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Institute for Theoretical Physics, Universiteit Utrecht, 3508 TA Utrecht, Netherlands§ Department of Physics, Imperial College, London SW7 2AZ, UK

Abstract. Using the formalism developed in [1] we discuss finite temperature quantumfield theory in the high temperature regime T >> mr where mp represents a genericfinite temperature mass in the theory. In particular we consider A4 theory in fourdimesions showong perturbatively that it has a non-trivial fixed point at finite temperature,the relevant anomalous dimensions near the second-order phase transition being three-dimensional ones. We emphasize the importance of having renormalization schemes anda renormalization group (RG) equation that can explicitly take into account the fact thatthe degrees of freedom of a theory may be qualitatively different at different scales.

Finite temperature field theory (FTFf) has been a subject of interest for some time,especially in light of the importance of FT phase transitions in the early universe.One of the main problems in kIFT has been analysing the ‘high’ temperature limit(HTL) where T >> all other length scales in the problem. Note that T = 0scales being << T does not necessarily imply that one is at high temperature. e.g.m(T = 0) << T need not imply that mT << T. In the HTL conventional
in the

perturbation theory (PT) breaks down. For T independent renormalization schemes,
ka) = such as minimal subtraction, unless T c, where K is the renormalization scale,
d — 1)

PT is ill defined. If one attempts to improve things using a RG based on such
.lues of

schemes the resultant PT remains ill defined in the HTL. The reason for this is
ewhere quite simple. Just as bare parameters provide a bad perturbative description of theonding theory when A/K — cc, so T 0 parameters provide a bad perturbative description
ometry when T/K >> 1. In the HTL the theory has different degrees of freedom, three
ranges dimensional (3D) ones in fact, than at T = 0. This is not new, what is new is thewer of RO interpretation of the breakdown of conventional FTFT and the provision of aof the qualitative and quantitative framework for the analysis of the HTL (see [1-3] for more

bating details). A T independent RG dresses the parameters of the theory with T = 0,
ts. The i.e. 4D, fluctuations. In the HTL, as mentioned, these are not the relevant degrees
ture of of freedom. If one thinks of the RG intuitively as a course graining procedure whatn in a one requires is a RG that for T 0 course grains 4D degrees of freedom and in theHTL 3D degrees of freedom. Such a RG can be derived on the basis of T dependentnormalization conditions such as, using the imaginary time formalism, for A

r2(0,mT,A,T,K) = m F2(O,mT,A,T,k) = )T. (1)
The consequent RG is explicitly T dependent, hence so are the j3 function andanomalous dimensions. Some explicit results to 2 ioops are

nite size
(h) =

— () h+ h2 — (f1 f2)h3+ 0(h4) (2)m

0264-9381/93/0S0243+02$07.S0 © 1993 lop Publishing Ltd
S243



S244 D O’Connor et at
Class. Qua

72 (h) = - - If2) h2 + 0(h3) (3)

-y, (h) =f2h2+ 0 (h3) (4)
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f2 (—) =4 M3 (mn) x (m
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n1,n2

which is

invarian

and m1 = (1 + 4ir2nT2/m)’/2,m12 = [1 + (4ir2T2/m%)(ri1+ n2)Z]’/2, Higgs flu

M =(m1+mn2+m12). The coupling h = aZ(T/mT)A, where a2 is the coefficient of Lorentz

the 0(A2) term in 3(A). These equations interpolate in a smooth fashion completely invarian

across the crossover as a function of T/mT yielding as T/mT — 0 characteristic Lorentz

4D values and as T/mT —* cc 3D values. G(h) = 0 from (2) describes a ‘floating’ a GUT

fixed point that captures the essence of the crossover without having to solve it as purpose

a differential equation. The effective expansion parameter is €( T/ m) which varies of unif)

between 0 and 1. In the HTh — 1 and in order to obtain good quantitative accuracy =

one should work to multiloop order and Borel resum. With the conventional PT of connect

KfFT for A iO, T/m 108 the effective expansion parameter iO, whereas in In

our framework it is a number slightly less than 1.
homom

In the large N limit of scalar electrodynamics one obtains a fixed point and the pull

anomalous dimensions analogous to (2-4). For QCD as long as all relevant scales i with dii

are>> then as T/ic varies between 0 and cc we expect to see a crossover from (0) = a

a 4D logarithmic approach to the Gaussian fixed point to a 3D power law approach. At the

More will be said about gauge theories in forthcoming articles, where

then dis

suppose
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