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1. Introduction

The G.R.W.-model [1,2] consists of a dissipative modification of the unitary

lution of quantum states. The generator of the quantum motion is no longer given by

the commutator with the Hamiltonian operator but contains a linear term of Lindblad

type [3] which has the notable property of transforming pure states into mixtures. Be

fore embarking on an outline of the physical aspects of the model, we introduce some of

the notation we will use. We shall consider mainly a non-relativistic one-dimensional

one-particle quantum system described by a state operator, or density matrix, 3 and

a Hamiltonian H acting on a separale Hubert space 7-i; t, 5 will denote position and

momentum operators respectively. We shall assume that the system, besides evolving

accordingly to the Harniltonian equation of motion, undergoes a localization process

in position occurring with mean frequency \ and characterized by a coherence lenght

At each point along the real line the state 3 gets transformed into the new

state

{Tr[ exp (- - z)2)]

}‘exp(- - x)2) exp(-
- )2) (1.1)

by the localization process, the probability of its happening at the given point being

Tr[exp(_a( -

so that globally

= VfR22
(1.2)

The Hamiltonian unitary evolution with superimposed localizing process occurring

randomly with mean frequency A ought to preserve proability and this is in turn

accomplished by:

= — [ii, ] — A3 + AT [h], (1.3)

this is the evolution equation of the G.R.W.-model, in units in which h = 1.

We observe that the n.on-Hamjltonian term in (1.3) can be cast into the form:
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{ -

+
exp(- - )2) texp(- - )2) d,

where { .,• } is the anticomrnutator, and eventually rewritten [4] as:

{ A A, } +

= 4 = ()k! exp(_2),

thus enabling us to identify the r.h.s. of (1.3) as the Lindblad type generator [3] of a

quantum dynamical semigroup {‘-yt}t>o, whose properties are the following [3,5]:

i) : B(7.a —÷ B(7.a. Vt 0,

B(7.a. being the Banach space of trace class seif-adjoint operators on 7 with

the norm:

IIi = Tr/;

ii) is a completely positive contraction on

l7tPIIi IIi Vt 0;

iii) {‘yt}t>o is strongly continuos:

lim,0+U7t —
= 0 V,â e

The asserted localization properties of the map T[.] in (1.2) become apparent if

we consider the position representation and work out:

(1.4)

the linear map T[.J on B(H)j”1 is introduced infact in [6] as a model of a position

measuring gaussian device. From (1.4) we deduce that states which are largely delo

caiized with respect to have off-diagonal elements which are damped by the term:

—A <qj> in (1.3), while evolving, whereas those for which q
—

are nearly
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unaffected. This brings the model’s aims to the fore in that it is capable of depressing

quantum entanglement arising from the linear superposition principle which cannot

be avoided with unitary evolutions.By using this disentangling mechanism of far-away

localized states, the authors find an escape route from the puzzling situations con

nected with the broad concept of reduction of the wave packet{1,2,7].Indeed, it is a

striking feature [1] of the model that, if a macrosystem is considered and the relative

motion can be separated from that of the center of mass, then the localization process

does not disturb the former,whereas amounts to a localization in the center of mass

position governed by the same coherence length but occurring with a mean fre

quency proportional to the number of constituent particles. This very fact enables the

authors [1] to choose the parameters a and A so that the quantum mechanical proper

ties of few particles are the usual ones up to enormous times on one hand and on the

other disentanglement is provided for macrosystems like, e.g., crystals. They propose

the Quantum Mechanics With Spontaneous Localizations as a building block in the

attempt of constructing a quantum dynamics able to overcome the difficulties of a

consistent micro-macro description of the physical world. All the developments of the

theory [8,9,10] reduce to (1.3) when confronted with a non-relativistic one-dimensional

one-particle system. It seems thus reasonable to study how the model behaves when

pushed toward classical mechanics by letting the quantum of action go to zero, being

aware that, for instance, in the case of linear equations of motions (quadratic Hamil

tonians) the quantum dynamics is the classical one for mean values of positions and

momenta. At most quadratic Hamiltonians have been used in [11,12] to give explicit

solutions of the G.R.W-mocjel and would then be studied first. It will be shown that,

in order to save the stochastic behaviour inherent in the Lindblad generator of (1.3),

a joint limit h —+ 0, a — 0 with ah2 = constant, is to be performed. A general result

[13] will then be met, as the above amounts to be a weak-coupling limit. This paper

will be divided as follows: in Chapter 2. a short account of classical limit techniques

will be given. The G.R.W.-model with quadratic Hamiltonians is discussed in Chapter

3. and Chapter 4. is devoted to general (time-independent) Hamiltoalans.
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2. The Classical Limit

As we are more concerned in investigating the existence of a sensible stochastic

process on the phase space corresponding to (1.3), rather than in facing pathological

situations that can arise from the outset by allowing for poorly regular Hamiltonians,

we shall take for granted all the assumptions available to give a meaning to what

follows. The classical description is centered around

8tpe(q,p) {H(q,p),p(q,p)}
(2.1)

= ãqH(q,p)8ppt(q,p) — 8H(q,p)87pt(q,p),

namely the Liouville equation for a classical phase-space distribution p and a Hamil

tonian function H(q,p). The r.h.s. of (2.1) is, a part for the sign, the Lie-derivative

LH of p along the Hamiltonian vector field XH (, _). Both Xii and p are

to be considered regular enough on R2 so that we can express the solution of (2.1) as:

Pt = e_tp

k!
Lp, (2.2)

where

Lp = p, Lp = Lj’Liip and Lp = {p,H}.

Remarks 2.1

1. The underlying Hamiltonian dynamics is provided by the (local) flow of au

tomorphisms {(q,p)} on. the phase-space R2, generated by the vector field

= (-, —) via the equations of motion ‘(q,p) = (Xii p).

Where the flow of diffeomorphisms is defined, thus giveing rise to the trajectories

(q,p) — (qt,p) ‘(q,p), a group of automorphisms {reii} on the state-space

of summable positive functions is set up according to:

Pt
= e_tp.

Analyticity of both Hamiltonian vector field and distribution function provides

for the power expansion (2.2).
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2. It is well known that if the Hamiltonian function is at most quadratic arid we

consider the corresponding quantum operator

H =
2m

on the Hubert space 7-t (anyone of its seif-adjoint extensions), then, for b V(H)

1<t>= !<t>

1dt m

I >=<, V’() >= V’(<,>)

are classical Hamiltonian equations corresponding to H = p2+V(q) with initial

conditions <i,b, b >, <i,b, ii >. If the Hamiltonian equations of motions are

not linear, then the limit ?L —* 0 gives sensible results when it involves mean values

of positions and momenta taken with respect to coherent states [14). Indeed, we

describe the quantum mechanical counterpart of the classical system by means of

the Weyl-algebra 14) which is linearly spanned by the (bounded) Weyl-operators

W(—q,p) = exp [i(p — q)j (2.3)

where (q,p) E R2

= (2.4)

and

W(—qi,p1)W(—q2,p2) = W(—q1 — q,pi + p)exp[(p1q2 — qlp2)1 (2.5)

We shall consider the strongly continuous irreducible Schrödinger representation

of ‘vV on = L2(R) given by:

[*(—q,p)iJ(x) = exp [i(pz — )j?(z — q) (2.6)

Its strong Hilbert space closure amounts to the entire Banach. space B(7i) of

bounded linear operators on 7-t [15,16). It turns out that any A e B(7-t) can be

represented as

A
= fR2

(q,p)W(—q,p)dqdp
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on 7 [16].

In order to pursue the classical correspondence we follow [14] and introduce the

symmetric representation

f
=

where

I (/)() =
(2.7)

()() = -i&’().

Given the gaussian state

bo(x) = /exp(_-),

we construct the overcomplete family of coherent states q,p >(q,p)ER2

q,p >= >. (2.8)

We have [16]:

<ql,pljq2,p2 >=exp(—{(q1—q)2 +(p —p2)2 —2i(qlp2 —plq2)]) (2.)

and

fR2
q,p><

q,pjdP
= 1. (2.10)

The following result is easily obtained:

Proposition 2.2

lim< _J,v%r)I*,> = exp[i(7rq—p)]

Proof

By means of (2.5) and (2.9) we get:

<, *W(_, > = expi(q - p)exp_2 + 2).
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Remarks 2.3

1. According to {16J we term *(—/, \/r) a classical operator. Given the Weyl

representation of a bounded operator A, see Remark 2.1.2, we can rescale q and

p to get:

= / (q,p)*(-q,Vp).
J R2

Therefore, if lim....o (q, p) exists at least in a distributional sense, then we call

a classical operator.

2. If APL and Bh are classical operators, then we have:

a(q,p) = lim < , = / (r)expi(q —p)dd
JR2h—*O

b(q,p) = lim < , —— > = I ,1r)expi(q7r —p)dd7r,
JR2

then it can be shown that [16]:

q p
lim < , — I, = {a,b}(q,p) = (8qaâpbôpaôqb)(q,p).

3. The Weyl operators are translation operators:

A suitably regular Hamiltonian = is a classical operator. Indeed,

2m

If, moreover, A is a classical operator we arrive at:

lim <,IaA0 - , > =

= ôta(q,p)It=o — {a,H}(q,p) = 0.

To probe further into the classical limit we consider the Cauchy problem origi

nated by the Hamiltouian vector field XH = (, —V’(q)) on R2:

1 (t) =

S



with initial conditions
fq(O)=q

p(o) = p

Then the following result holds:

Theorem 2.4 [14]

As long as the local flow of diffeomorphisms {<} exists

s - lim*(*, -)exp (t)*(-/, %r)exp (-Ht)W(-,)

= exp (i{q(t)7r —

(2.4.1)

Remark 2.5

The above theorem is a more general restatement of the well-known fact that the

mean values < (t) I, > and < ,I (t) I, > go into the

classical solutions cI(q,p) when Ii > 0. It has been proved for a potential V(q(t))

with S-Holder continuous second derivative (S > 0) about the classical trajectory

(q,p) = (q(t),p(t)).

We are now able to prove the following two straightforward propositions.

Proposition 2.6

Given the classical phase-space distribution p(q, p) E L1 (R2), the state operator

Ph.=
R2VVV

gives rise to a classical operator as follows:

q p P q p —t 262m ;=, ;:;= —

— pq,
*

Moreover:

27rh = fR2
(2.6.3)
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where

2 f dp(,W)exp (_2 ±2))exp (i[W -

(27r) (2.6.4)

,
)exp (_2 + 2))

Proof

(2.6.2) comes from (2.9) and

Urn exp(-[(q- )2
+ (p-)2]) = S(q -)S(p- ).

(2.6.4) is in turn obtained by equating the mean values of both expressions (2.6.1) and

(2.6.3) and by Fourier transforming.

Proposition 2.7

With ,ô as in Proposition (2.6) and Hp as in Remark (2.5), we have:

<3I exp (_t)- exp (t)I,>

= 1R2 dd )expi(q(t)
- ())

(2.7.1)

= (p.

Proof: this comes about from Theorem 2.4 and Proposition 2.6.

Remarks 2.8

1. The fact that the classical distribution arises from and not from i3 is due

to the finite size of the elementary cells of the phase-space associated with the

quantum system which makes 27rh the right normalization factor {17J.This can

also be seen along the lines followed in [13]. Namely, given a density matrix j,

Tr13’ = 1, the mapping:

q q p
P -* <

,

I I
‘>,

gives an h-dependent phase space distribution. Indeed, because of 2.10,

[ dqdp q p q p

JR 2h <‘
p > — rp
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2. The symmetric representation of and amounts to going from the units in

which h = 1 to the pysical ones. In the latter the Hamiltonian H H(, ) has

to be replaced by f[, =

3. Another kind of rescaling is possible [16j by allowing for ç and to be replaced

by

and kH by
1-

= -j-;H(qg,pg),

respectively. In this system of units momentum and position get dilated by a

factor . with respect to the physical units, h is replaced by g2h and the classical

limit is now performed by letting g2 — 0, which can be interpreted as a rescaling

of the unit of time by a factor g2 and a subsequent joint limit g2 —. 0 t
— +,

with g2t = const.. The latter is known as van Howe or weak-coupling limit.

3. G.R.W.-Model: Quadratic Hamiltonians

We go back now to equation (1.3) which is actually written in units such that

h = 1. As we are to consider the limit h — 0 and interested in those features of

the localization mechanism which survive it, we make the 1k-dependence explicit by

rewriting:

=

(3.1)

We notice that the coherence length is now the physical one and is measured in

centimeters. By using (1.4) we can check that the map T{J in (1.2), i.e. the third

term in (3.1), can be reformulated [11] as:

2
I .1. i

T[p I = ‘
dy

/ 2
exp (— —i) exp (— yq,) p exp (yq)

JR Va7rh al (3.2)

1 1 y y y

JR

dy
12

exp(—--) W(O,—7=)p W(0,

in terms of the Weyl operators introduced in (2.3).
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Remarks 3.1

1. If we consider a density matrix as in (2.5.1), we get:

li
q

PTr11
q

IL-.O < /‘
i2P

1’

JR

dy { Vah2
exp (-

}
— p(q,p)

Thus the whole dissipative mechanism

+

would disappear in the classical limit and the Hamiltonian term only would con

tribute. It is apparent though that the Dirac’s S at the origin can be avoided if

both limits h —+ 0 and a —+ 0, with h2a = 3 kept constant, are performed at the

same time. The result would be:

Urn <3=, T{jf=,>

=
fR

exp(—)p(q,p±y)

2. We notice that the indeterminacy principle associates with the coherence length

a typical momentum To understand the joint limit we have to study

how the classical limit interferes with the diagonalizing properties of the map

This is done in Appendix 1., the result being that the limit P1 — 0 is by itself

a diagonaLizing process of some sort and therefore only a corresponding scaling

of the coherence length can make the process T{.j be felt by the system in the

classical limit.

3. Equation (3.1) has been explicitly solved [11) for Hamiltonians like

-2

H() = + V()
2m

12



with V(tj) at most quadratic, the result being:

(2h)2fR4dYd{
,
, )

(3.3)

*(, )exp(-t) exp (Et)*(-,_)}

where

F(,,t) = exp { —

t +f dsexp(_i,(,))} (3.4)

and ir) is the position at time -s as it develops from the initial conditions

(o(,7r) = ,7ro(,7r) = 7r) through the linear Hamiltonian equations of motion.

Hence:

ir) a(-s) + b(-s)r.

The integral in (3.3) it has been obtained [11] from a uniformly convergent series in

B(7-)r, see beginning of the next section, by virtue of the linearity of the equations

of motion, thus it is a well defined mathematical object to work with.

We rewite (3.3) as:

=

(3.5)

*(,_) exp (-t) exp (t)*(-, *)}
where now, because of the linearity of the equations of motion,

F(, h, h, t) = exp { —

At + A j ds exp(—i3(, )) } (3.6)

If we choose i’ as in (2.6.1) and apply Theorem 2.4 to (3.5), we get:

q p 1q p
q, P) —

<, Pt

(3.7)

=

2 f ddydd7r e F(, , , t)(p
.
)(q + ,p + y)

(2ir) R4

13



Proposition 3.2

p in (3.7) is the solution of the differential Chaptnan-Kolxnogorov equation

2

8g(q,p) = {H,pt}(q,p)
—

Apt(q,p) + fde_pt(q,p÷y)

with initial condition po(q,p) = p(q,p).

Proof

As y — is a symplectic form for and the volume element dxdy is invariant under

the flow of d.iffeomorphisms {} generated by the, at most quadratic, Hamiltonian

H, we can rewrite (3.7) as:

p(q, )
1

2 f dxdydd et q — e E — F(, t,, t) p(z, y),
(27r) R4

where
—ct,t) — ‘*‘t

= exp {At + Afdsexp(_13(tt))}

=exp{ —At+Aft ds exp(—e,))}.

Now:

8tet q—tp)

= { + V(q), et

and

8F —AF+ AF exp(—())

A
Ffdye_et).

R

Thus the result easily follows. Moreover:

po(q,p)
= 1

2 f dxdydde Y)p(,y)
= p(q,p).

(2ir) R4

Remarks 3.3

1. p(q,p) is the phase-space probability distribution associated with the homo

geneous Markov-process whose transition probability P(t, q, pjto, qo, Po) is deter

mined by a forward differential Chapman-Kolmogorov equation comprising a de

terministic ( linear) Liouville term and a jump process:

fR {w(q,p,) P(t,,ptt0, qo,po) — W(, q,p) P(t, q,pto, qo,Po)}

14



with
--

__

-
(p—)2

W(q,pq,p)=1S(q—q)exp(— ).

We notice that:

p(q,p)
= f ddP(t,q,pjO,)p()

and

F(t,q,pfO,,)
1

2 f ddet q—p)+z(—ir)

(2ir) p

If we set the initial condition at t = to we get:

= (t,7rt) — t 0(,ir) = (-0 ,lrt_t0)

F(18,t,irt,t) —+ — t0) =

= e_t_t0) exp { Lt_t0 d3 exp (—(,

One can thus verify that the transition probabilities P(t, q, p(to, qo ,po), which have

actually a distributional meaning, satisfy the Chapman-Kolmogorov equation:

P(t,q,po,qo,po)
= f dq1dp1P(t,q,pjti,q1,p1)P(t,q,pito,qo,po)

and depend only on time differences as homogeneity requires.

2. As mentioned in Remark 2.8.2, by using a unit system in which the physical ones

are dilated by a factor g’, the classical limit can be replaced by the weak-coupling

limit g2 —k 0. In the new units:

— qg = gq

= g:

h hg2

a —+ ag2

and hence (3.1) and (3.5) read:

=

—

+
Vah2g2

fdye —3k)

15



and

1

f

dxdyddiet( —) F(ah2g2 t)
(2t-)2 R

t)W(

___

-)j

respectively.

The choice of the scaling factor g = and the limit a —* + will then get:

Ia &
p(q,p) lim <q/,PiJPt

It is to be noticed that, as the modified quantum mechanics is characterized by

two parameter A and a, the coresponding classical stochastic process is governed

by A and 8, 8 weighing a phase-space jump process affecting the momentum,

which occurs with mean frequency A.

4. G.R.W.-Model: General Hamiltonians.

Equation (3.1) can be transformed into an integral one to be solved, formally, by

iteration [11]:

= e_tUt(t){ + A
f

ds U(s)T[jUt(s)}Uh(t)

+
(4.1)

= e_AtUt(t){ Ak
J

dsk Tk[pJ}Uh(t),

k=O 0

where:

U(t) = exp(t)

__

-- i

T[]=
Vh2a7rfR7’

d30 [hJ = 3h (4.2)
10

= / dsk_l Uh(3k)T[Ut(3k)r [j Uh(sk)]Uht(sk)
Jo

1 ftdsk Ut(t)r [j U(t) U’
Jo
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If is a density matrix, then each integrand in (4.1) is a density matrix and the

sequence of partial sums converges to ,3 in the trace-norm. Convergence then holds

for mean values so that:
q p71q

<— > =

+

=et{ I ds <,Ut(t)T { JU(t)I,
Jo

k=O

As we are interested in density matrices as the one in (2.6.1) and hence in as

far as the classical limit is concerned, we notice that:

q p 1 q p
> Tr13=1

<‘1E
because of coherent states’ completeness, eqn.(2.1O). Thus the convergence of the

partial sums in (4.3) is uniform with respect to h and a. In Appendix A.2 it is shown

that, with the choice

= f dd(r)*(-/,v%r)

=

= i _)
JR

(see Proposition 2.6), the weak-coupling limit is needed to keep the stochastic process

working and that the following proposition holds:

Proposition 4.1

Let (q, p) = (q, p + y) be the phase-space flow of momentum translations generated

by the Lie-derivative

Lq{1 = {.,q}

p• = exp(y{q,.})p,

then:
t

lirn
?—O

a—’+ 00

tx.2a—,8

1exp(—..1y) (4.1.1)=

dsk
[3k

dskl
[32

dsj [ . .
. f dy1

Jo Jo Jo JR R

r 7k

1p• .t](P)}

L \=

17



with
k rk—1

I-I
p H

1=1 Lz=i

From above we derive:

Proposition 4.2

t exp(—1y)

p(q,p)= et{
L R

()k —

Ak ds k ds1 dyk J dyi

r 7k

1p• .t](P)}
L \i=i

is the solution of the differential Chapman-Kolmogorov equation

A P
8tp(q,p){H,p}(q,p)_Ap(q,p)+ dye p(q,p+y)

R

with initial condition p(q,p) = p(q,p).

Proof

It is easily seen that the above series solves the equivalent integral equation:

Jo JR ( (q,p)}.p(q,p) = et{(p. t)(q,p) + A I ds eA3 f e

Remarks 4.3

1. The process T{.j can be formally rewritten as follows:

T[]= / dy
1

JR /airh2
e

xh

dy
1 Y i

=

___exp

(—) exp ‘1 )h }JR ah2 ah

+ ‘

=
(I)k I d

1
[h [q,...

[,h] ...ii}y exp(——--1)y

k=J
h 1JR \/a7rh2 ah

_______

Ic times

= {exP(_[ [.]])}

18



As in the classical limit we expect — , j to go over into {q,• }, the classical

Poisson bracket, we see another reason why the joint limit is needed 50 that

h2a=3and

exp (- [, [•]]) exp ( {q, {q, . } }).

The right hand side of the latter expression must be understood as the operator

on the classical phase-space distributions which give rise to the term

fdy p(q,p+y)

in the differential Chapman-Kolmogorov equation.

2. If we expand the jump process in powers of 3, we get the Kramers-Moyai expan

sion whose first two terms yeld the following Fokker-Planck equation:

(q,p) = {H,}(q,p) +

The corresponding quantum evolution would then be given by:

8o = —ih[H, ] — [,]]
= - [in,] - {, } +

with {., } the anticommutator.
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5. Conclusions

In [13] the general problem of studying the classical limit of quantum dynamical

semigroups has been addressed by considering a generator

L[.} = L0{.} + Ld[1. (5.1)

and the corresponding, .)-dependent, one-parameter semigroup

= exp(t(L0[.J+ Ld[j)) (5.2)

on the state-space B(H)°” and by taking the limit \ — 0 in, accordingly rescaJ.ed,

vector states, see also [18]. The classical limit does then amount to a weak-coupling

limit in which the generator L0[.] of the group of isometries, the Hamiltonian evolution

in our case, is rescaled and long time behaviour is sought after. The G.R.W-model

we have investigated, belongs to a particular class of quantum dynamical semigroups

in which the scaling parameter, unlikely in (5.1) and (5.2), appears in the dissipative

term as well as in the Haniiltonian one. We have then showed that keeping the

stochastic properties throughout the classical limit requires a joint limit and eventually

a weak-coupling limit. We have been forced to do so in order that the localizing

properties of the evolution equation (1.3) be felt on the background of h — 0 which

itself tends to suppress coherence (see Appendix A.1).From a conceptual point of view

the G.R.W.-mode]. would hint at a physically meaningful and powerful modification of

the unitary, Hamiltonian quantum evolution, which, preserving practically unaltered

usual atomic physics on one hand, on the other suppresses quantum entanglement

as far as macroobjects are concerned, thus paving the way toward a unification of

micro and macrophysics [1,2]. Because of its inherent stochasticity, as embodied in the

dissipative term which gives rise to the spontaneous localizations, it seemed reasonable

to try to preserve this fundamental feature at the phase-space level too. It is the

universe, as a kind of reservoir, that, ultimately, acts as a source of stochasticity, this

being true at the quantum as well as at the classical level.
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Appendix A.1.

In this appendix it will be discussed how the clasical limit —. 0 and the localizing

process T{] interfere with each other.Let

> = C{*(-,0) +

C2 = 2{1 +exp(—{q1—qj2)}

be a linear superposition of two coherent states with mean positions and

respectively and zero mean momenta,then

27rh

and

1 1{i*(O)I

are two classical operators as defined in Chapter 2. Remark 2.4.1. Indeed,

lim <
, >

= 8(p)[S(q - qi) + S(q
-

on the other hand

1 q p 2

2irh < %/‘
I

_____

q P q q P q2
2

2h I, 0 > + < , , 0>

= {exp(_)[exp(_(q_ql)2)+exp(_(q_q2)2)

+2Reexp(_(ql_q2))exp(_[(q_ql)2+(q_q2)2])]}.

Coherent and incoherent superpositions like the above ones are therefore indistinguish

able in the classical limit. On the other hand the process T{} operates a suppression

of those off-diagonalities in position which exceed the coherence length
.

It should

then be expected that the coherence length ought to vanish in order that the process
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be felt on the background of —+ 0. The right scaling is found by comparing the two

diagonalizing mechanisms and this is better done by studying:

Tr{T { l >< (i*(-,)}

= f dy2 exp (-) <(0’ )*(0,

JR

dy2 exp(-)e <j*(-,)J>

= ICI2 exp (—
h2a2 ){ exp (_[2 +

2]) + e2]

+ exp (_{h + (qi - q2)12)] }
The classical limit would ve:

limTr{T [ >< b] *(-v’, V%r)}

= 1
[ei1i + e2]

=

and, in agreement with what previously obtained, no trace of the process T{j would

be left. If, on the other hand, h is kept fixed and is chosen such that h then

the off-diagonal elements are depressed if q — I >> , thus revealing the localizing

action of T{.j. The latter remains none the less significant only if h2a const. when

the classical limit is considered.
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Appendix A.2.

In this last appendix we shall prove by induction Proposition 4.1. We restrict

ourselves to studying the limit i — 0 for the moment, which we can do by considering

q p
urn Idsk <_,_uht(t)rUh(t,>.

/h /h

The choice of the initial density matrix is chosen, as in Proposition 4.1, to be:

= I dd,)W(-,)
27Th JR2

7r) =e22’ ir)

1 / dWetp(,).
= (2 JR2

The term with k=0 gives (p Xq,p), see Proposition 2.7. The term with k=1 is

more interesting, indeed

t

f ds1 Uht(t) r [ jUh(t) =

= f ds fdy1
1 Y

exp(-)
Jo JR l/czirh2 ah

1 hUht(t — s )*(0, s) — U(si) *(0, U(t s ) },27rh

and is a classical operator, in the sense that:

q p q
=(p31)(q,p)lim<—

/‘ /‘ 2rh

Hence we can write:

= / d1d1
J R2

where

1 1
lirn(si,1,w1)

— (27T)2 JR
d11e+t) (p

2

23



-d V
U)
C’,

P4

t 0

2 0

A A

-

o

V *

I U

-

0

A I 0

c.4 -
±2

T -°

- 0 +
I

--S
‘-v_I

55

I Is V c. ‘-4 —‘5-

c “ -o -

_

__
P4 —5’

‘5—, V

— P4

II tZ,1 I CN

—.5
-I—

5—’ c4 II II

I W P4

I4c i S— VI4 -4 -

4 , 0

r- I —..
0 V P4

I Ik’i

5—
-4 I. I V

+2

I
•%__%-,_•• -i;;’

bOO iJ Cl)
El ±3

El V +‘ 0 V‘-4±3

j- ‘—
I

-i-- V lI. ‘,

4f 53 4Cf bO ._,,_‘ ‘ JI4 P4 ,

‘-4

V
U

— o T 11 4L

fr - -
- V ‘-4 ‘ ‘5->

U $.. • ‘-4
c_______,

I ‘> t1 U) 1_zi

+3 V1c
V II V P4 V

U
-‘-4 U
+

I-i V -
÷ 8 -i U)

o +
+3

Cl)

C’, U)
V -

V I
U V. V

A A
H H

V
A

Cl) bO H



We can prove by induction that:

Urn I d (t)r{jUh(t)j,

?L-0 J0

(exp(—1y)

dsk d3k 1 ds1 dyk... / dyl

JO - JO fR JR

r 7k

. H .P.H\.H](qp)}

L /
—c ) —t

with
—1

fJ H pH_ JJJH
1=1

— —3 -. yt
!I 3k

In fact (4.4.1) has been proved true for k=1, if it is supposed to hold for k=n, then:

q
qp>

lith I d3n <, Uht(sfl+l)r[]Uh(sm+l)l,

h.-.’O

I’3n+l
(exp (— E=1?)

= I ds / ds_1 ... / ds1 [dy... f dy1

.10 Jo Jo JR JR ()

• ](q,p)}

L

and we can write the density matrix (divided by 27rh), whose mean value is considered

in the joint limit, as

Ut(s+1)T { }Uh(s+1) = I dd f,h(3+1, &n, , ) W(—v,

JR2

where:

in fa,(sn+i,sn,,7r) =

cZ —+

f
1 [ / ds... / ds1 / dy... / dyi

exp (—

(27r)2 JR Jo Jo JR JR
(/)n

r /m 1()}
I \z=i

By repeating the argument used for k=1 and the uniform convergence of the series in

(4.3) with respect to h and a, (4.4.1) follows immediately.
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