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Abstract

We discuss a Schwinger expansion technique for computing the 1]-

function of a first order operator in the pure Chern-Simons quantum

field theory. When evaluated at zero, the i-function of this operator

gives essentially the one-loop correction to the partition function. We

illustrate this technique by explicitly computing the one-loop 2-point

function in this theory on a fiat spacetime background.
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1 Introduction

Chern-Simons field theory has proven to be a useful framework for under

standing and generalizing knot and link invariants [1] One can also show

how certain 2 dimensional lattice models arise naturally together with the

notion of quantum groups [2]. This gives a unifying 3 dimensional viewpoint

on all of these interesting systems. One important technical aspect of Chern

Simons theory is that it gives topological invariants of framed 3-manifolds

ith a prescription for the behavior under a change in framing Under a frame

change, the partition function picks up a non trivial phase factor Witten

has shown that the origin of this phase can be traced to a one-loop back

ground field calculation where a certain determinant is observed to have this

phase factor. As such, one can see that this is a perturbative effect, the

result being that the effective action at one-loop is a shifting of the classical

Chern-Simons action [1]. Further confirmation of this result was given in [3]

using a Pauli-Villars (higher derivative) regularization scheme

In this paper, we use - and extend - a regularization technique of M

cKeon and Sherry [4] (called operator regularizat ion) to explicitly evaluate

this phase. The extended method involves an evaluation of the n-function

associated to the relevant first order operator in this theory. We find that at

the one-loop order, the 2-point < A A> function is non-zero in agreement

with [1, 3] This corrects a point made in [5, 6] where a calculation yielded

no one-loop correction to this Green’s function A further discussion of this

issue can be found in Section 4.

The outline of this paper is as follows. In the next section, we review

the relevant aspects of the pure Chern-Simons theory at one-loop. Section 3

contains our calculation of the i-function, while Section 4 relates this work

to a supersymmetry anomaly in this theory [5, 7] We also discuss this

SUSY in the context of the Chern Simons theory dimensionally reduced to

2 dimensions. We close with conclusions together with avenues for future

work.
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2 Chern-Simons Field Theory at One-Loop

The pure Chern-Simons field theory [1, 8] is generated by the classical action

Sc(A)=fTr{AAdA+AAAAA}, (1)

where A = .4Ta is a connection form on some fibre bundle over a smooth

manifold M and T is a representation of the generators of the bundle group

G The field configurations which are extrema of this action are easily seen

to be the flat connections, .F(A) = 0 One can construct a quantum field

theory based on this classical theory in the usual way by considering the

partition function

Z=J{VA] exp{Sc(A)}, (2)

where the functional integral is over gauge equivalence classes of connections.

One subtle point regarding this particular theory is in the local gauge invari

ance of the action S. Although this action has the usual invariance under

infinitesimal gauge transformations, A = (d+A), it is not invariant under

large gauge transformations not connected to the identity. Under such trans

formations, the action can change by a constant times the winding number

of the gauge transfoimation [1, 9] The quantum theory nevertheless has the

full gauge symmetry when the coupling k is quantized to take integer values,

and when the scale in the trace Ti is chosen appropriately

A perturbative analysis of this theoiy begins by making a background

field expansion of the connection

Ac=Aa+Ba (3)

into a classical background part A and a quantum field B. A BRST quan

tization proceeds exactly as in any Yang-Mills theory, and it is convenien

t to quantize in the background field gauge DyB = 0 [1], where D0 =
ab

+ Af0 is the covariant derivative with respect to the background

field A. The partition function is now a functional of A

Z[A] = J[VB][V][Vb][Vc] exp{zSq},

= J d3x Tr[eBDB —

2DB + bD2c], (4)
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where we have rescaled the quantum fields to obtain a more convenient nor

malwation and kept only terms which were bilinear in the quantum fields.

The field is the Lagrange multiplier which enforces the gauge condition

and b and c are the usual ghosts needed to produce the correct function

al measure. We will be using the conventions where the structure con

stants of the semisimple algebra are real and completely antisymmetric with

[T”, Tb] = fabcTc. For the fundamental representation of SU(ri), the matrices

are skew-hermitian and we take Tr[TaT6] = _ab, while the quadratic

Casimir is defined by d
facdfbcd =

The one ioop partition function can be represented by a combination of

determinants in the usual way [1]

ik det[—D2]
Z[A] = exp{—S} , (5)

47r det[H]

where H is the operator which appears sandwiched between the B and çt

fields in the action

Jd3x ( B a )(
)ab

( ). (6)

Witten has shown [1] that det[H] picks up a subtle phase factor

det[H] = det[H]I
exp{H(0)} (7)

proportional to the 77-function [10] of the operator H evaluated at zero. This

function is defined by

T1H(s)
= F() j dt Tr[H e_tH2] (8)

If we imagine that H has been diagonalized, and the spectrum of eigenvalues

is {}, it is straightforward to show that the above definition is equivalent

to

7111(8) = sign(\) I-. (9)

In this form, one sees that the 7 function measures the spectral asymmetry,

or the mismatch between positive and negative eigenvalues Clearly, if all the
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eigenvalues appear in pairs +?, then the fl-function will vanish identically.

In [1], it was shown that the phase factor 17H(0) could he obtained through an

index theory argument, and that it was essentially proportinal to the Chern

Simons action S Computing the magnitude det{H] is straightforward since

one can regularize via C-function techniques Here, one takes

det[Hfi = VH2], (10)

where H2 is the postive operator

/_,ç fl2_j’ 1 jior
LI2 — I c/3 ‘ cq3 2fcurL

11 —j 1 uci- r2 ( )
\ 2/37T1 L1

Remember that we are on a fiat spacetime background, so there is no curva

ture or Christoffel connection to consider here The determinant of a positive

operator M is given by

det[Mj = exp{—(O)]

= f dt ts_iTr[e_Mt] (12)
F(s) o

and can be evaluated by the techniques in [4] which we will review in the

next section The same applies to the operator D2 Notice that when the

background field A is on-shell (Faa = 0) the magnitude of these determinants

cancel automatically,
det[—D2]

= 1 since H2 is then proportional to D2 The
I/det[Hj I

contribution to lndet[D2]which is quadratic in the A field turns out to be in

general given by

f (9)3
A(-p)A(p)(p2)112(6p2 -pp), (13)

and this does not cancel the contribution from H2 We find that

ln = I A(-p)A(p)(p2)1/2(p2
-

pp) (14)

One can also see that this ratio of determinants does not vanish off-shell

by looking at the Schwinger-DeWitt expansion for the heat kernel; the co

efficients in this asymptotic expansion have been given by Gilkey [11] for
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operators of the form D2 + X. In any case, the one-loop partition function

Z[A] is simply given by

zk zr
Z[A] = exp{—S + --iiiq(O)}, (15)

at F = 0. Calculation of the effective action away from the classical mini

mum may involve Vilkovisky-DeWitt type corrections [12, 13].

We would like to define the Chern-Simons quantum field theory through

a consistent regularization scheme valid to all orders A Pauli-Villars regula

tor was described in [3] which is suitable for this theory Here, we would like

to describe an alternative scheme which extends the operator regularization

methods of McKeon and Sherry [4] to deal properly with first order differen

tial operators. In their procedure, determinants of first order operators like

the Dirac operator were defined by taking the square root of the determi

nant of the operator squared. This would not be appropriate here, as such

a procedure would miss the subtle phase that arises in det[H] In the next

section, we show how their techniques can easily be extended to cover the

situation at hand.

3 Calculation of the ri-function

In [4], a technique for regulating quantum field theories was described At the

one-loop order, the calculation of Green’s functions is reduced to computing

the C-function of certain operators, and a Schwinger expansion [14] technique

was employed. This expansion amounts to writing the exponential of an

operator M = M0 + M1 as a power series in M1 which can be thought of as a

‘perturbation’ around the ‘free’ field operator M0 The Schwinger expansion

is given by

e_Mt = e_Mot — t j du e_M0(1_tjiieut

+ t2 f du f dv e_Mo(1_u)tAiie_Mo(1_v)utMie_Mouvt + ... l6)

where we have explicitly included only terms up to second order in M1, the

general expression can be found in [14] In our case, the exponential term
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that arises in the i-function is

M=H2=(II0+H1)2=H+(H+{H0,H1})=M0+M1,(17)

where H0 is simply H with the background field A, set to zero We will

illustrate the use of this technique by explicitly computing the contribution

to ?H(s) which is second order in the background field A. In this approach,

we are computing the one-loop correction to the propagator < A A>. Other

references to the i’-function in the physics literature can be found in [15].

We can now apply the Schwinger expansion to the situation at hand where

‘e must compute Tr[H e_H2t] The terms of order two in the ‘perturbation’

il are given by

Tr[—tHo du e_ 1_tHe_Hut
— UI1 f du e_1_t{Ho, Hi}e_ut

+t2H0 f du dv ue_(1_u)t{Ho, Hi}e_()ut{Ho, Hi}e_Htj .(18)

It is most convenient to perform the trace in momentum space, where for

any operator 0,

‘ d3
Tr[0]

= J
. p3

(2ir)

= J3dxdy <px >< x0Iy >< yp> (19)

(Note that we take < px >= ePX and A(p) = fd3xetA(x)) In

computing the i’-function, we must evaluate the individual terms in (18), and

each of these involves both momentum integrals (which come from the Fourier

transform of the fields and operators) as well as u-v parameter integrals.

There is also the t integral in the definition of qH(s) that must he carried

out. In practice, it is most convenient to do the momentum and t integrals

first, leaving the u-v parameter integrals for last, but it is also possible (at

least at this order) to begin with the u-v integrals. We have checked our

calculation by performing these integrals both ways. The most difficult part

in the calculation is in resolving the final u-v parameter integrals and we

have found the following three integrals useful:

I du u1(1 — u)’
=

Jo F(c+3)
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f du f dv u(uv —u2v2)a
= 2F(2+2)’

j du j dvu2v(uv —) = f(2 + 2)
(20)

Without further ado, we can now list the results of this calculation. The first

term in (18) involving H? is identically zero, while the second term yields

23/2 f(2)f(S) I (2:)
(p2)-s/2E7Aa(_p) p A(p). (21)

Notice that this contribution is singular at s = 0, being proportional to

F(s/2). It is a theorem [10] that the ?-function is regular at s = 0, so we

know that the remaining term in (18) must come to the rescue. Indeed, this

piece gives

ic F(1—)2

2ir3/2 F(2 - )f(s+i) [f() + f(1 + )] x

f (p2)-s/2Aa(p) 4(p) (22)

Combining the above terms gives

‘lH(s)
= 22

2
2))13)2)

f (p2)2EA(-p) p A(p)

for the 0(A2) contribution to the ?7-function. This result is of course regular

at s = 0, yielding

H(0)
= -f (2)

A(-p) p A(p) + ... (24)

This is simply the first term in the Chern-Simons action written in momen

tum space. In x-space, this is equal to

J d3x Tr[E A 8 A], (25)
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and is in agreement with [1, 3].

In principle, there is no obstruction to computing the contributions to

‘7H(s) due to terms of higher order in Ac, with this technique. In [1] it was

shown that there is only one additional piece to ?H(O) which is proportional

to fd3x Tr[e Ac,AA]. One proceeds in the same way starting with a

Schwinger expansion valid to order A3. We have carried out the calculation

through the stage where one does the momentum and t integrals. Unfortu

nately, one is left with the integrals over the parameters in the Schwinger

expansion and these have proved to be difficult - though probably not im

possible - to resolve. The result of the calculation before carrying out these

final integrals is too lengthy to include here.

4 Chern-Simons SUSY Anomaly

In [5], an unusual symmetry was discovered in the Chern-Simons theory when

quantized in the Landau gauge. If we take the quantum action to be

fd3x Tr[ c(Ac,8A1+ Ac,[A,A1]) — 28. A + bô• Dc], (26)

where Dc, is now the covariant derivative with respect to the connection form

A, then it is straightforward to verify that the following transformations are

symmetries of this action:

= c,iFFc

6b =

6c = 0

= eDc,c (27)

Here, e is a constant Grassmann odd vector parameter. It was later shown

[7] how a superspace could encode both this ‘supersymmetry’ together with

the usual BRST symmetry on the same footing. Ward identities (non-

anomalous) were also derived in [5] for this symmetry, and an attempt was

made at a one-loop calculation using dimensional regularization The prob

lem is in extending the e symbol to d dimensions, and the conjectured

extension does not exist. If one tries to use a more conventional definition
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for this tensor [16, 17] - a method which successfully yields the chiral anomaly

in 4 dimensions one cannot invert the A field propagator in the dimension

ally extended space. A Pauli-Villars regulator was used in [3], and it was

shown that one of the non-anomalous Ward identities was violated; the key

point being that one does not have the freedom here to renormalize an integer

coupling parameter.

One expects that the phase in the anomaly is essentially q(O) and it

would be interesting to recover this by an analysis of the functional measure

ala Fujikawa [18]. In the Landau gauge, the operators occuring in the action

(26) do not seem well suited for this task, as the fields must first be decom

posed into eigenfunctions. Although this symmetry is peculiar to the Landau

gauge, the following transformations of the quantum fields in the action (18)

= e7Dc

Sb = —2 EaBa

Sc = 0

Sq = EaDc, (28)

where the covariant derivatives are with respect to the background field, are

indeed symmetries when the background field is on-shell, F = 0. The

Hermitian operators H and D2 in this action are much nicer to deal with.

One must check to see whether the regularized functional measure in (4) is

invariant under the above transformations (28). Work on this approach is in

progress.

One last point regarding this symmetry deserves mention If one dimen

sionally reduces the Chern-Simons theory in (26) to two dimensions

Sq f Tr[BcF + 0Az + b8 . Dc], (29)

the symmetry above also reduces correspondingly. Here, = 8A — 8A +

[Ag, A] is the curvature of the connection and the scalar field B is the de

scendent of the higher dimensional field Ac, = (A, B). The new feature is

that the ‘third’ component of e becomes a scalar in 2 dimensions and the

symmetry

SA = cj1Pc
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SB=O

Sb = 2B

Sc = 0

Sq = 2[B, c] (30)

is potentially valid on any Riemann surface (since is a scalar parameter); not

just on flat manifolds. Recall that the covariant generalization of a constant

vector parameter (OaE = 0) on R is the constraint = 0 and this leads

to the integrability condition that the Riemann tensor vanish. The issue of

an anomaly needs to be readdressed in this case.

5 Conclusion

We have exhibited a Schwinger expansion technique for computing the i

function of an operator and applied it to the case of the Chern-Simons the

ory. This gives essentially the one-loop correction to the partition function.

Unfortunately, terms of higher order in the background field become increas

ingly difficult to compute in this approach. We have also shown how this is

likely to be related to the anomalous supersymmetry in this theory, and that

there is a well defined set of transformations (28) to consider in a Fujikawa

[18] analysis of the anomaly. In 2 dimensions, there is a potentially non-

anomalous descendent of this symmetry that could be valid on any Riemann

surface, and this problem warrants future consideration.
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