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1 Introduction

Over the years, soliton and soliton-like solutions of nonlinear partial differential equations

have been studied in great detail. One of the most important results of these studies

was the discovery of the unusual behaviour of solitons in a scattering process. In recent

years, mainly based on an idea by Manton [1], results for the scattering of soliton-like

objects, like magnetic monopoles [2], CF’ skyrmions [3] and cosmic strings or vortices [4]

have been obtained. Important numerical work has also been done for example on cosmic

strings or vortices [5] and skyrmions in (2 + 1) dimensions [6] . We consider the work on

the scattering of vortices to be of particular importance because, unlike the other soliton

like objects mentioned, vortices can be produced in the laboratory and with conventional

techniques [7], it may be possible to study their collisions experimentially.

The theoretical predictions for the scattering of soliton-like objects are very exciting.

The scattering of slowly moving monopoles, for example, shows an extremely rich structure

which is partly due to inner degrees of freedom, internal phases. For static vortices the

only degrees of freedom are the positions of the vortices, and any unusual behaviour would

hence be due to their soliton-like nature. Left-right symmetry in head-on collision would

only allow scattering at an angle of 0°, 90° or 180°. For slowly moving vortices at the point

between type I and type II superconductivity there is in fact analytic evidence for scattering

at right angle [4]. If the repulsion between the vortices increases and they cannot come very

close anymore, we would expect to see a switch over to back scattering at a certain value

of the repulsion. There is numerical evidence [8] that for fixed repulsion an increase in

the velocity can bring the vortices close enough together again to produce scattering at

right angles. Another parameter that could be changed is the angle between the vortices or

cosmic strings, which are the objects one would have in mind in this type of problem. When

we turn the strings out of their parallel position we would expect to see not just scattering

but intercommutation of the strings [5].

Of the three parameters, strength of repulsion, velocity and relative angle, in this article

we only change the first one. We review the evidence for scattering at right angle of slowly-

moving vortices at values of the parameters for which the net force between static vortices

is zero. The ansatz used leads to ordinary differential equations which we solve by Taylor

series at the origin and by asymptotic series at infinity. When we turn on a small repulsion

between the vortices we find that they still scatter at right angle, which, of course, is

essential if we want to see 90° scattering experimentially.

2 The Approximate Solution

The Ginzburg-Landau model of a superconductor in a magnetic field in direction z is given

by the Lagrangian density

£ = (D)(D -
-

- (1)

is the complex Riggs field, and D = 0— iAc and F1, = — OA in terms of the

gauge potentials A,,u, v = 0, 1,2. The metric is g = diag(+1, —1, —1). The Euler-Lagrange

equations are

DD + — 1) = 0,
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+ - (D] =0. (2)

For all A the Euler-Lagrange equations have static, finite energy n-vortex solutions of

the form [9]

cb(r,9) = e J’S)’ A0 = 0,

A1(r, ) = —ExJa(r), i,j = 1,2, (3)

where

r(rf’)’ — n2f(a — 1)2 — r2Af(f2
— 1) = 0,

(4)

and

f(0) = a(0) = 0, roT) =
= 1. (5)

In the special case A = 1, it can be shown [10] that the solutions actually satisfy the

first-order Bogomolnyi equations [11], and f and a satisfy

rf’—n(l—a)f= a1+f2_ 1=0. (6)

In this case, there exists also a 2n-parameter family of static n-vortex solutions describing

vortices located at arbitrary positions [10]. The reason for its existence is the fact that for

A = 1 the net force between static vortices is zero.

Now the scattering of slowly-moving vortices during the time from shortly before to

shortly after the collision is studied. We set

ç(t, ) = ) + (t, ),
A1(t,) = A;(f) + A(t,),

A0(t,) = 0, (7)

and assume that the solution is not too different from the configurations (3) of vortices

sitting on top of each other. In fact, (, A1) is taken to be the solution (3) for A = 1 and

n = 2, and

(t, ) = s) + t),

A(t,) = a1() + tB(f) (8)

where A = 1 + ., 0 < \ << 1, t e (—s, ), E << 1,and ( + Ap, A1 + a) satisfies the static

equations of motion linearized in A. Under these assumptions it is possible to linearize the

equations of motion (2) in , A, and A0. This leads to the equations

- 2iA’D -

+ (I 12_1 + + + 2 -1) =0,

+ A I 2 +[ñj
- + -

(ñj] =0,

aa0A + [O0 -
ao] = 0, (9)
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where D, = — iA and F:, = — 9jA.
The solution (3) to the equations (2) are analytic in A [12], and can be expanded =

+ A: + Aa1. Hence, (Ap,Aa) is a solution of the inhomogeneous system of

equations (9). The homogeneous system is the one which had to be solved in the case

A = 1. In this case, Ruback[4], extending work by Weinberg[13], found the solutions

= 2(c + i3)e6f’(r),

B1 + iB2 = — i)(rff” — rf’2 + ff’), (10)

and

= 2f(r)k(r),

B1 + iB2 e[rk’(r) + 2k], (11)

and

= 2if(r)k(r),

B1 + iB2 = e[rk’(r) + 2k], (12)

where k(r) satisfies the equation

+ (f2 + )k =0. (13)

The solutions (10) lead to fields (‘ + + tB) which are of the form

) + t) = e(+ d),

A() + tB() = A(+ ) + OiX, (14)

where

x = t( — )(cos9 — asin9) (15)

and d = 2t(c,,3), to first order in t. Hence, these solutions describe overall translations.

In the next section, we discuss (13) in detail and show that it has solutions with asymp

totic behaviour k ce,c 0, at infinity and k “ cr2 +c2r2,cj. 0, at the origin,

and that all other non-zero solutions have asymptotic behaviour k c3e_’ +c4er,c4 0,

at infinity. Without loss of generality we can set c = 1. That c1 = 0 cannot hold can be

seen as follows: Asymptotic behaviour e_r at infinity and c22 at the origin would imply

the existence of a point r = r0 for which k(ro) > 0,k’(ro) = 0 and k”(ro) 0. This is not

consistent with (13). Therefore, k is strictly monotonic decreasing from infinity to zero,

as r increases, and there exists a point r = p > 0 such that k(p) = 1/(2 I t ). For the

solution (11) we have

I= f2(l + 4tkcos29 + 4t2k2) f2( —2 t k)2. (16)

The zeros of the Higgs field, which give the locations where the magnetic field penetrates

the superconductor, are therefore at r = p, 9 = and 9 = for t > 0, and at r = p, 9 = 0

and 9 = ir for t < 0. This solution describes 90° scattering.
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Futhermore, for the solution (11) the energy density reads

(r,9) (f2
— 1)2 +

4f2(i— a)2
+ 8(I)2 + 16akt()2(a

— 1) cos(2)

+ 2t2(k’f + (l — a))2 + 2t2f2(k’ + )2(l + 4ktcos(29) + (2kt)2)

— cos(28)tf2(k’+ )[(a — 1) + 2kat cos(29) — tk cos(2&) + 2ak2t2]

— 4t2k’f2(k’ + )sin2(2&) +f2kt cos(26)(2 cos(28)f2kt+ f2 1)

+
(f2

+ 4ktf2 cos(29) + (2kft)2 — 1)2. (17)

By investigating the terms, one finds that the energy for a function k is finite if k has

asymptotic behaviour k e at infinity, or infinite if k has asymptotic behaviour k

at infinity. In Fig.1, the energy density (17) has been plotted for t = 1,t = 0 and t =

respectively. The plot shows how the scattering process proceeds: As the two vortices

approach each other, their energy densities form a cylinder-like structure from which two

vortices emerge at right angle for t > 0.

The arguments we gave for the solution (11) can easily be repeated to also show that the

solution (12) describes a 900 scattering process. We have therefore four linearly independent,

gauge inequivalent approximate solutions whose superposition describes 90° scattering plus

translation. Since the parameter space for two static vortices is four- dimensional we do not

expect more solutions for slowly-moving vortices. No special initial conditions are therefore

required in an experiment. Head-on collision of slowly-moving vortices should always lead

to 90° scattering. An important point made in this section is that all the above arguments

holdforA=1+A> 1,A<< 1.

Finally, we have to address the problem that the approximate solution for t e (—E,E)

(which we used to discriminate against 0° and 180° scattering in favour of 90° scattering)

is not a scattering solution. However, we can take the configuration for t = 0 as initial

data for a solution for t E which we know exists [14J. For t E (—E,E),E <<

1, the linearization which leads to eqs.(9) should be justified. Therefore, the solutions

we discussed should be approximations for t E (—e,e) to the scattering solution for t E

(—,c), although we have not rigously proven this. In fact, we are not aware of any

rigorous proof which establishes that any of the configurations discussed in the literature

are approximate solutions.

3 Series Solutions

In this section, we solve the equations (6) and (13) near the origin and use the equations

to find asymptotic expansiond near infinity. The technique used has been developed for

the Euler-Lagrange equations (4) [15]. First, we study the equations for small r. The

equation (6) can be rewritten as

f(r) — 2r2f a(s)f(s)dS

a(r) = r2 - lfsf2(3)ds (18)
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A Green’s function for the linear equation r(rk’)’ 4k is

g(r,p) = H(r-p)(-
42)

which leads to the integral equation

k(r) + cr
± jT(

- p
(19)

Given the behaviour of f and a at the origin [9], where f 7012 and a r2, we can prove

by induction that f, a and k are of the form

f(r) = fr2,

a(r) =

k(r) = kr2, k0 = 0, (20)

This leads to the following recurrence relations for n 2

1

= 1 —

1

= fnlfn26n,nl+n2+1,

7i ,fl2=1

k
— 4(n2— 1)

(21)

‘1 ,fl2,T131

To prove the convergence of the Taylor series we show by induction that

I f (n± 1)2I
a I 1)2’!

k I (n± 1)2
(22)

hold for sufficiently large n and M 1. The estimate for f, we need for the proof, is of the

form

I I
+ 1)2 (n— n1 + 1)2

. (1 + .r)2(n — x + 1)2

4M’1 1 1 1 2n+1

3

(n+2)2(’
(23)

Using similar estimates for a,1 and twice for k,1 we can complete the induction proof for

the inequalities (22). These inequalities imply that the series (20) converge and solve (6)
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and (13) for r < i//i7. Analyticity of the solutions discussed in section 2 then implies that

they are included in the set of series solutions (20).

For large r, f and a have the following asymptotic behaviour [9]:

f = 1 +f1(r)e + F2(r),

a = 1 + ai(r)e_r + A2(r), (24)

where fi(r) and ai(r) are polynomially bounded, and F2(r) and A2(r) approach zero faster

than rmer for any power of m. This implies that, to leading order, k satisfies

r2k” + rk’ —

(,2
+ 4)k = 0. (25)

To this order,

k(r) =c1H’(ir) +c2H2(ir), (26)

where are Hankel functions. Their asymptotic behaviour [16] and the finite energy

condition require c2 = 0. Therefore,

k(r) = ki(r)e_r + 1(2(r),

(27)

where ki(r) is polynoniially bounded and K2(r) approachs zero faster than rme_ for any

power of m.

We now prove by induction that

f(r) = f(r)e =: F(r),

a(r) = a(r)e =: ErAri(r) =:

k(r) = k(r)e =: EKn(r), (28)

where and k are polynomially bounded. Equations (6) imply for f = 1 + F and

a=1+’rA

F” + F’ — F = F2 + 4A2 + + 4A2F (29)

and

F+F—F = [ f1f2,1+2
rl ,r1

+ 4 á1a2ö12 +

—
—

ç 1 —rr

-I-

1 ,TL2,rL31

=:
c(r)eT, (30)
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Therefore

F(r) E j p[H(2)(ip)H(l)(ir)
— (31)

Substituting for a,(p) and calculating the integral leads to terms of the form f(r)e_nr,

where f is polynomially bounded. Solutions of the homogeneous equation have the wrong

asymptotic behaviour and cannot be added to (31).

To prove that a and k are of the form (28) we use

- ic
A(r)

=
p(p)edp, (32)

where

= —f — fn1f2n,z+n2• (33)

fl1,T2=l

One also finds

K(r) = j p[H2(ip)H’(ir) —
(34)

where

= 2 + (35)

flj,21 T1,Tl2,fl3=1

To prove convergence of the series, we assume there exist numbers M and R such that

rir

supf>RIrf(r)e 2 <
(n + 1)2’

supr>ra(r)e 2 <
(n + 1)2’

ljn
3Ztpr>Rjrk(r)e2I <

(n+ 1)2’
(36)

for large enough n. Taking R large enough, we can bound HS’2(ir)t by e and derive

the estimate

SUpr>RITfN(T)e_N2I < v2_13upr>RIr2QN(r)e2I. (37)

The induction hypothesis leads to

VW’ 11 1
SZLpr>RJrfN(r)eNn/21 <

—

(ni + 1)2 (V — n1 + 1)2

N—rz1—2

+
2 (n1 + 1)2 (n2 + 1)2 N — n1

—
n2 + 1)21

(38)

The inequality in (23) then completes the induction proof for f,(r). Similar arguments for

ã(r) and k(r) establish all inequalities (36). Thus, the series (28) converge for r > R and

r > 2 log M.
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Figure Caption

Figure 1: The energy density (17) for t = , t = 0 and t =
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