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1. Introduction

Conformally invariant and affine Toda type systems are among the most

studied models of the theory of integrable non-linear equations [1-7] and they

are also important in two-dimensional conformal field theory [8-17]. The key

feature of the conformal Toda theories is that they possess [3, 4, 10, 11, 13-

17] interesting non-linear symmetry algebras. These symmetry algebras are

polynomial extensions of the Virasoro algebra by chiral conformal primary fields.

Extended conformal algebras of this kind are called VV-algebras, currently they

are the subject of intense studies [18-23].

Two-dimensional Toda systems have been investigated earlier mainly by

using the formalism of the Lax pair. In some recent papers [12-15], see also

[16, 26], we proposed an alternative framework for describing the conformally

invariant Toda systems. This approach is based on the observation that Toda

systems can be viewed as Hamiltonian reductions of the Wess-Zumino-Novikov

Witten (WZNW) theory, which is essentially a free theory, whose main feature

is that it provides a natural, canonical realization of affine Kac-Moody (KM)

symmetries [24, 25]. The most important, qualitative conclusion of the investi

gations in [12-15, 26] is that the WZNW setting of the conformal Toda theories

amounts to their linearization, which at the same time resolves their apparent

singularities and makes their non-linear fl,)-symmetries manifest. In our opinion

their embedding into the WZNW theory provides the natural global setting of

the Toda theories.

To make contact with the Toda theories, we consider the WZNW theory

Swz(g)
=

dxiTr(g18g)(g’8g)
—

Tr(g’dg)3, (1.1)

for a simple, maximally non-compact, connected real Lie group G. In other

words, we assume that the simple Lie algebra of G allows for a Cartan de

composition over the field of real numbers. The field equation of the WZNW

theory can be written in the equivalent forms*

or 8i=0, (1.2)

where

J = g’ , and J = —g’8_g. (1.3)

* We use the notation ic. = where k is the KM level, and 9± =

with x = (x° ± x’). For notational simplicity we set ii = 1 from now on.
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These equations express the conservation of the left- and right KM currents, J

and J, respectively. The general solution of the WZNW field equation is given

by the simple formula

g(x,x) =gL(x)gR(x), (1.4)

where g and g are arbitrary G-valued functions.

In their pioneering work [1, 3], Leznov and Saveliev proved the exact inte

grability of the conformal Toda systems by exhibiting chiral quantities by using

the field equation and the special graded structure of the Lax pair A±, in terms

of which the Toda equation takes the zero curvature form

[8+—A+,8_—A_]=O. (1.5)

In our framework the exact integrability of Toda systems is seen as an immediate

consequence of the obvious integrability of the WZNW theory, which survives

the reduction to Toda theory. In our approach the chiral fields underlying the

integrability of the Toda equation are available from the very beginning, Of

course, they come from the fields entering the left x right decomposition of the

general WZNW solution (1.4). Furthermore, the Toda Lax pair itself emerges

naturally from the trivial, chiral Lax ‘pair’ of the WZNW theory. To this one

first observes that the WZNW field equation is a zero curvature condition, since

one can write for example the first equation in (1.2) as

[8+—J,8_—O]=O. (1.6)

Using the constraints of the reduction, the Toda zero curvature condition (1.5)

of [1, 3] arises from (1.6) by conjugating this equation by a certain field, defined

in terms of a generalized Gauss decomposition of the WZNW field g [15].

The WZNW theory provides the most ‘economical’ realization of the KM

symmetry, in the sense that the WZNW phase space is essentially (up to con

straints coming from the boundary condition one imposes on g(x°, x1)) a direct

product of the left x right KM phase spaces. The WZNW —* Toda symplec

tic reduction reduces the chiral KM phase spaces to phase spaces carrying the

chiral W-algebras as their Poisson bracket structure. Thus the )/V-algebra is

related to the pase space of the Toda theory in the same way as the KM al

gebra is related to the phase space of the WZNW theory. Before describing

the generalized Toda theories, first we shall elaborate on the structure of the

relevant W-algebras in some detail.
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2. W-algebras for arbitrary sl(2) embeddings

Let us consider a real, split (maximally non-compact), simple Lie algebra

g together with an sl(2) subalgebra S spanned by standard generators M, M0

subject to

[M0,M] = +M, [M+, M_] = 2M0 . (2.1)

We are interested in a certain reduction of the KM phase space associated to

ç, which carries the standard Poisson bracket

{(u, J(x)), (v, J(y))} = ([u, vj, J(x))6(x
-

y) + i(u, v)S’(x
-

y), (2.2)

where ( , ) is the Cartan-Killing form. The sl(2) subalgebra S defines a grading

of c, that is we have

= c+ + +c_, = c±, (2.3)

m=4

where o and c±m are eigenspaces of adM0 with eigenvalues 0 and +m, respec

tively. The reduced phase space we consider is identified with the set of KM

currents of the following special form:

Jred()
= M_ +j(x), jred() Ker(M+). (2.4)

In other words, jr(x) is restricted to be an arbitrary linear combination of the

highest weight vectors of S in the adjoint of . We denote this set of currents

as M8. The property of M8 which makes it interesting to consider is that its

induced Poisson bracket structure can be regarded as a classical )‘V-algebra. To

be more precise, let us introduce an angular momentum basis T?m in , such

that

r1K rn 1

IV1O 11,mi = mIj,m

with i running from 1 to the multiplicity of the spin 1 representation, for any 1

occuring in the decomposition of the adjoint of under S. By convention, here

we take M±. By using this basis, we can write

J(x) = U!m(X)Tiim (2.6)

l,m,

and

Jred()
= M_ + U’1(x)Tii . (2.7)
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The induced Poisson bracket algebra carried by M5, which can be specified

by second class constraints, is given by the Dirac bracket algebra { , }* of

the components U!”(x). The crucial properties of this Dirac bracket are the

following:

(i) The Dirac brackets of the U!”(x) close on polynomials in their derivatives

and S-distributions.

(ii) The quantity Lred(X) =
.

(Jred(), Jred()) generates a Virasoro subalge

bra, and, with the exception of the M+-component Ui”, the components

U!” are conformal primary fields of conformal weight (1 + 1) with respect

to this Virasoro subalgebra. (It is worth noting that in general Lred(X) is a

linear combination of the M-component U”(x) and a quadratic expres

sion in the singlet components U’°(x), it reduces to U”(x) when there

are no singlets of S in the adjoint of .)
This means that the Dirac bracket algebra of all the differential polynomials of

the components of Jred() indeed qualifies as a classical I’V-algebra, since it is a

polynomial extension of the Virasoro algebra by conformal primary fields. We

denote this }/V-algebra as W,. Below we explain how to establish properties (i)

and (ii) of the chiral algebras ‘VV,.

There are in principle two ways of investigating the reduced phase space

(Ms
, { , }*). The first, direct approach [26] is based on looking at M5 as the

submanifold in the KM phase space given by the following equations

U’’(x) — 1 = 0, and Um(X) = 0 Vl, i, m 1. (2.8)

In this approach one investigates the standard explicit formula of the Dirac

bracket { , }*, which contains the inverse C(z, w) of

C(x, y) {U(x), Ub(y) }, (2.9)

where Ufr) denotes the collection of the constraints given by (2.8). By making

use of the grading structure, it is possible to show that Cab(, y) is indeed

invertibe on M5 and that the inverse is a differential polynomial in the surviving

components u!’) and in S(x
—

y). This then implies property (i) of the Dirac

bracket, and (ii) can also be checked by inspection.

The second, indirect approach [13, 16, 14-15, 26] is based on realizing M8

as the space of orbits obtained in reducing the KM phase space by a convenient

system of linear, conformally invariant first class constraints. This Hamiltonian

reduction of the KM phase space generalizes the one used, for example, by

Drinfeld and Sokolov in their study of generalized KdV hierarchies [5]. Before
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turning to the general situation, now we recall this approach in the simple case

of an integrally embedded sl(2) subalgebra, which does not require practically

any modification of the standard construction L0’ 13].

The first step in this reduction procedure is to impose a first class system

of constraints by requiring the constrained current, J, to satisfy

ir(JC(x)) = M_ , (2.10)

where lr<.i is the projection operating according to the decomposition =

+ + provided by the integral spectrum of S. It follows that the

constraint surface, consisting of currents of the form

JC(x) = M_ + j(x), i(x) e (2.11)

is invariant under the gauge transformations

JC(x)
, A(x) JC(x) A’(x) + A’(x) A’(x) (2.12a)

for any

A(x) = exp[a(x)] , a(x) E . (2.12b)

Of course, these gauge transformations are the canonical transformations gener

ated by the constraints themselves. One can then associate to these constraints

the classical ‘V-a1gebra given by the KM Poisson bracket algebra of all the

differential polynomials of the constrained current invariant under (2.12). The

construction automatically yields the canonical Virasoro subalgebra given by

the gauge invariant polynomial

Ls(x) Lsugawara(x) — (M0 , J’(a)) . (2.13)

A family of very convenient complete gauge fixings is provided by the so called

Drinfeld-Sokolov (DS) gauges [5, 13], which are defined by further restricting

the current to be of the form

JDS()
= M_ +jDs(x) jDS(x) VDS , (2.14)

where VDS is any graded vector space specifying a direct sum decomposition of

the type

= [M_, 1] + VDS (2.15)

The crucial point is that every DS gauge defines a basis of the VV-algebra in a

natural way, namely by requiring the base elements to reduce to the indepen

dent current components in the DS gauge. This implies that the W-algebra
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spanned by the gauge invariant differential polynomials is isomorphic to the

Dirac bracket algebra of the current components surviving the DS gauge fixing.

Taking the highest weight DS gauge, that is the special case

Ker(M+) (2.16)

in (2.15), one identifies the ‘V-a1gebra as Plainly, this construction imme

diately yields property (i) of the Dirac bracket algebra. To establish property

(ii) one observes that Ls(x) reduces to Lred(X) in the highest weight gauge and

investigates the formula of the induced conformal transformations:

jred()
{Q Jred()}* Q = fdxa(x)Ls(x) (2.17)

for any test function a(x). By using the method of [13, 15], it is easy to verify

that

*
jred()

= 8K(x) + [K(x), Jred()] , (2.18a)

with

K(x) = a(x)J(x) + Mo8a(x) — M8a(x), (2.18b)

which implies property (ii) of )/V.

Now we turn to the non-trivial case of a half-irdeg’ral sl(2) subalgebra for

which we have

c=g1+c_+go+c+q>1. (2.19)

We would like to impose first class constraints completing (2.10) in such a way

that the reduced phase space consists of currents of the form (2.4). A simple

counting argument tells us that for this the candidate for the ‘gauge algebra’,

I’ C c, which was >1 in the previous case, has to satisfy the equality

dim(Ker M) = dim(g) — 2dim(F) . (2.20)

From this, by taking into account the sl(2) property dim(Ker M) = dim(co) +

dim(c1), we obtain

dim(F) = dim(g>1)+ dim(ci). (2.21)

Furthermore, it is clear that if we require the complete system of first class

constraints to contain the ones given by (2.10) then we must have

r = + q>1 , (2.22)
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where P1 is some subspace of of dimension dim Our candidate for

the complete system of first class constraints is then given as

ir<i(JC(x)) = M_ and (u, JC(x)) = 0 V u P1 . (2.23)

Introducing the orthogonal subspace P C by the definition
2 2

P={vEq_1(v,u)=0 VuEP}, (2.24)

we can write the constrained current Jc(x) as

JC(x) = M_ +j(x) , (2.25)

Our problem now is to find a subspace Pi i, with the right dimension, such

that the system of constraints (2.23) is indeed first class. To this it turns out

to be useful to consider the Kostant-Kirillov 2-form associated to the constant

matrix M_ entering the constraints. This 2-form w is defined on by the

formula

w(u, v) (M_, [u, v]). (2.26)

This 2-form is an useful tool in our context because, as follows from (2.2), the

first class nature of the constraints (2.23) requires its vanishing on the gauge

algebra F. In our case, for grading reasons, this is automatic apart from the

non-trivial condition on the Ji part of F:

w(u, v) =0, Vu, v E P1 , (2.27)

where w is the restriction of w to ‘. In fact, equation (2.27) guarantees the

first class nature of the constraints (2.23). To find subspaces qualifying as

we first point out that wi is a symplectic, i. e. non-degenerate, 2-form on

. Indeed, as follows from the invariance of the Cartan-Killing form and from

the fact that [M_, cj = w (u, i) = 0 is equivalent to (u, g> = 0,

which implies the vanishing of u Note that w being symplectic implies in

particular that the dimension ofi is even, which was implicitly assumed in the

above. As for any symplectic form, there exists a (non-unique) decomposition

of the space cI which brings w to standard form. This means that we can

find subspaces P1 and Q. of dimension dim(g1)such that

= P + Qi, (2.28)

and w vanishes on these subspaces separately. (The subspaces Q, and P1 are

the analogues of the usual ‘coordinate’ and ‘momentum’ subspaces of analytic
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mechanics.) This way we proved the existence of a subspace P1 of the right

dimension for which (2.23) is indeed a first class system of constraints.

The choice of the constraint surface (2.23) is not unique, because of the

non-uniqueness in choosing P, but the current can always be brought to the

highest weight gauge (2.4) by a gauge transformation of the form (2.12a), where

now

A() = exp[a(x)] , with a(x) E (P + c>1) . (2.29)

(It should be noted that the gauge transformation bringing JC to the highest

weight gauge is a unique differential polynomial in Jc.) This means that the

ambiguity in choosing P is immaterial as far as the reduced phase space is

concerned, the Poisson bracket algebra of the gauge invariant differential poly

nomials yields )/V in every case.

In the above we proposed a ‘halving procedure’ for constructing first class

constraints allowing for realizing ‘VVg as an algebra of gauge invariant differential

polynomials. The algebra ‘V has been considered recently in [16] in the special

case of = sl(n). However, in [16] )/V was constructed by considering a mixed

system of constraints imposed on the KM phase space, which was obtained by

complementing (2.10) with the second class constraints

(u, Jc(x)) = 0, for Vu . (2.30)

Eventually, this system of constraints also results in the VV-algebra ‘/V, but

the corresponding reduction of the WZNW theory to a generalized Toda theory

is much easier to find by using first class constraints only. Actually in [16] the

authors were also led to replacing (2.30) by a first class system of constraints,

in order to be able to consider the BRST quantization of the theory. They in

fact constructed a first class system of constraints by introducing unphysical

‘auxiliary fields’ and thus resolved (2.30) in an extended phase space. In that

construction one has to check that the auxiliary fields finally disappear from the

physical quantities. One of the advantages of the ‘halving procedure’ proposed

here is that it renders the use of any such auxiliary fields completely unnecessary,

since one can start by imposing a complete system of first class constraints on

the KM phase space from the very beginning.

In the above we outlined the KM —* )4’ reduction by using the language

of first class constraints. For completeness, we now briefly explain how this

construction is interpreted in terms of the standard terminology of symplectic

reduction [27]. To this we consider the subgroup G1 of C obtained by exponen

tiating F = (g> + P) associated to the sl(2) subalgebra S. The corresponding
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loop-group O acts on the KM phase space, that is on the dual of the affine

KM Lie algebra, in the usual way:

(J(x),k)(A(x).J(x).A’(x)+A’(x).A’(x),k), VA(x)EG.

(2.31)

This action preserves the Lie-Poisson bracket (2.2), and it is in fact a Hamil

tonian action possessing a moment map. To describe the moment map, first

we note the obvious fact that the dual-space F of the loop-algebra F can be

identified with the space of the F valued loops. Furthermore, the space F,

which is the dual of F, can be identified with an arbitrarily chosen complement

of F in
.

In fact, for any direct sum decomposition of the form

(2.32)

the Cartan-Killing form provides a non-degenerate pairing between F and I’.

By using the above identifications, one finds that the moment map generating

the Hamiltonian action (2.31) is given by the formula

: (J(x),k)p*(J(x))Ef*, (2.33)

where the projection operator lrp* is defined by the decomposition (2.32). The

Lie algebra element M_ defines a linear functional on F by means of the Cartan

Killing form and thus it determines a unique element M of F C
f*. Our

constraints (2.23) exactly corresponds to restricting the current to lie on the

level surface CM* of the moment map specified as follows:

CM* {(J(x), k) ((J(x), k))M } . (2.34)

It is easy to see that the isotropy group of M. in the co-adjoint representation

of G is the full group G’. Therefore the reduced phase space belonging to the

Hamiltonian reduction is the factor space CM* /Gr, which is nothing but the

space of orbits we considered previously. Of course, the induced Poisson bracket

carried by the reduced phase space of the Hamiltonian reduction is identified

with the Dirac bracket { , }*, by parametrizing the factor space CM* /Gp by a

section of the orbits. In our case the most convenient such section is provided

by the highest weight gauge.
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3. Generalized Toda theories

The field equation of the standard conformal Toda field theories is given

by

8+ã_y’j + exp[> = 0, (3.1)

j=1

where K2, is the Cartan matrix of ‘. It has been realized recently [4, 10, II,

13, 17] that these theories possess the chiral algebra )4) x VV as canonical

symmetries, where S is the principal sl(2) subalgebra of 7. The natural ex

planation of this result is provided by the fact that the Toda field theories are

nothing but reduced WZNW theories, which result from the WZNW theory by

imposing KM constraints of the type discussed in the previous chapter. In fact

it has been demonstrated in [12] that the standard Toda theory can be obtained

from the WZNW theory by imposing the constraints

7r<_i(J) = M_ and ir>1(J) = —M, (3.2)

where M and M_ are the step-operators of the principal sl(2) subalgebra of

g [28], which specifies the grading used in defining the projections in (3.2).

The grading defined by the principal sl(2) is an integral grading, the spins

occuring in the decomposition of the adjoint of under the principal sl(2)

are the exponents of . To derive the Toda equation (3.1) from the WZNW

equation (1.2), one uses the generalized Gauss decomposition g = . g_

of the WZNW field g, where g are from the subgroups G0, of G with Lie

algebras respectively. In this framework the Toda fields SOj are given by the

gauge invariant middle-piece of the Gauss decomposition, go = exp[1

Note that o is a Cartan subalgebra in this case, and the H2 are chosen to be

the Cartan generators associated to some system of simple roots. The above

derivation of the standard Toda theory from the WZNW theory offers some

natural generalizations [14-16, 26], which we now briefly review.

3. 1. Generalized Toda theories associated with integral gradings

Let us consider a diagonalizable element H E whose spectrum in the

adjoint of consists of integer numbers and includes +1. By means of its

eigenspaces, such an element defines an integral grading of g:

(3.3)
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As a rather immediate generalization of (3.2), we can impose the following first

class constraints on the WZNW phase space:

= M_ and ir1(i) = —M, (3.4)

where now are some arbitrary but non-zero elements from
fhe reduced

theory turns out to be an integrable field theory for a local field b varying in the

little group G of H in G. The field b is defined through the generalized Gauss

decomposition g = g . g, namely b g. The reduced field equation is

the zero curvature condition of the Lax potential

= —bMb’ , (3.5)

and the effective action is given as

Sda(b) = Swz(b)
— fd2xTr(bM+b’M_). (3.6)

These generalized, or non-Abelian, Toda theories have been first considered by

Leznov and Saveliev [3]. In their approach the Lax pair (3.5) is obtained by

‘specializing’ a pure-gauge potential 13± e C, by making use of

an integral grading. In comparison, in the WZNW framework the Lax pair is

derived by conjugating the chiral zero curvature equation (1.6) by the upper

triangular piece g4 of the Gauss decomposition of g, and making use of the

constraints (3.4) of the Hamiltonian reduction. Clearly, these two methods are

different but closely related. We note that in the WZNW approach the effective

action (3.6) can also be derived in a natural way, from the Lagrangian, gauged

WZNW version of the Hamiltonian reduction [13, 26]. One of the important

advantages of the WZNW setting is that it provides a global description of the

Toda type theories. The point is that the WZNW description remains valid

also in the sectors where the Gauss decomposition of g breaks down, which is

reflected in the existence of apparent, non-physical singularities for a class of

solutions of the local Toda system given by (3.6), see [12, 13].

It was shown in [3], in the special case when H and M± span an integral

sl(2) subalgebra of , that the non-Abelian Toda equation allows for conserved

chiral currents which underlie its exact integrability. These currents generate

chiral W-algebras of the type discussed here in Chapter 2 [4, 14-16].

In [15] we investigated the chiral algebras of a wider class of non-Abelian

Toda systems, namely we considered the Toda systems obtained by constraints

of the type (3.4) satisfying the following chiral non-degeneracy comdiions:

Ker(adM) fl = {O} . (3.7)
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We proved that in this case the left x right chiral algebra is isomorphic to

x where S_ (8+) is an sl(2) subalgebra of containing the nilpotent

generator M_ (M+), respectively. Such sl(2) subalgebras exist by some power

ful theorems of Morozov, Jacobson and Kostant on sl(2) embeddings [28]. This

structure of the chiral algebra can be established by exhibiting highest weight

DS gauges for the chiral, left- and right KM parts of the constraint surface,

(3.4). We note that, although we took H to be an integral grading operator,

are not necessarily integrally embedded sl(2) subalgebras, but in general

not every half-integral sl(2) subaigebra of is obtained in the above manner

[26].

Concentrating further on the non-degenerate case, let us consider some,

say left moving, gauge invariant differential polynomial of the constrained KM

current, W(J). Note that the components of the Toda field b form a complete

system of gauge invariant quantities in the Gauss decomposable sector of the

reduced theory defined by (3.4). It follows that for any W(J) there exists a

unique function WToda(b) such that

WToda(b) = W(J) . (3.8)

We know that

(3.9)

and that the W’s are form-invariant differential polynomials under ‘upper tri

angular’ gauge transformations. Combining these, we see that WToda depends

on b only through A and that WToda(A+) is obtained by simply substituting

A+ for the argument of the differential polynomial W. In other words, we have

WToda(b) = W(A+) . (3.10)

In ref. [3, 4] the conserved currents of the Toda theory are constructed by

directly solving the ‘characteristic equation’

8_WToda(b) = 0 (3.11)

for WT0d. The arguments sketched above [15, 29] yield the translation between

the Lax pair [3, 4, 11, 17] and the constrained KM descriptions of the i/V-algebra

of the Toda system (3.6), for non-degenerate M±.
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3. 2. Generalized Toda theory for arbitrary half-integral sl(2)

In this final section we briefly describe a new class of generalized Toda

theories, which are studied in detail in [26]. These theories are constructed in

such a way that they possess the left x right chiral algebras VV x ‘VV for some

arbitrarily chosen half-integral sl(2) subalgebra S = {M0, M}.

Clearly, if we impose first class constraints of the type (2.23) on the currents

of the WZNW theory then the reduced theory will have the chiral algebra we

require. There is a large freedom in this construction arising from the non-

uniqueness of the, say, left-moving constraints and from the fact that one can

in principle choose the left- and right-moving constraints quite independently.

The procedure we adopt here is that we take the left-moving constraints to be

given by (2.23) according to some decomposition of the type (2.28), and then

choose the right-moving constraints to be obtained by ‘transposing’ the left-

moving ones. See [26] for arguments in favour of this left-right related choice of

the constraints.

Turning to the details of the reduction, first we choose a decomposition of

. of the type (2.28) and then define the induced decomposition of c,

= P. + Q_ , (3.12a)

to be given by the subspaces

Q_. P [M_,21] and P Q±=[M_, Q]. (3.12b)

The right-moving constraints then read as

= —M and (u, J(x)) = 0 V u . (3.13)

The total system of constraints is first class, as a consequence of the left-moving

ones being first class.

Now we shall give the effective field equation of the reduced theory. We

start by assuming that the WZNW field g is given by the generalized Gauss

decomposition defined by the sl(2) subalgebra. This means that we have

g(x, x) = g+(x,) go(x, (x x) , (3.14)

where go is from the little group of M0 and g are from the subgroups G± of G

obtained by exponentiating the Lie algebras , defined by the grading (2.3).

Therefore we can parametrize g± as

g = exp[r>1 + p + q] and g_ = exp[r<i + p_i + q_4] . (3.15)
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Here the subscript indicates the grade of the variables, and pi(x,) E

qi(x+, x) E Qi. The gauge transformations belonging to our first class

constraints act on the field g according to

+ - (xj +
- ()g(x , x ) — g(x , x ) , (3.16)

where y±(x±) are arbitrary elements from the left- and rigth gauge algebras

= (>1 + P) and F—
= (<_i + Pt), respectively. One sees that the

quantities go(x+,) and qi(x+, x) are invariant under (3.15), and they in

fact form a complete set of gauge invariant local fields parametrizing the reduced

phase space. We would like to obtain the effective field equation in terms of

these variables, by projecting the WZNW field equation to the reduced phase

space. As usual, this can be achieved by conjugating the WZNW field equation

(1.6) by the field g’(x, x) defined by (3.14). Indeed, this way we obtain the

equivalent equation [8 — A, 8_ — A_] = 0, with

= g’Jg + 8g’ g , and A_ = g, (3.17)

and the point is that A±(x+, x) become gauge invariant quantities upon im

posing the constraints. Thus the effective field equation derived in the above

manner is automatically in the zero curvature form.

To display the result of the analysis detailed in [26], we have to introduce

some notation. First let us consider the operator Adg0, which, in particular,

maps the space ‘_ to itself. By writing the general element u of i as a

two-component column vector u = (u1 u2 )t with u1 E P_ and u2 E Q_ , we

can designate this operator as a 2 x 2 matrix:

Ad
— 11 Xl2

(318)
— x21 x22)

where, for example, Xii(go) and X12(go) are linear operators mapping Pi

and Q_. to P.., respectively. We note that the operator Xii(go) is certainly

invertible in a neighbourhood of the identity, since Ade = 1. Analogously, we

introduce the notation

Adgi1q
= ( :) (3.19)

which corresponds to writing the general element of g1 as a column vector, the

upper and lower components of which belong to Th. and Q, respectively. It

is not too hard to show that on the constraint surface specified by equations

(2.23) and (3.13) the quantities A in (3.17) can be written as follows:

A =M_ + 8+go
1

+ o 1 g0 1

(3.20a)
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where

320b
+(go, q) = —8_q + Yj’(go). {[M+, q_] + Y12(go) 8_q },

The effective field equation of our generalized Toda theory is the zero curvature

condition of this Lax pair, which reduces to (3.5) in the case of an integral sl(2)

subalgebra, as it should. The above arguments clearly show the WZNW origin

of the Lax pair of the Toda type systems.

It is shown in [26] that, as a consequence of the obvious integrability of

the WZNW field equation, the field equations of the reduced theory (3.20) are

integrable by quadrature. As far as we know the integrable non-linear equations

specified by the Lax pair (3.20) have not been considered before. The effective

action underlying these theories, and the relationship between these theories

and the ones given by the simpler Lax pair (3.5) and action (3.6) are discussed

in detail in [26], where some examples are also worked out.

We end this report by pointing out the relationship between the generalized

Toda systems (3.20) and certain non-linear, integrable equations which have

been associated to the half-integral sl(2) subalgebras of the simple Lie algebras

by Leznov and Saveliev. (See equation (1.24) in the review paper in J. Soy.

Math. referred to in [3].) For this purpose we note that by using our method one

can in principle impose only the obvious, mom-maximal constraints ir<_i(J) =

M and ir>i(J) = —M on the WZNW theory even in the case when and

M belong to a half-integral sl(2) sublagebra. The point we make is that the

Lax pair of the reduced theory which one obtains in this case exactly coincides

with the one proposed by Leznov and Saveliev. Thus their system is in some

sense lies between the WZNW theory and our generalized Toda system, which

has been obtained by imposing a maximal set of first class KM constraints on

the WZNW phase space. In other words, our system can also be thought of as

a reduction of theirs.
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