tensor structure in (1.4) cannot

If the Feynman is taken to zero before a the wrong result is obtained.
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be fitted into (1.3) for any a,L. Also following Ref. 7, it can be seen that such a tensor

structure cannot follow from the Faddeev-Popov trick. Steiner’s attempt{b01 to derive the

a prescription founders on this: his result for the total propagator (before he divides it

up) does not contain this tensor structure and it is not clear that one can, essentially, add

them by hand.

It should also perhaps be mentioned that this iji, tensor structure is essential for

the temporal nature of Landshoff’s proposal. Trivial algebra suffices to show that the only

exactly temporal propagator (i.e. D01 = = 0) which one can obtain from (1.3) or

from the Faddeev-Popov trick is just (1.2) — the naive, unregulated propagator. (This

remains the case even if, in the spirit of the currently fashionable Leibbrandt-Mandelstam

prescriptions[5hh], is allowed to depend on extra vectors.)

We also stress that in the spirit of Cheng and Tsai all prescriptions, including that of

Landshoff, must be viewed as coming from some classes of gauges and that as a consequence

of the singularity, the gauge parameter may only be taken to the limit which yields the

naive temporal gauge at the end of the calculations.

To reiterate: attempts to put D, into any form suggested in the literature must

necessarily be accompanied by the appearance of longitudinal gluons and, possibly, ghosts

if one wants to derive the Feynman rules from either the Faddeev-Popov or Cheng and

Tsai approaches. It remains in principle possible that for some so derivable set of Feynman

rules the ghosts and the non-temporal gluons could have zero contributions to all quantities

when the regulator was taken to zero at the end of the calculation: in this case a truely

temporal prescription would exist. However, to the best of our knowledge no demonst’ration

of such a state of affairs has been made, although the work of Cheng and Tsai has provided

many counterexamples.

In this letter we will discuss a new class of gauges with two gauge fixings for QED.

We call it, for reasons that will become apparent, the radiation class. Such gauges clearly

cannot be directly fitted into the approaches discussed above and we therefore have to

demonstrate the physical nature of our theory. To this aim we discuss in Sect. 2 the physical

content of QED: specifically we show how to reduce to the true degrees of freedom of the

theory. In Sect. 3 we write down the generating functional for the class of radiation gauges

and show that it can be reduced to the physical theory. We further show that in lowest order

perturbation theory it yields the correct results for electron-positron scattering. This class

is truely temporal and it is seen to include the a prescription propagator. The radiation

gauges are also seen to require the introduction of extra Coulomb interactions, not present

in the original a prescription. Finally in Sect. 4 we discuss our results, their relationship
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to other work and the extension to non-abelian theories.

2. Physical QED

In any discussion of electrodynamics we start with the action

S=fd4x _F2+(i_m), (2.1)

where DM = ã, + igA,. This action describes the interaction of electrons with the two

physical components of the photon. How to isolate these two components is reasonably

well understood; however, one cannot simply identify the fields i,b above with physical

electrons[12l. This is because the field i& only creates the particle and not its associated

electric field. To distinguish the physical fields ibphys it is necessary to use a phase space

formalism.

In order to derive the phase space version of (2.1) we need to introduce momenta. For

the Dirac field it is extremely simple since only one time derivative enters this action and

so it is already cast in Hamiltonian form. One so sees that the momentum conjugate to b

is i’çbt and that the fundamental Poisson bracket is

{t(x), (y)} =
-

y). (2.2)

(Note that henceforth we will drop the explicit spatial dependence.) The Dirac Hamiltonian

including minimal coupling is given by

HDirac = _i(i7D2
— m)Ø. (2.3)

Gauge invariance raises its head when we try[13] to construct the momenta, ?r,L, conjugate

to the electromagnetic potentials, AlL. One sees that 1Jh = —FolL, which implies the primary

constraint

(2.4)

and the electromagnetic Hamiltonian

Hem
=

‘(r2 + B2) —A082ir”. (2.5)
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To preserve (2.4) under time evolution generated by the combined Hamiltonian, H (=
Hem + HDirac), we find the constraint

—8ir + gJo = 0, (2.6)

which is just Gauss’ law. No further constraints arise.

Physical fields and their momenta must preserve both constraints. For the electro

magnetic field we introduce the decomposition into transverse and longitudinal fields

= + A, A = q = —8A, (2.7)

and similarly

irj=irT+irf’, with ir=8.jp, (2.8)

where V2 = _&&. (Note that the Poisson bracket of the longitudinal variables is {q, p} =

1 and that both p and q Poisson commute with the transverse fields.) It is now clear, since

(2.6) may be rewritten as V2p + gJ0 = 0, that the transverse fields and their conjugate

momenta are the physical components of the electromagnetic fields.

Additionally it becomes evident that b is not physical; {‘zb, V2p + gJo} = —igb.

Defining,

phys = exp () and phys = exp (—) (2.9)

we obtain the desired Poisson brackets for our physical fermions. We note that the Dirac

Hamiltonian is already in physical form! We see that we can rewrite

H0irac bphys(i7i.D — m)’cbphys. (2.10)

where D is the covariant derivative with only the transverse components of the gauge

fields, D?1
= 8 + igA.

The physical Hamiltonian is therefore given by

= (4 + B2) — phy(i7iD — m)hYS
ig2j0J_j0, (2.11)

where the final term (the Coulomb interaction) comes from (2.5) using Gauss’ law.

The physical partition function from this Hamiltonian is then defined as
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Zphys J d dATdPhY5dPhY5exp (Sph)
(2.12)

Sphys fd4x 4A + physPhYS —

With this knowledge of the physical version of QED we are ready to study the radiation

class.

3. The Radiation Class

The radiation class is defined by

Seff = fd4x — F2 +(i— m) — — +g2JoJo (3.1)

where A will be determined below in two ways. This is clearly a theory with two gauge

fixings: the Coulomb (recall the definition of q) and the temporal. Note that both of

these conditions can be smeared out and that we allow for extra Coulomb terms in this

interacting theory.

We first reduceto the physical degrees of freedom. To do this recall that we can write

the electromagnetic part of the action as

—F2 —*.7rTUOAT_(4+B2)+qq_q8oA°—A0V2A° (3.2)

where we have integrated out the longitudinal momentum, p. Also recollect that

(i— m) = physPhYs — phys(i7i — m)h5 — gqJ0 (3.3)

Here we have used the important identity

= physPhYS — gqJo (3.4)

and furthermore we have here dropped the J0A° term because we want to specialise to the

temporal sector (i.e. 0) of the full radiation class4.

In this sector we can triviaijy perform the A0 integral and the q integral, which is a

Gaussian, may also be easily carried out. This yields an action which is just the physical

It is straightforward, if not terribly interesting, to extend our discussion to arbitrary .
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one (2.12) plus extra terms of a Coulomb type. When we require that these vanish so as

to reproduce we obtain

A
= A

(3.5)

which means that the effective action in the radiation class must be

Srad
= fd — F2 + (i— m) —

— — g2Jo
2(A8-V2)

Jo, (3.6)

if it is to reproduce physical quantities. The naive temporal gauge is yielded by the

(nontrivia]i[’i) limit A — oo.

The Feynman rules for this theory are as follows. The propagator is truely temporal

= 0, D = [sjj
— k2A2]

(3. 7a)

which displays a spurious singularity at A = . The fermion-photon coupling is the

standard one, but there is an extra Coulomb term of the form

_g2Jo(822)Jo. (3.7b)

One regains the prescription propagator for A = (k2 +a2)/c2.

A simple, but nontrivial, perturbative check of our arguments is provided by electron

scattering at the tree level. All Feynman rules of the form suggested by Cheng and Tsai

((1.3a) for an abelian theory) or, equivalently, by the Faddeev-Popov trick71 yield the same

answer for this (JJM/k2)since only the g, term in the propagator survives (kJL 0

on shell). For the radiation class the situation is rather more subtle: the im, structure

also yields extra terms and these must be cancelled by the extra Coulomb terms5. That

this is indeed the case is quickly seen. This provides strong confirmation of the correctness

of our action (3.6).

In Landshoff’s a prescription without Coulomb terms the correct result is only obtained in the a — 0

limit, i.e. the naive temporal gauge.
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4. Discussion

The radiation class offers a set of gauges which have truely temporal propagators, are

without the longitudinal singularity of the naive temporal gauge. They have been directly

demonstrated to be physical in a nonperturbative manner. They feature Coulomb terms,

which must be taken into account if one wants to calculate physical quantities correctly.

This has also been checked in perturbation theory.

It is clearly of interest to extend these considerations directly to other non-covariant

gauges and to so see what additional interactions are forced upon us when we try to retain

the properties that have originally drawn attention to the naive gauges{’1. Similarly,

we have here focussed upon Landshoff’s prescription; one could try to derive a modified

radiation class where the propagator was that of some other (e.g. the Leibbrandt

Mandelstam) prescription. We note also that it is possible to recast our Coulomb terms as

a purely temporal propagator D00 and in this way one gains a direct link to the Cheng and

Tsai approach[16]. There is in other words a choice between Coulomb terms and temporal

gluons in this abelian theory.

The direct extension of our approach to non-abelian theories would be to say the

least highly nontrivial: the physical degrees of freedom become highly complicated and

non-Gaussian integrals appear. Hence it is necessary to find a systematic method to deal

with these constrained systems. Such an approach has been partially developed in Ref. 17

and is currently being extended to deal with arbitrary linear gauges.

What can one say from the Feynman rules (3.7) about the a prescription? It is evident

that in the tree level process we consider it is safe to take the limit a —* 0 at the start of the

calculation and so it is here safe to neglect the Coulomb terms or, equivalently, temporal

gluons. Perturbative studies at higher order are needed to see when these terms decouple

in the naive temporal limit.

The periodic Wilson loop, WR, at finite temperature (in the imaginary time formalism)

implies however, that such terms are needed. To see this it is simplest to recast the Coulomb

terms into a temporal propagator. The gauge-invariant, WR, is given to leading order in

any gauge by[’81

WR = 1 + f [1 — cos(k.R)J D00(k0 = 0, k) +..., (4.1)

where R is the spatial extent of the ioop. Hence in the naive temporal gauge or in the

a prescription where D00(k) vanishes exactly there is clearly a problem. Regulating the

propagator might be thought not to solve this since the temporal propagator is naively
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of order e2. However, the propagator Doo(lco = 0, k) that enters (4.1) is not only e inde

pendent, but identical to that in the Lorentz class. Indeed a glance at (1.3a) reveals that

= 0, k) is independent of the choice of a,L(k). We conclude that the a prescription

must in general be extended as discussed above.
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