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Abstract: It is shown that Toda field theories can be regarded as reduced WZNW the

ories and that the reduction generalizes to yield families of conformal and non-conformal

integrable field theories. The advantages of regarding the conformal theories as reduced

WZNW theories are outlined, and include the natural appearance of two-dimensional

gravity, the easy derivation of the general solutions from the standard WZNW solution,

and, for the Toda theories, an intuitive understanding and relatively simple construction

of the W-algebras.

1 Introduction.

Two of the most celebrated classes of conformally-invariant two-dimensional field

theories are the Wess-Zumino-Novikov-Witten (WZNW) theories[1] and the Toda

field theories[2]. Recently it has been shown that these theories are not independent

and that, in fact, the Toda theories can be obtained from the WZNW theories by

placing conformally invariant constraints on the currents[3]. More recently still,

it has been shown that a similiar reduction leads to a whole series of conformal

integrable field theories, which interpolate between the WZNW and Toda theories

[4], and that there even exists a non-conformal version of the constraints that leads

to non-conformal integrable systems, in particular to the affine Toda systems.

*
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In the present talk I should like to describe these reductions of WZNW theory

and to outline the various features and advantages that emerge by regarding the

reduced conformal theories as constrained WZNW theories. Perhaps the most re

markable feature that emerges is the appearance in all cases of a two-dimensional

gravitational field, in non-trivial interaction with itself and with the other fields.

The emergence of this gravitational field is is in some sense the converse of the

Polyakov’s embedding [5] of the string-induced two-dimensional gravity in the

WZNW group SU(1, 1), but it is present for all WZNW groups. One of the great

est practical advantages that accrues from regarding the conformal theories as

constrained WZNW theories is that their general solution can be obtained in a

rather simple manner from the general WZNW solution, which is well-known to

be quite trivial. For reasons of space the derivation will not be given in this talk

but the general method will be indicated (with references for details) and the

end-result, which is quite simple, will be presented.

One of the remarkable features of the Toda theories in particular is that they

realize [6] the polynomial algebras (so-called W-algebras) defined [7] abstractly by

Zamolochjkov. Within the confines of Toda theories it is not immediately obvious

why these algebras should exist, and one of the great advantages of regarding Toda

theory as a reduced WZNW theory is that in the broader WZNW context their ex

istence becomes quite natural and understandable. Indeed in the reduced WZNW

context the W-algebras have a simple intuitive interpretation as the algebras of

gauge-invariant polynomials of the constrained currents (and their derivatives),

the gauge group in question being that one generated by the constraints. This

identification not only provides an intuitive understanding of W-algebras, but also

provides a relatively simple algorithm for their computation. This is because of the

existence of a gauge in which the gauge-invariant polynomials reduce to the cur

rents themselves. In this gauge the W-algebras manifest themselves as the Dirac

star algebras of the gauge-fixed constrained currents and, because all constraints

are linear in the currents, the W-algebras can then be computed relatively easily

from the Kac-Moody algebras of the associated WZNW theories

For those not completely familiar with two-dimensional conformal field theory

we begin by recalling the features of theory which are relevant to our discussion,

in particular the WZNW and Toda theories and the Zamolochikov W-algebras.

With these aspects of the theory in hand the reduction will be seen to be quite

staightforward
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2 Recall of Conformal Field Theory and W-Algebras

We begin by recalling the situation for conformal invariance in more than two

dimensions (D > 2). Let L(b(x)) be the Lagrangian density for any set of tensor

fields q(x) and T,(q(x)) the corresponding energy-momentum tensor density. If

L(q(x)) is conformally invariant then according to Noether’s theorem the genera

tors L,L,,, P,, S,,, D of the conformal group are moments of T,. For example, for

the dilation D one has D = faT0dD_lx. In all the D > 2 cases the confor

mal group is finite-dimensional ((D + 1)(D + 2)/2-dimensional actually), and thus

involves only a finite number of moments of T,LV. It is also semi-simple and thus

admits no central extensions.

In two dimensions the situation is different. If a = (x1,x2) are the usual Carte

sian coordinates, then the conformal group consists of all transformations of the

form z —+ f(z) and w —* f(w), where z,w = Xi + 2, or z,w = x1 + ix, ac

cording as the metric is Minkowskian or Euclidean, and f(z) and g(w) are arbi

trary analytic functions. Thus it is an infinite-dimensional group and is a direct

product of a left and a right part. Furthermore, it is well-known that each part

admits one central extension [1]. For conformally invariant Lagrangians the (three

component) energy-momentum tensor density T,LV = [T2, T] reduces to

[T = 0, T2 = L(z) and = L(w)}, and the Noether generators of the

conformal group consist of all its moments i e consist of the quantities

= zL(z)dz and L = wL(w) (1)

From the structure of the conformal group it follows that the L(z) and L(w)

commute with each other and that each satisfies a Virasoro algebra i.e. an algebra

of the form

[L(z),L(z’)] = 2L(z)O6(z — z’) + 8L(z)6(z — z’) + ---8S(z — z’), (2)

where the last term is the central extension and c is a constant that depends on

the original Lagrangian.

The tensors with respect to the conformal group are called primary fields and

have the transformation properties

(8zN’fDw
q5(x)—*

\QZ’} —)
(x), (3)

where the quantities j and 3 are called conformal weights and are often integers.



4 L O’Raifeartaagh

With these properties recalled let us turn to the definition of W-algebras. Ac

cording to Zamolochikov, who first introduced them [7], a W-algebra is an exten

sion of a Virasoro algebra by primary fields, such that the Poisson bracket (or

commutators) of any two primary fields is a polynomial in the fields and their

derivatives (both primary and Virasoro), the order of the polynomial being less

than the combined order of the two primary fields. In other words a W—algebra

consists of the Virasoro algebra, the transformation law (3) (with one of the coor

dinates (w,say) dormant) and a set of Poisson bracket (or commutation relations)

of the form

[q(z), b(z’)j
= p (q(z), L(z), S(z — z’)), (4)

where p(°) is polynomial of lower order than (a+b) in L(z), (z), 6(z — z’) and

their derivatives. In counting the order the delta function and the derivative are

each given unit weight

3 Standard Examples of 2-D conformal Field Theories.

Two standard examples of 2-D conformal field theories are the Wess-Zumino

Novikov-Witten (WZNW) theory and the Toda theory. The WZNW Lagrangian

takes the form

Lwz =
d2atr(g_1(a3)8g(x))2 + (5)

where the three-dimensional integral is over a space whose boundary is the two-

dimensional one of the first (kinetic) integral. As a result of the addition of the

three-dimensional integral, whose variation is purely topological, the field equa

tions of the theory take the form

8J(x) = 0 and 8J(x) = 0, (6)

where

J(x) = g(x)8zg(x) and J(x) = (8wg(x))g(x)

The field equations mean, of course, that the currents J(x) and J(x) are functions

only of z and w respectively and from the symmetry of Lw with respect to

(rigid) left and right group multiplication (g —* hg and g —* gh), and the Noether

theorem, it follows that they satisfy Kac-Moody (KM) algebras with centres k.

Thus J(z), for example, satisfies the KM algebra
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[J(z), Jb(z’)] = fbJC(z)5(z — z’) + kS&O6(z — z’) (7)

The Toda Lagrangian, on the other hand, takes the form

LToda
= fd2x[C238ç(x)8’(x) + exp(K13t(x)’(x))J, (8)

where C and K are the Coxeter and Cartan matrices for any semi-simple simple

Lie group. Thus to every Dynkin diagram there is associated a Toda field theory.

Recently it has been shown that every Toda field theory admits a W-algebra,

the W’s being coefficients in an equation called the Gelfand Dickey equation[8].

This equation is a linear differential (or pseudo-differential) equation of the same

order as the dimension of the defining representation of G, and which is satisfied

by certain left-and right-moving functionals of the Toda fields. Its role in our

discussion will be to help identify the W-algebras

4 Reduction of WZNW Theories

What we want to show is that the Toda theories can be obtained by putting

conformally-invariant constraints on the WZNW theories and that by generalizing

the constraints one obtains not only the Toda theories but a whole class of the

ories that interpolate between the WZNW theories and the Toda theories. These

theories may be regarded as interacting WZNW theories or as generalizations of

the Toda theories in which the individual Toda fields are replaced by WZNW

fields,the usual Toda theories being the extreme case in which all the subgroups

are abelian. A remarkable feature of the reduction is the emergence of an abelian

field that plays the role of two-dimensional gravity.

Some advantages of deriving the Toda theories in this way are:

(i) the emergence of the two-dimensional gravitational theory just discussed

(ii) the emergence of a new set of conformally invariant integrable field theories

(iii) the derivation of the general solutions of these theories from the (trivial)

general solutions g(x) = g(z)(w) of the WZNW theories

(iv) the emergence of a simple intuitive explanation of the W-algebras of Toda

theory and of a relatively easy algorithm for their computation

(v) the fact that the whole procedure can be generalized so as to obtain a series

of non-conformal field theories including the affine Toda field theory.

One also obtains a formula relating the KM and Virasoro centres for the quan

tized theory [3][4] but this will not be discussed here
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The reduction of the WZNW theories requires setting some of the WZNW

currents equal to non-zero constants and since these currents, being space-time

vectors, have conformal weights (1,0) or (0,1) with respect to the usual conformal

group, the problem is how to set them equal to constants without breaking confor

mal invariance. By the usual conformal group is meant here the group generated

by the Noether currents L(z) and L(w) belonging to the energy-momentum tensor

of the WZNW theory and the way that is used to circumvent this difficulty is to

note that the this conformal group is not unique. In fact, there is a two-parameter

family of conformal groups equivalent to it and the procedure will be to choose a

member of this family with respect to which some of the currents are no longer

vectors but scalars i.e. have conformal weights (0,0). However, to make the appro

priate choice of member requires some Lie-algebraic technicalities and these will

be discussed in the next section.

5 Lie Algebraic Technicalities

The simple WZNW groups G which are used for our reduction will be the (maxi

mally non-compact) ones generated by the real linear span of the Cartan generators

i.e. by the generators [Hi, Ea] in conventional notation. For the A and D algebras,

for example, these are the groups SL(n,r) and SO(n,n). Within the Cartan algebra

there always exists an element H such that each of the simple roots Eaj is an

eigenvector of H with eigenvalue unity or zero.

[H, Bail = hEaj where h = 0,1, i = 1, 2...l, (8)

and 1 is the rank. (To see this note that H can be written as w.H, where w is a

sum over any subset of the 1 fundamental coweights). Then H provides an integer

grading of the whole Lie algebra,

[H, Ba] = hEa where h e Z. (9)

In particular the elements of the algebra of the little group of H, which we shall

call B, will have zero grade. It is not difficult to see that the set of little groups B

for all possible choices of H are just the non-compact versions of the set of little

groups in the adjoint representation of the compact form of G. In particular for

w = s, where s is the sum over all the simple coweights (=half the sum of the

positive coroots), the little algebra is the generic one, namely the Cartan algebra

itself (It will be seen later that this case corresponds to the Toda reduction)
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Finally we note that C admits a local Gauss decomposition G = ABC, where B

is the little group and A and C are the (nilpotent) groups generated by the root

vectors E with weights which are strictly positive and negative with respect to H.

(This decomposition may not be global, but the parameter space may be divided

into a finite number of patches on each of which the decomposition is valid up to

left- or right-multiplication with a constant group element).

At the KM level we have, correspondingly,

[H(z), JB(zI)l
= 0 except [H(z), H(z’)] = k85(z — z’)trH2, (10)

and

[H(z), J(z’)J = hJ(z)5(z — z’) (11)

6 Preservation of Conformal Invariance in the Reduction.

We come now to the crucial point. Let L(z) denote the Virasoro operator which is

the component (z) of the energy-momentum tensor of the WZNW theory, and

with respect to which all the KM currents J(z) are have conformal weights unity,

or, more precisely, (1,0). Then we replace L(z) by A(z), where

A(z) = L(z) + OH(z), (12)

It is to be noted that A(z) is again a Virasoro operator i.e. satisfies a Virasoro

algebra of the form (2). The only difference is that the centre c changes to c —

l2ktrH2.It will turn out that A(z) is actually the improved (i.e.traceless) energy-

momentum tensor of the reduced theory.

Once the crucial change (12) has been made the rest is almost automatic. With

respect to the conformal group generated by A(z) the KM currents J(z) are no

longer vectors of conformal weight (1,0) but have the following transformation

properties:

(i) Except for H(z) the currents JB(z) belonging to the little group B are still

vectors i.e. have conformal weights (1,0).

(ii) the field H(z) now transforms not as a spin-one vector but as a spin-one

connection.

(iii) The currents J°(z) transform as conformal tensors (primary fields) of

conformal weight (1 + h).

Thus, in particular, the currents of grade h = —1 transform as conformal

scalars.
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With this information in hand we are ready to impose the constraints, namely,

J1(z) =J1(O) 0, and J,(z) = 0, h < —1 (13)

Here the set of constraints with non-zero right-hand-side do not break the confor

mal invariance generated by the new Virasoro operator A(z) since they are scalars

with respect to this operator, and the set of constraints with zero right-hand-side

are added so that the complete system of constraints is first class. For the right-

handed currents J(w) similiar constraints are imposed, but with h < 0 replaced

by Ii,> 0. In order to obtain an intuitive feeling for the meaning of the constraints

(13) let us consider the case of G=SL(n,R), in which case the constrained current

J(z) takes the form

Jii(z) J12(z) J13(z) Ji(z)

J21(0) J22(z) J23(z) J2(z)

o J23(O) J33(z) J3(z)
JCOflstr.()

= 0 0 J34(0) J4(z)

o o 0 J5(z)

o 0 0 J_1(0) J(z)

where the Jb(z) denote submatrices of currents which in general are not single

entry or even square. Note that the constraints can also be expressed as

= M and = N, (14)

where M and N are constants matrices of grade minus one and plus one respectively,

and neg and pos refer to the sign of h. The constraints (13) are not invariant with

respect to general KM transformations, J(z) —÷ U(z) J(z)U(z) + U(z)82U(z)

but there exists a residual group of KM transformations with respect to which

they are invariant. These are the KM transformations for which U(z) lies in the

group A of the Gauss decomposition which is generated by the root vectors with

negative grade (Er, for h < 0). Thus they are just the transformations that would

be generated by the constraints themselves. The idea is to regard these residual

KM transformations as gauge transformations and regard only those functions,

or functionals, of J(z) which are invariant with respect to this gauge group as

physical. Thus finally we have (dimG-dimB)/2 constraints and (dimG-dimB)/2

gauge degrees of freedom, leaving just dimB physical fields altogether. It is possible

to choose the gauge (at least locally) so that the physical currents are just the ones

JB(z) belonging to the little group B
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7 Field Equations.

It is easy to see that the constraints (13) are consistent with the WZNW field

equations (6), indeed are special solutions of some of them, and hence the WZNW

field equations can be reduced to field equations for the unconstrained components

of the currentJ(z). After some simple algebra one finds that the reduced field

equations take the following form

8JB(x) = [b(x)Nb1(x),M], (15)

and
JA()

a’(x)Ua(x) = b(x)Mb1(x),
16

jC()
(9wc(x))c(xY1 = b’(x)Nb(x),

where M and N denote the constant matrices defined in (14). Note that, in con

trast to the WZNW currents, the currents J”(r), jB(x), JC(x) and J’(x) are not

functions of z and w alone.

The most interesting feature (15) is that the equations for JB(z) do not involve

the fields Jh(z) for h 0 and thus are self contained. Furthermore, it is easy to

verify that they can be derived from the effective Lagrangian

Leff(b(x)) = LWZNW(b(x)) + f tr(b(x)Mb (x)N), where b(x) B.

(17)

This Lagrangian can be interpreted in two ways. First, it can be regarded as

the generalization of the WZNW Lagrangian for fields belonging to the group

B, but where, because B is reducible, there are interactions between the simple

and abelian parts of B. Note, however, that since the constant matrices M and N

have grades +1 there is a non-zero interaction only between the components of

B which differ by one grade (nearest neighbour components). Second, by noting

that the Lagrangian (17) reduces to the Toda Lagrangian when B is abelian (i.e.

when b(x) = exp(Hçb(x)) and M = mjEa., where the rn’s are constants and

tr(HH,) = one sees that it can be regarded as a generalization of the Toda

Lagrangian to the case in which the nearest-neighbour interacting fields are no

longer abelian fields but WZNW fields belonging to the irreducible components

of B. Thus (17) may be regarded as describing either interacting WZNW fields or

generalized Toda fields.
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7 Two-Dimensional Gravity.

As mentioned in the Introduction, the Lagrangian (17) incorporates also a two-

dimensional gravitational field. This comes about as follows: Since B is defined

as the little group of H it follows that the one-parameter abelian group R(1)

generated by H is in the centre of B. Hence, locally at least, B may be written as

the direct product R(1) ® B0, where B0 denotes the rest of B. If we let h(x) be

the WZNW field belonging to R(1) then the Lagrangian (17) can be re-written in

the form

Leff(b(x)) =LwzNw(b0(x)) + (8h(x))2 + h()tr(b0(x)Mb’(x)N).

(18)

But we have already seen that, unlike the rest of the components of the current

which transform like primary fields, the components in the direction H transform

like spin-one connections, and it is not difficult to deduce from this that the field

!i(x) transforms like /g where g, is a two-dimensional metric. Accordingly, if

one defines a metric as g,, = h(x)i,,, where is any flat (constant) non-

singular metric, introduces general coordinate transformations, and extends the

tensor properties of the currents to be the same with respect to general coordinate

transformations, one finds that the Lagrangian (18) may be written as

Leff(b) LWZNW(b0) +RA_1R + (g)tr(b0Mb’N), (19)

where R() is the Gauss curvature and A the two-dimensional d’Alembertian oper

ator. It is clear that this Lagrangiaii describes a theory in which a two-dimensional

gravitational field h(a) and the WZNW fields b0(x) interact with themselves and

with each other. The purely gravitational part of the interaction (which is ob

tained by setting b0(x) = 1) is just the Liouville gravitational interaction which is

induced by string theory in less than 26 dimensions [9]. This Liouville theory was

embedded in an SU(1,1) Kac-Moody theory by Polyakov [5] in order to facilitate

its quantization, so our procedure may be regarded as the converse of Polykov’s

for SU(1,1), and a generalization of the converse for the other groups.
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8 Solutions of the Field equations

The general solution of the field equations (15)(16) for the fields b(x) are obtained

from the general solution for the WZNW equations for the group G, namely,

g(x) = g(z)(w), where g(z) c G and (w) c G are any arbitrary functions of the

coordinates z and w respectively. I do not have time to describe the procedure by

which the solution of the reduced system is obtained from this solution, but it is

not difficult and is given in [4]. Here we shall simply present the result, which is

that the general solution takes the form

b(a) = b(z)D(z,w)b0(w), (20)

where b(z) c B and b(w) e B are again arbitrary functions of z and w respectively,

and D(z, w) is the B part in the Gauss decomposition of c(z)a(w), where a(w)

and c(z) are the solutions of the remaining equations in (14) and its right-handed

counterpart, namely,

Oa(z) = a(z)(b(z)M111(z)) and Oa(w) = a(w)(’(w)Nb(w)), (21)

with initial values c(0) = a(0) = 1. It might be thought, of course, that this

solution is not complete because it leaves the differential equations (21) still to be

solved. However, because of the nilpotency of the groups A and C these equations

can be solved by simple iteration. Indeed if c(z), for example, is decomposed into

its H grades ch(z) then the solution is

Ch(Z)

= j dz’chl(z’)(b(z’)Mb1(z’)), c0(z) = 1. (22)

Note the resemblance between the general solution (20) and the general solution

b(z)b(w) for non-interacting WZNW fields belonging to the little group B. Indeed

(20) reduces to this solution in the non-interacting case, for which M = N = 0

and hence, from (21), D(z,w) = 1.

9 The W-Algebras of Toda Theory

In this section we show that the W-algebras that have emerged in the Toda theory

become much more understandable and tractable in the reduced WZNW context.

First we identify them by means of the equation 8g(z) = J(z)G(z) connecting the

WZNW fields g(z) with their currents J(z). These equations can be regarded as
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first-order differential equations for g(z), given J(z), and, it turns out that, in the

constrained case, they can easily be reduced to higher order differential (or pseudo-

differential) equations for those components of g(z) that are gauge-invariant with

respect to the residual gauge group discussed earlier. Since the coefficients of the

powers of O in these higher-order equations are gauge-invariant with respect to

the residual gauge group by construction, and are polynomials in the constrained

currents and their derivatives because the group A is nilpotent, we see that they

are gauge-invariant polynomials in the constrained currents and their derivatives.

The crucial point now is that the higher-order equations obtained in this way

are just the Gelfand-Dicke equations. Since the coefficients of the latter equations

are just the base elements of the W-algebra of the Toda theory this immediately

gives us an identification of the W-algebra as the algebra of local gauge-invariant

polynomials in the constrained currents.

Although the identification of the W-algebra of Toda theory as the algebra

of gauge-invariant polynomials of the constrained WZNW theory is very natural

and intuitive it is not of great help for practical computations in arbitrary gauges.

However, there exists a set of gauges in which it is very useful and practical, and

in which we obtain an alternative interpretation of the W-algebras as Dirac star

algebras. These are the (DS) gauges introduced [10] by Drinfeld and Sokolow.

In these gauges the local gauge-invariant polynomials in the constrained currents

reduce to the currents themselves,

= JDs(z) (23)

where the J()(z), of which there are 1, form a basis for the W-algebra. The gauge-

fixing is complete in these gauges and the system of constraints obtained by com

bining the original constraints and the gauge fixing form a second class system

of constraints. Hence their Poisson-bracket algebra (which, from (23), is just the

W-Poisson-bracket algebra) is not their normal Kac-Moody algebra but the cor

responding Dirac star algebra,

[P(),P(k)]
= [JS = [J(IJS J(EJ

— [JS,Caj[C,Gj_l[C,J 1. (24)

We thus obtain an alternative identification of the W-algebra as the Dirac star

algebra of the constrained currents in the DS gauge. This identification is very

useful for practical purposes because in this gauge the gauge-fixing as well as the

original constraints impose linear conditions on the currents. This means that

the the constraints C in (24) can be replaced by components Ja of the currents
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themselves, in which case the right-hand-side of (24) can be expressed completely in

terms of KM commutators. Furthermore, because of the nilpotency of the gauge

group it turns out that the inverse constraint matrix [JS, jS]l is easy to

compute and is a polynomial in the currents. Again we shall not give the details

of the computation here but refer to the literature [3] in which, as examples, the

W-algebras for the groups G = A2,B2 and G2 are computed. It is well-known that

that the W-algebra for G2, which involves the Poisson bracket of two sixth-order

polynomials, is very difficult to compute by direct methods. Indeed, as far as we

know it has not yet been computed this way

10 Reduction to Affine Toda Theory

The reduction described up to now has been conformally invariant, but there exists

a natural non-conformally-invariant generalization which leads, inter alia, to the

affine Toda theories. The generalization is obtained by noting that in the equation

(15) for the reduced field equations no use was made of the fact that the group

B was the little group of H. Thus, in principle, one could use any subgroup B

and any two cosets A and C in the Gauss decomposition (so long as they were

complete in the sense that every group element g could be written as g = abc) and

then impose the constraints (14). The constraints would still be special solutions

of the original WZNW field equations. The only difference would that there would

be no reason for the constraints to be conformally invariant, or expressible linearly

and/or locally in terms of the original currents J(z), and, in general, they would not

be so. However, this would not in itself make them uninteresting and to illustrate

the kind of theory that one would obtain we show now indicate how the affine

Toda theories can be obtained by such a reduction. The reduction consists of

simply replacing the conditions

M = and N = (25)

where the a2 denote the 1 simple roots, by a similiar sum in which i denotes not

only the simple roots but also the most negative root ar,, say. Thus i = 0, 1,2, ...l

instead of just 1, 2, ...l. It is not difficult to see that in this case the effective

Lagrangian (18) reduces to the affine Toda one. In particular, for SL(2,R), the

Lagrangian (17) reduces to the sinh-Gordon Lagrangian
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