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I. Introduction

A large class of four dimensional string theories with chiral fermions is provided

by the covariant lattice construction [1]. In ref. [2] we have shown how to classify

all four dimensional chiral string theories based on covariant lattices with a special

world-sheet supercurrent (the triplet constraint of [1]). In this paper we wish to

demonstrate how to carry out the complete classification in 8 dimensions and as a

result we list all possible chiral models based on the triplet constraint. Our algorithm

can be carried out without any change to 4 dimensional models. The number of

inequivalent models is 444 (this should be compared to the number of 10 dimensional

maximal rank strings, which is 8). Clearly in 4 dimensions the number of chiral

models is quite large, though not an astronomical number (probably smaller than
106). However one would need some extra constraint to restrict the number of

models to something manageable. It seems that space-time supersymmetry is a

necessary consistency condition to avoid the cosmological constant problem and

the associated tadpole divergences, as suggestions [3] that Atkin-Lehner symmetric

models can provide examples of theories with zero cosmological constant without

space-time supersymrnetry are ruled out [4]. This however is still not restrictive

enough so one has to find a more phenomenological input to define the interesting

models. For the moment our primary goal is to implement the complete classification

at least in the form of a database on a computer since there may be other definitions

of interesting models. For example if one is interested in theories with gauge groups

with rank smaller than 22 the rank reducing technique of [5] requires models where

the gauge group contains some identical factors.

The plan of the paper is the following: In section two we give a short introduction

to the necessary lattice methods. Then we present the main ingredients of the

covariant lattice approach illustrated in the eight dimensional case, and also derive

all supersymmetric models. In section four we give a detailed description of our

algorithm which has been implemented on a personal computer. In section five

we show that from the analysis of the partition functions there is a very substantial

restricton on the tachyon free models. Section six contains a discussion of the results,

while in the next one we present a small part of the result of the classification in

four dimensions.
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II. A lattice primer

In this chapter we give a brief compendium of the relevant definitions and theo

rems in lattice theory needed for our purposes. For a detailed introduction to lattices

we refer to the book of Conway and Sloane [6] and to the reviews by Goddard and

Olive [7] and Lerche, Schellekens and Warner [8].

Consider a basis, {e}.1 of an N-dimensional lattice, AN, then all lattice vec

tors can be written by definition as integer linear combinations of the basis vectors:

N

v=njej nEZ, (VEAN).
i=1

The matrix of scalar products, (Gram matrix), given as

ab = ea.eb

contains all information about the lattice. The volume of the unit cell vol(AN) is

simply

vol(AN) = idetgI.

The dual of AN is defined as:

Ar={w:w.vEZ,VvEAN}.

Clearly

vol(A) = (vol(AN))’.

A lattice can be either Euclidean or Lorentzian, depending on the definitness of the

Gram matrix. Of particular interest are the integral lattices, when all entries of the

Gram matrix are integers. Equivalently a lattice A is integral if and only if

AcA*.

An i.mportant (Abelian) group associated with an integral lattice is its dual quotient

group A*/A, which has order detg(A). In the case of the root lattices, AR, of

the simply laced Lie algebras (A-D-E) the corresponding dual lattices are just the

weight lattices A. The dual quotient group is the center of the Lie group and its

order is just the number of conjugacy classes of A, i.e. the number of inequivalent

3



‘n-ality classes’. The lattice A is called unimodular if vol(A) = 1. An integral,

unimodular lattice is self-dual, that is A* = A, and vice versa. Note that the only

indecomposable self-dual simply laced root lattice is that of E8. If A is an integral

lattice , and for all x E A, xx is an even integer, then A is called even; otherwise

odd. The classification of odd and even self-dual lattices is of great importance in

mathematics, here we just summarize the main known results.

l.a Even, Lorentzian lattices exist only if I — qI = 0 mod(8).

1.b Odd, Lorentzian lattices are all Lorentz transformations of the lattice

which is simply given by the set of vectors {(n, m) : n E ZP,m

In the classification of Euclidean lattices the following theorems are important:

Theorem 1. Any integral lattice A containing vectors ofnorm of 1 is decomposable:

A= ZA

where the minimum norm of vectors in A is at least 2.

Theorem 2 (Witt). For any integral lattice its minimal lattice (i.e. the sublattice

generated by norm 2 vectors) is given by a direct sum of root lattices.

2.a Even, Euclidean lattices exist only in d = Sn dimensions and are completely

known for d =8,16 and 24.

2.b Odd, Euclidean lattices can be obtained from the even self-dual ones by re

moving suitable D factors. Presently these lattices have been classified up to

dimension 25 [6j.

As for the enumeration of the eight dimensional heterotic strings we need all

of the 18 dimensional odd, Euclidean lattices classified by Conway and Sloane we

present briefly their results. In fact they classified these lattices up to dimension

23. According to Witt’s theorem an integral lattice, containing vectors of minimum

norm 2 has a sublattice of the form

A=AlA2e•eAkeAo

where the components A, i = 1, . . . , k are isomorphic to members of the A — D — E

series while the minimal norm of vectors in A0 is at least 3. We shall write A0 in

terms of orthogonal U(1) lattices as a ‘root’ lattice AOR of A0 with suitable conjugacy
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classes from its ‘weight’ lattice Aow AR. The notation U,, n E Z refers to one

dimensional U(1) lattices with generating vector of norm n. So U1 = Z, U2 = A1

and the U4 lattice is sometimes denoted by D1 in this paper. Clearly the dual

of these lattices (the ‘weight’ lattice) contains n conjugacy classes with generating

vector of norm 1/n and these classes form the cyclic group Z.

The lattices enumerated by Conway and Sloane are generated by A together with

certain glue vectors g = (gj,. where gj is the corresponding glue vector

component for A2. Clearly gj E A, so it is a weight vector of the corresponding Lie

algebra. The norm of the glue vectors is at least 3 and quite clearly their role is to

decrease the volume of the root lattice to unity. The Abelian group generated by

the glue vectors is a subgroup of the direct product of the dual quotient groups of

corresponding Witt components:

G=G1XG2X...GkXGO.

The dual quotient groups for the A-D-E-U series are the following:

A D2n D2n+1 E6 E7 E8 U

Z1 Z2xZ2 Z4 Z3 Z2 — Z

Using the above notation we shall specify a ‘glue group’ by giving the glue vectors,

the generators of the corresponding subgroup of G. A glue vector will be given by

specifying its i-th component as an element of the corresponding cyclic group or

Z2 x Z2. For example (1), (3), (2) denote the two inequivalent spinor and the vector

conjugacy classes of the D2+i while for a D2n the corresponding conjugacy classes

are denoted by (01), (10) and (11). Conjugation of the Lie algebra representations

corresponds to the reflection k — —k mod(n) in the Z, factors of the dual quotient

group.

In 18 dimensions there are 4 ‘genuine’ (without vectors of norm 1) and 9 decom

posable lattices reproduced in the following table:
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Components Glue vectors

1. E8Z10 —

2. D12Z6 (01)

3. D16Z2 (01)

4. Z8 —

5. 4z2 —

6. DZ2 (01,11) (11,01)

7. EZ (1,1)

8. A15Z3 (4)

9. A1E6Z (2,1)

10. (00,01,10) + cyci. perms.

11. A (1,3)

12. A17A1 (3,1)

13. D10E7A1 (01,1,0), (10,0,1)

22 dimensional odd self-dual lattices (which are relevant for the construction of 4

dimensional models) is 68, out of which 28 are ‘genuine’ 22 dimensional.

As in our construction of the eight dimensional, chiral heterotic strings we shall

work with nonintegral lattices , namçly the definite parts of a self-dual Lorentzian

lattice, their classification can be done in terms of their dual lattices since in this

case these are already integer lattices therefére one can use the whole machinery

mentioned above.

Also it is of great importance to decide when two lattices are equivalent, that is

assuming they have the same Witt components to establish an isomorphism between

the glue vectors by the automorphism group of one the lattices. We note that

the automorphism group in our notation generated by permutations of isomorphic

Witt components and automorphisms of a single Witt component. In the case of

a root lattice of the A — D — E Lie algebras these are the automorphisms of the

In the above table the labelling

For the A algebras (k) is a weight

for the E algebras (i) (i =0,1,2)

classes. E.g. for D12 (01) stands

of the glue vector representatives should be clear.

vector of the k-th antisymmetric tensor product,

denote the three or two inequivalent conjugacy

for (1)12 We remark here that the number of
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corresponding Dynkin diagrams, that can be realized by reflections or permutations

in the dual quotient groups of A, D2n+1 and D2, respectively. Apart from the

reflections there can be also rotations of finite order in the case of two or more U

lattices.

Ill. 8—dimensional Heterotic Strings

First we recall the main ingredients of model building based on even self-dual
lattices [1] ,[8]. The eight dimensional lattice compactified heterotic string contains

the following degrees of freedom. The matter fields consist of 8 left and 8 right
moving bosons, X, corresponding to space-time, 18 left moving internal bosons,

XL, compactified on a torus, 8 right moving fermions, lI’ and 3 right moving internal
bosons Xj, also compactified on a torus. The momenta of the left and right moving
compactified bosons lie on a momentum lattice, AL and respectively. In addition
we have the conformal ghost system (b,c) on both sides and the superconfomal ghost
system (/3

, 7) on the right.

Bosonization of the space-time fermions and the ghosts leads to the following
lattices: the 8 fermions, correspond to 4 bosons, whose momenta lie on a
D4 lattice. The (/3,7) system corresponds to a boson (with the wrong sign in its
propagator) quantized on a lattice. Because of the correlation between the
Ramond and Neveu-Schwarz sectors of the fermions and the ghosts, this part of the
theory is in fact described by a D41 lattice. This is a five dimensional, Lorentzian
lattice with metric < (+), (—) > and has four conjugacy classes similar to the
Euclidean D lattices.

The bosonized theory is therefore charaterized by a

T18;7,l = AL X R X D4,1 (3.1)

lattice. In factr18;7,1 is an integer lattice with respect to the

< ()18, (_)7,
(+) > (3 2)

metric.

As is known from [1J there are two additional consistency conditions satisfied by

the theory: modular invariance and world sheet supersyinmetry. Modular invariance

is guaranteed by imposing self duality on the lattice Tig;7,i. The second condition,
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• world sheet supersymmetry, which is crucial for Lorentz invariance of the theory

in the light-cone gauge (and is also used in the ‘picture changing’ operation) i

nontrivial to satisfy (especially in a purely bosonic theory). Since this is the only

not completely solved issue in the covariant lattice approach we shall discuss the

general construction of the supercurrent (not restricted to 8 dimensions) in some

detail. The right moving energy-momentum tensor and supercurrent are given by

[9J:

T(z) = + +T1j(z)
2

(3.3a)
+ côzb + 2(Ozc)b — 7ôz/3 —

5(z) = —‘POx + Sjt(Z) — 2ct9zfl — 3(ac),3 + 7b (3.3b)

where

Tj(z) = jözXjOzXj (3.4)

so the only nontrivial problem is to find an Sj, acting on the space of compactified
bosons Xi? so that T(z) and 5(z) satisfy the following operator product algebra

(equivalent to the super Virasoro algebra):

T(z)T(w)
= C

+
2T(w)

+
&T(w)

(3.5a)
2(z—w) (z—w) z—w

T(z)S(w)
= 3/25(w)

+
S(t

f... (3.5b)
(z—w) z—w

2/3c 2T(w)
S(z)S(w)

= 3 + (3.5c)
(z—w) z—w

The most general ansatz for Sjj(Z) in a bosonic theory is:

Sjt(Z) =
A(t)ettX) + i B(l) ãzXRe’’ (3.6)

t 1

where

t,lE/\R with t2=3,12=1

Substituting ansatz (3.6) into (3.5c) we get a complicated set of quadratic equa

tions for the coefficients A(t) and B(1) (see Appendix A). The general solution of

this system is not known for four dimensional strings. However a large number of

solutions has been found using various techniques [1Oj,[1lj.
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Given a bosonic supercurrent, world sheet supersymmetry requires that all con

straint vectors of the form (written according to (3.1)):

(O;t,v) (O;1,v)

give integer scalar products with all lattice vectors. The self duality of the lattice

r18;7,1 implies that the constraint vectors themselves are on the lattice.

After passing to the even formulation of ref. [1] the space-time part of the lattice

(D4,1) is mapped into a D7 lattice. All scalar products and norms change in such a

way that

r18;10 = AL X X D7 (3.7)

is even self-dual. We shall mostly use this formalism in our paper. Physical states

of the string are characterized by (WL; wR) (neglecting oscillator excitations) where

WLEAL WRE)RXD7

The mass formulae are especially simple in the even formalism:

M=w—2

(3.8)

Physical states must satisfy the additional constraint M = M. It is convenient

to make connection with the light-cone formalism where it is easy to identify the

physical particle content. (The use of the light cone formalism is also neccessary to

compute the physical partition function.) Writing wR = (uR, vR) which corresponds

to the x D7 decomposition, space-time properties of the states can be read off

by mapping the D7 classes to the corresponding D3 ones.(Here D3 plays the role of

the transverse Lorentz group.) The light cone transition rules are as follows [1]:

D7 class D3 class

(0) (v)

(v) (0)

(s) (c)

(c) (s)

These rules allow us to discuss the particle spectrum.
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Charged gauge bosons correspond to vectors of the form (wg; 0,0) that satisfy

the condition = 2. These vectors generate a root system that defines our gauge

group. (We ignore the possibility of additional gauge bosons coming from the right

lattice.)

Massless fermions are described by vectors of the form F = (wj; u1, s), together

with

w=2 ti=

The requirement of chirality excludes the presence of vectors of the form

k = (0; 1, v) with 12 = 1

To see that k indeed spoils chirality we just add it to (or substract it from) F which

yields

F’ = (wf; uc, c) with =

F’ has opposite chirality but is in the same representation of the gauge group.

Apart from the gravity multiplet which is always present, the massless spectrum

may contain scalars. They correspond to

(ws;us,v) with w=2 u=1

Let us now return to the question of constructing the supercurrent. The nec

essary condition for chirality implies that the second term is absent in (3.6). This

greatly simplifies eqs. (A8) but it is still not known whether in four dimensions there

are additional solutions apart from the ones found in [11]. In the much simpler case

of eight dimensional strings however there are only two different solutions.

The first solution is based on the eight (length square three) vectors

(±1,±1,±1) (3.9a)

All A(t) coefficients are equal to 1/2 in this case.

The other solution is based on the vectors

(±v’,O,O) (o,±/ä,O) (O,O,±v’) (3.9b)
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with

A(t)=

In the first case the lattice XR must then contain the (0, 0, 0) and (v, v, v) classes of

the D weight lattice and corresponds to the well known ‘triplet constraint’ of refs.

[l0J. In the second case the lattice contains the U?2 root lattice together with the

conjugacy classes (6,0, 0), (0, 6, 0), (0, 0, 6) corresponding to the constraint vectors

given in (3.9b).

After this short summary of the necessary ingredients of the model building

based on self-dual lattices we now start to actually construct the right lattices.

First we deal with the right lattice FR1 based on the supercurrent generated by

the constraint vectors given in (3.9a). Because of the correlation between the space-

time and internal degrees of freedom, R1 must contain the (v, v, v, v) conjugacy

class of the D? x D7 weight lattice. Since they have to give integer scalar product

with all the vectors from FR1 we define F, the (0) conjugacy class of the right

lattice FR1 to be

(0) = (0,0,0,0) + (v,v,v,v) (3.10)

With respect to (0) there are 64 conjugacy classes in FR1 generated by

si=(s,0,O,s)

= (0,s,0,s)
(3.11)

so=(s,s,s,s)

v0 = (0,0,0,v)

where s and 2 are fourth order elements, whereas o and u0 are of second order.

This is the ‘maximal’ right lattice in the sense that all other possible right lattices

are sublattices of it. Since F1 has to be an even integer lattice due to the even

self duality ofF18,10 one can easily see that any admissible enlargement of F1 by

conjugacy classes in FR1 spoils chirality. Therefore one has to stick to this maximal

solution in order to have chirality. Since in this paper we concentrate on chiral

theories we shall use R1 given in (3.11) in the case of the first supercurrent.

In the case of the other supercurrent F2 is generated by the root lattice of

U?2 x D7 together with the constraint vectors:

(0) = ((0,0,0,0); (6,0,0, v); (0,6,0, v); (0,0,6, v)) (3.12)
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that serves as the zero conjugacy class of FR2. There are 108 conjugacy classes in

FR2 with respect to (0) generated by

= (1,1,1,s)

= (1,—1,1,s)
(3.13)

53 = (1,1,—1,s)

= (0,0,0,v).

Apart from this ‘maximal’ lattice there is another right lattice, “R3 FR2, which

can also generate chiral models. It is constructed by enlarging F2 with the conju

gacy class (3,3,3, c):

(0)’ = (0) + (3,3,3,c). (3.14)

Then the 27 conjugacy classes of R3 are generated by

= (1,1,1,s)

= (—1, —1, 1, s) (3.15)

s = (—1,1,—1,s)

where all these vectors are third order elements.

Before turning to the classification of all chiral theories, as an illustration of our

techniques, first we show how to construct the space-time supersymmetric models

based on the supercurrents discussed before. In order to have space time supersym

metry we enlarge the zero conjugacy classes by adding a zero mass fermion vector,

e.g. Si. The resulting F; i = 1,2,3 sublattices are easily seen to be D2 e E8 in

the first case and A2 e E8 in the other two cases. “R1 has four conjugacy classes

generated by 232 + v0 and s—s given in (3.11), that are the v and s conjugacy

classes of D2, respectively. The three conjugacy classes of R2 1’R are generated

by S3-32 given in (3.13) or (3.15).

The construction of the possible models with as the right lattice is almost

trivial. F together with the v conjugacy class form a self-dual lattice, namely

F10 = Z2 E8, therefore the corresponding conjugacy classes of the left lattice

also give a self-dual lattice, F18, as a consequence of the group structure and scalar

product matchings among the two sides [2]. In this way we mapped the original

Fi8,1o lattice into a direct sum lattice: F18eFf0. By reversing this procedure one
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can show that the supersymmetric lattice models are in one to one correspondence

with the 13 Conway lattices in 18 dimensions because the left lattices, L1, are the

duals of the even sublattices of these Conway lattices. Gluing diagonally the four

conjugacy classes of with the corresponding ones from the right, one gets all

possible 1’18,1O even self-dual Lorentzian lattices corresponding to the space-time

supersymmetric models based on the first world-sheet supercurrent.

The construction is not so simple in the case of the other supercurrent because

R2 does not contain a self-dual sublattice. Therefore we first enlarge F18,10 by an
auxiliary (self-dual, even, Lorentzian) lattice, demanding that its right part contains
as many conjugacy classes as the original FR2 and also that the enlarged right lattice
should now contain a self-dual lattice. In our particular case the auxiliary lattice can
be chosen as the diagonal Lorentzian sum of two E6 weight lattice, I’6,6. Therefore
the enlarged direct sum Lorentzian lattice, A2416, contains the following conjugacy
classes:

2
A24516

=
(A,A) (3.16)

i,j=0

where i, j parametrize the three conjugacy classes of the original F18510 and the
auxiliary F66 lattices in the decomposition with respect to the dual of their right
lattices. Since the lattice

2

A16
= U A (3.17)

i=0

is a self-dual even Euclidean lattice, namely E8 e E8, the corresponding conjugacy
classes on the left hand side must form a 24—dimensional even self-dual lattice, A24

(Niemeier lattice). If an E6 lattice can be embedded into A24 so that

2

A24= U(E,F) (3.18)
i=0

• then the lattices corresponding to possible space-time supersymmetric models based

on the second supercurrent are

2

= U (F;r2) . (3.19)
i=0

The models generated this way are given in the following table:
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Niemeier lattice Gauge group

A17E7 A17U6

A11D7E6 A11D7

D16E8 D16A2

D10E? D10E7U6

E 14A2

E

(4.1)

As we have concentrated on the first supercurrent (corresponding to the triplet

constraint) we do not go into a more detailed discussion of the classification of

models with rR2 and rR3 as the right lattices.

IV. Construction of the chiral models

In this section we describe in detail how to construct all lattices, rL1, such that

the Lorentzian lattice (I’L1; rR1) is even, self-dual. This amounts to a complete

solution of our classification problem, as it has been shown [2] that any even self-

dual Lorentzian lattice, Akl, admits the following decomposition:

N-i

= U (;)
i=O

where zJj (resp.) denotes the dual of the ‘cut’ lattice Ak (resp.A1) and the

are the conjugacy classes with respect to
,

furthermore the group structure of the

conjugacy classes under addition is the same for the left and right lattices, which

is also true for the scalar products, mod(1), and norms, mod(2). That is we have

reduced our problem to finding the left handed counterparts of the conjugacy classes

s, 2, s and v which we denote by oj, a, oo and /3o, respectively.

Since the ten dimensional Euclidean lattice generated fromr1 by the conjugacy

classes 2sf, 232, v0 is an odd self-dual one

Ac = (11:; 2a, 202, i9o)

is also an odd self-dual lattice (i.e.one of the 13 possible Conway lattices in 18

dimensions). In this way the 8—dimensional chiral lattice models can naturally be
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divided into 13 families. /ü generates the odd length square conjugacy class from

the even sublattice of Ac:

A Aeven ,ACVCfl , \
“C = “C U ii1 + p0)

while 2oiand 22 are in the even sublattice. This follows from the fact that the

four generators uj, must have the same scalar products as the corresponding

generators of the right lattice

4 = 4 = 0 mod(2) = — mod(1) , (4.3a)

= = 0 mod(1) si = v0 = mod(1) , (4.3b)

- 4 =
, 4 = 1 mod(2) s = mod(1) . (4.3c)

in order that the diagonal sum of the conjugacy classes form an even self-dual

Lorentzian lattice. If one chooses o and o2 as the halves of primitive vectors from

with the given scalar products, one can decompose the even sublattice into

four conjugacy classes:

= A00 U A1 U A10 U A11 (4.4)

where

Aa15a2 ={wEA3’ :w.cr=amod(1), i=1,2} . (4.5)

One can easily see that they correspond to the(0)L 2, 202, 2(oi+2) conjugacy

classes of FL1, that is A00 = F. Since the self-dual lattice Ac has eight conjugacy

classes with respect to A00, the volume of this lattice is eight. Thus Aô = FL1

contains 64 conjugacy classes with respect to A00 which correspond to the ones

generated by uj, i = 0,1,2 and f• Therefore finding o and o2 is sufficient to

determiner1 uniquely. One of the remaining generators, can be found in the

odd conjugacy class of Ac, while oj is in the conjugacy class with non—integer length

square of (Ayefl)*.

We note that, since F1, the zero conjuacy class of FL1 is a sublattice of one of

the Conway lattices and since the root lattice of F1 determines the gauge group,

the only possible gauge groups are the regular subgroups of the groups associated

to the Conway lattices.
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To actually construct FL1, first one has to choose a A, and then one has to find

representatives of the four generators, oj, 6o. For pedagogical reasons let us start

with the simplest family corresponding to Z18. We use the standard orthonormal

lattice basis e2, z = 1, , 18, that is

e2 e3 = Sjj . (4.6)

As explained above, (O)L is given by the set of vectors from zen giving integer

scalar products with o and If we define:

i=1,2

then the relation w Ej E 2Z; i = 1,2 holds for every w E (O)L. Since (O)L

determines FL1 uniquely ((O), = FL1) we can add vectors of the form 2v, v E Z18

to E without changing the resulting lattice. Using this freedom one can reduce any

pair of E1 and E2 to the ‘standard’ form:

= (l,1,...,1lO,O,...,oIo,o,...,ofl,1,...,1)
(47)

E2=(0,0,...,011,1,...,110,O,...,OI1,1,...,1)

On the other hand since oj e (ZThl)*, E0 E 20 gives even scalar products with

even vectors of Z18, therefore the standard form of Ej is necessarily

= (1,1,...,1t1,1,...,1I1,1,...,1I1,1...,1) (4.8)

Because of eq. (4.3), E1 and E2 contain an even number of 1 entries with an

odd number of overlap between them. Therefore the vectors E1, i = 1,2 can be

characterized by the distribution of the 18 basis vectors in four equivalent boxes,

each containing an odd number of elements. These boxes are defined according

to the distribution of the basis vectors between E1 and E2, namely B1 contains

those which appear only in Sj, B2 contains those appearing only in E2. The third

(resp. fourth) box consists of the basis vectors appearing in none (resp. both) of

and D2. They are equivalent because the roles of E1 and E2 can be interchanged,

moreover one can add E0 to either of them without changing the resulting (O)L.

Therefore the members of the Z18 family correspond to such partitions of basis

vectors. Conversely given an odd partition of the basis vectors into four boxes we
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can define Ba (c = i,... ,4) as the sum of the e’s contained in the th box. We

define:

1
1 = (B1+B4)

&2=(B2+B4) (4.9)

o=(B1+B2+B3+B4)

Finally can be chosen to be any basis vector belonging to B4. These vectors

satisfy (4.3c), however (4.3a—b) are only satisfied mod(1/2). It is not difficult to

show that one can always modify them to get the vectors o, satisfying (4.3). For

example, if ö is half—integer then (o1 +o0)2 is integer. Furthermore if it is an odd

integer then adding 2ö2 changes its norm to 0 mod(2). So in this case

One can repeat this procedure for 2 and by changing its sign, if necessary, (4.3a)

will be satisfied. Finally by adding 2o1 and/or 2r2 to &tj and/or one can satisfy

(4.3b). Altogether there are 11 different odd partitions of 18 which in the case of

the Z18 family give 11 different models.

As an example we consider the partition

18= 11 + 3 + 3 + 1

leading to the root lattice D11 x D3 x D3 x D1. (O)L is given as this minimal lattice

together with the single glue vector y = (v, v, v, v). In this notation the generating

vectors of rL1 are:

= (c,v,0,s)

02 = (O,c,v,s)
(4.10)

= (s,s,c,s)

= (0,0,0,v)

The lowest lying states are determined by the left hand partners of the following
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conjugacy classes of rR1:

gauge bosons: (0,0,0,0)

massless fermions : (s, 0,0, s), (c, 0,0, s), (0,s,0, s)

(0, c, 0, s), (0, 0,s, s), (0, 0, c, s)

massless scalars: (v,0,0,v),(0,v,0,v),(0,0,v,v)
(411)

tachyons of mass2 — 1 : (0,0,0, v)

tachyons of mass2 — 1/2 : (s, s, 0, v), (s, c, 0, v), (c, s, 0, v), (c, c, 0, v)

(s, o, s, v), (s, 0, c, v), (c, O,s, v), (c, 0, c, v)

(0, s, s, v), (0, s, c, v), (0, c, s, v), (0, c, c, v)

To find the left counterparts of these classes we first express them in terms of the
generators s, vo. For example, three of the 12 conjugacy classes that can potentially
contain tachyons of mass square —1/2 are expressed as:

= (s,s,0,v) = 81+32

= (s,0,c,v) = 32+30 + 2s1 (4.12)

= (0,c,c,v) = VO +31+80

Using (4.10) their left partners are:

Ti = 0.1+0.2 = (c,s,v,v)

T2=cT2+JO+20.l=(C,0,S,0) (4.13)

=i3o+°i +0.0 = (0,c,c,0)

Among these three only the last one contains physical tachyons since the minimal

length square is 7/2 for r1 and T2. Thus we see that the level matching conditions

for the lowest lying states may not be satisfied for some classes. We remark that on

the other hand there may be several inequivalent representations of the same mass

in a given class due to the presence of glue vectors in (0)L.

The construction of the Z18 family lends itself to a straightforward generaliza

tion. This is based on the possibility of finding an ‘odd’ basis for the other Conway

lattices, A satisfying

e e = Sjj mod(2) (4.14)
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In Appendix B we prove the existence of such an ‘odd’ basis for any odd self-dual

lattice. Using such a basis one can go through the construction given on the Z18

example with only minor modifications.

To find the different T’L1 lattices it is sufficient to give all representatives of

0.1 and 0.2, which lead to different = A00 ç A3fl lattices. Since both of the

representatives, ö can be written as halves of primitive vectors in

1 18

i=1,2;n11eZ, (4.15)
j=1

and A00 is given by eq.(4.5), it follows that models differing in their n matrices as

n3=n3mod(2), i=1,2; j=1,...,18 (4.16)

lead to the same A00 lattice. Therefore we can choose fljj to be either zero or one,

which means that ö and 2 correspond to certain subsets of the basis vectors. Since

18 18
fl\

Ui
=

e1
=

ik’jk mod (4.17)
k,l=1 k=1

both 5 and ö2 should be the sum of an even number of basis vectors with an odd

number of common elemnts, to ensure that their norms and scalar products are

integers and mod(), respectively, as indicated in (4.3).

These requirements lead to the same odd partition of the basis vectors introduced

earlier in the case of the Z18 lattice. The only difference between that simple example

and the general case is that in the first case the permutation group S18, acting on

•the set of basis vectors was a symmetry group of the metric gjj e1 ej, while in the

latter cash not all of the basis vectors are equivalent, only a permutation subgroup of

S18 is a symmetry group of the metric. Therefore the distribution is not determined

by the partition alone in general (whereas this was true for Z18). One needs to know

in addition how the inequivalent basis vectors are distributed among the four boxes,

B1,...,B4.
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If we define the representatives of the generating conjugacy classes to be

1
18 /

= (Se. + SeEB4) . e2

18

L (SeEB2 + ‘5eEB4) e

1

i;:1
(4.18)

= e,
i=1

18

= E6e1EB4 e2

i=1

we find that the length squares are:

= 1 mod(2) = mod()

1 (4.19)
ö=mod(1) &=mod()

which is a direct consequence of the odd basis. The only nontrivial case, the value of

ö, follows from the equality detg = 1, which implies that there is an even number

of diagonal elements of the form 4n + 3, n e Z in the metric g. Therefore

= ( gi +2 gjj) = mod(1). (4.20)

Now T1 is determined by ö1, °2 namely F is that even sublattice of Ac,

whose vectors give integer scalar products with both &j and &2. (Though the original

scalar products among ö, öi, ö2 and flij should be modified in general as illustrated

for the case of Z18, this however does not change 1’.) To characterize the lattice

we give its root lattice
.

, generated by the length square 2 vectors

corresponding to the root system of semisimple Lie—algebras and possibly by longer

vectors generating orthogonal U(1) directions. Usually Ir is aproper sublattice of

, since contains conjugacy classes from the weight lattice of Ir as well. The

generators of these conjugacy classes are referred to as glue vectors, and they have

at least length square 4.

Since contains 64 conjugacy classes with respect to , that is the volume of

is equal to 8, the order of the Abelian group generated by the glue vectors has to

be

IGI = vol(r). (4.21)
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To distinguish between the models one has to compare the various lattices z. This

can be done in two steps: first comparing the root lattices, , and if they are

the same, then comparing the glue vectors. If those are also the same then the

models are identical, otherwise they are different. Of course one has to write the

lattices in a form independent of the choice of a particular coordinate basis, and one

has to find a canonical form of the generating glue vectors in order to compare the

lattices, which usually look different only because of their different embeddings in

the Conway lattice, Ac. Fortunately, we need to compare those models only wich

come from the same Conway lattice. Of course it can happen (it does actually) that
the root lattices z of two models obtained from different As’s are the same, but
the whole lattices are certainly different. This follows from the fact that A can
be built up from z in the unique way described in eq. (4.1).

Having found the inequivalent models one can easily determine the zero mass
fermions, scalars and the tachyons for each model. (Of course the gauge group is
determined by the root lattice Lr.) For zero mass matter fields or tachyons one has
to look for vectors of norm 2 or 1 and 3/2 respectively, in the sectors of the left
lattice, FL1, corresponding to the right conjugacy classes given in (4.11). Since the
glue vectors are elements of F1 they do not change the conjugacy classes of FL1,
but since they transform non—trivially under the gauge group one has to keep in
mind that there are vectors with different representations of the gauge group within
one conjugacy class of FL1.

We would like to note that one does not get chiral models automatically: it can
happen that there are no zero mass fermions at all. But if there is at least one zero
mass fermion multiplet, the model is chiral. This follows from the fact that none of
the sums of two right conjugacy classes corresponding to zero mass fermions (given
in (4.11)) is equal to the zero conjugacy class of the right lattice FR1.

We close this chapter by a short description of the algorithm for finding the
inequivalent chiral heterotic models.

1. Choose an 18—dimensional self-dual euclidean lattice Ac.

2. Find an odd basis for Ac.

3. List the inequivalent odd partitions of the odd basis.

4. Build up the generators öj, i = 0,1,2 and from the given partitions.
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5. Find the lattice zr, that is those ‘good’ root vectors of A, which give integer

scalar product with and

6. Determine the Lie—algebra corresponding to r, that is find the simple roots

in the orthogonal clusters of the ‘good’ root vectors.

7. Find the glue vectors from A, that is the generators of the /r cosets.

They are among the sums of ‘bad’ roots (elements of A10,A01,A11) which

give integer scalar product with ö and ö2.

8. Arrange the generating glue vectors in a basis independent canonical form.

9. Select the inequivalent = lattices.

10. Determine the matter representation of the given model.

V. Restrictions on tachyon free models

In this chapter we are going to demonstrate that demanding the absence of

tachyons from the spectrum reduces the size of the classification problem substan

tially. Although the actual details of our analysis are specific to the 8-dimensional

case, a similar analysis can also be performed for the case of 4-dimensional string

models.

We start by recalling that the structure of the right lattice determines the con

jugacy class structure of the left lattice together with their norms and mutual scalar

products (modulo 2 and 1, respectively). This information is necessary and suffi

cient to determine the modular transformation properties of the left lattice partition

functions and this is why the requirement of modular invariance is equivalent to the

self-duality of the lattice1’1s;o

In the case of chiral 8-dimensional string models considered in this paper the

right lattice Tft1 is uniquely fixed by its (0) conjugacy class (3.10) and generating

vectors (3i1). It consists of 64 conjugacy classes with respect to (0), however,

using the permutation and reflection symmetries of rR1, they can be grouped into

9 clusters. The elements of a given cluster are conjugacy classes that are related by

permutation or reflection symmetries of FR1 and therefore obviously have the same

partition functions. These clusters are obtained by completing (4.11) and are listed

below:
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Cluster Representative class Elements Norm Physical states

(000, 0) 1 0 gauge bosc’ns

(vv0,0) 3 0 massless scalars

(sOfi, s) 12 0 massless fermions

Qi (000, v) 1 1 tachyons of mass2 — 1

Q2 (yOU, 0) 3 1 massive bosons

Q (sOy, .s) 12 1 massive fermions

Y (ssv, 0) 12 3/2 tachyons of mass2—4

Z1 (ss0,0) 12 1/2 massive bosons

Z2 (sss,s) 8 1/2 massive fermions

If we denote by lA(r) and 1A (A = 1,. . . , 64) the partition function and repre

sentative vector of the Ath conjugacy class of the left lattice respectively, then the

modular transformations are summarized by [8]

= E TAB1B(T +1) TAB = eA6AB
B

(5.1)
1A(T) = Sl(—-) SAB = e2Qd41B)

B
T V

where k = 9 and v = 8. Since all norms i3 are quantized in units of , the 64 x 64
matrix T in (5.1) satisfies T4 = 1. The lattice partition functions lA(r) are modular

forms of the modular subgroup T’(4), whereas the matrices generated by T and S
form a representation of the quotient group r/r(4) = SL(2,Z4)/Z2 S4. The

important observation is that the full, modular invariant partition function can be

written as

64 9
Z(r,) = l4(T)r(r) = Z(y)f(’y)

A=1 7=1

where r(7) is the partition function of any representative conjugacy class of the

cluster and Z(7) is the sum of partition functions of all conjugacy classes from

the left. lattice paired with the elements of the given cluster -rny. Modular invariance

implies that the 9 cluster functions Z(7) are closed under modular transformations.

The corresponding 9 x 9 matrices T and S can be calculated using (5.1): T is
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diagonal with phases determined by the modulo 2 norm of the cluster, whereas 8S

is given by

E1E2E3 Q1Q2Q3 Y Z1Z2

E1 1 1 1 1 1 1 1 1 1

E2 3 3-1 3 3-1 -1 -13

E3 12 -4 0 -12 4 0 -4 4 0

Qi 1 1-1 1 1-1 1 1-1

Q2 3 3 1 3 3 1 -1 -1 -3 (5.2)

Q 12 -4 0 -12 4 0 4 -4 0

Y 12-4-4 12-44 0 00

Z1 12 -4 4 12 -4 -4 0 0 0

Z2 880 -8-80 0 00

(The matrix (5.2) is not symmetric in the cluster basis, but can be brought to a

syrmnetric form by appropriately normalizing Z(y).)

Using S4 characters one can immediately see that the 9 x 9 matrix (5.2) (together

with T) is decomposed into the following irreducible S4 representations: 2 x 3 + 3’.

Unfortunately, in order to be able to see the restrictions on the possible models

imposed by modular invariance, we have to carry out the decomposition explicitly.

For this purpose, it is convenient to expand the cluster partition functions in

terms of 0-functions. If the left lattice is a sublattice of the D{8 weight lattice,

then the partition functions are already given in this form, since the 0-functions

are nothing but D1 partition functions. However, any left lattice partition function

can be written as some 18th order polynomial in even powers of 0-functions, simply

because even powers of 0-functions form a complete basis for the ring of modular

forms of F(4) [4].

Using this basis, we can form the following triplets of S4:

± r 18—2k 18—2ki 2k
Zk 03 ±04 102

N
= [o82k

±
08—2kj0k

k = 1,3,5,7,9

_pE = [os_2k
±
(_1)o82kjok
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These are the generalizations of the obvious triplet {O8, O8, O8}, but because of

the Riemann identity O — = O, only 5 of them are linearly independent. We

choose our basis as:

Lj and Lt (3’)
(5.3)

an Li5 3

Altogether there are 19 linearly independent combinations of O of order 18. 15 of

them are occuring in (5.3), while the rest of them form the multiplets 1, 1’ and 2

and therefore play no role in our analysis.

Introducing the T-diagonal combinations

U=N1+F, and

the cluster partition functions are expanded as

Z(E) = aVE + T’ + eVj + Jv1 + ev5
Z(Q) = a1Uj + bU +cjUjf +dU +e1U i = 1,2,3

Z(Y) = AZj + BZ

Z(Za)CcrZt+DaZ1+EofZ a=1,2

where the coefficients are arbitrary constants. Comparing the transformation prop

erties of the triplets under S with (5.2) we find the following constraints among

these coefficients:

(5.4a)
—X3 X3 =

for x = a, b and X = A, B (3! representations) and

1 1 1 1
= + x2 x1 = x1 —

X2 Xl + X2 X2 = —Xi — (5.4b)

X3 X1 x3=—X1

for x = c, d, e and X = C, D, E (3 representations). Using (5.4) we see that

the 9 cluster functions can be characterized by 8 independent coefficients: A, B;

C1,D1,E1,C2,D2,E2.
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The nect step is to compare the q-expansion of the lattice functions with that

of the 0-function triplets. Defining

Z(E) = N0(E) + qN(E)

Z(Q) =q1/2N(Q)
+...

Z(Y) =q314N(Y)

Z(Z) =q1/4N(Zcr) +

wefind

N0(E)

N(E1) = 7l2j+ 72b + 7l2j+ 72dj + 456e

N(Q) = 56a + 24b + 56c + 24d1 — 8e (5.6)

N(Y) = 256A + 128B

N(Za) 8Ca

Now, taking into account that the origin of the lattice appears in the E1 cluster

only,

N0(E) = 6, i = 1,2,3 (5.7)

the number of independent parameters is finally reduced to 5. These we choose to

be the following:

ni N(Qi) + N(Q2) : number of unit length vectors in the Conway lattice Ac

which the model is based on; ni is the number of Z

factors in Ac

= N(Ej) + N(E2) : number of roots in Ac

N(—l/2) = N(Y) : number of tachyons of mass2 —

N(—1) = N(Qi) : number of tachyons of mass2 —1

N(G) = N(Ei) : number of roots of the gauge group

Putting everything together, we find that the multiplicities of the smallest norm

vectors satisfy

N(Z1) = {4N(G) — 12n — 2 + 228 + 48N(—1) — 4N(—1/2)} (5.8a)
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N(Z2) = — l2ni — 180} (5.8b)

N(Q3) = ni — 12— 4N(—1) + N(—1/2) (5.Sc)

N(F) = N(E3) = 852
— 2 + 4N(G) — 5N(—1/2) (5.8d)

These constraints, apart from the last one, which gives the number of massless

fermions, are uninteresting from the point of view of low-energy physics, since they

give the number of massive particles as a function of massless and tachyonic ones.

Note however, that all N(7)-s are non-negative integers, so from (5.8c), assurrung

the absence of tachyons from the physical spectrum of the model we can derive the
important inequality

ni 12. (5.9)

This implies that tachyon-free models can only be based on Conway lattices contain
ing at least 6 Z-factors! Since models based on Z18 will always contain tachyons of
mass2 —1, this leaves us with the first two Conway lattices only, namely E8Z10 and
D12Z6. The restriction on tachyon-free models therefore reduces the classification
problemsignificantly.

Finally we remark that there are only two tachyon-free models, one for each of
the admissable Conway lattices. Although the lattice partition functions of these
models are clearly different, the physical (light-cone) partition functions turn out to
be the same. The integral of this partition function over the fundamental domain of
the modular group yields a non-vanishing one-loop cosmological constant for these
models.

VI. Discussion of the results

The result of the classification of the 8—dimensional chiral heterotic strings based
on the world sheet supersymmetry given by (3.9a) can be seen in Table I. There
are 275 different gauge groups and 444 different models. To cut this paper to a

manageable size, we list only the gauge groups and the number of different models
with the given gauge group. Complete lists containing the matter representations
and some other data necessary to reproduce the results are also available. In the

following table we present for convenience the total number of gauge groups and

chiral models for each of the 13 Conway-Sloane lattices.
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Lattice Number of gauge groups Number of chiral models

1. 25 30

2. 43 58

3. 14 16

4. 8 8

5. 10 13

6. 40 64

7. 43 55

8. 33 40

9. 43 60

10. 26 32

11. 18 23

12. 11 11

13. 30 34

As we argued earlier, models coming from different Conway-Sloane lattices are

necessarily inequivalent,therefore the sum of the entries of the last column simply

gives the total number of different models, i.e. 444. However, since a given gauge

group can be gener3ted from different parent lattices the surfl of the entries in the

second colunm is greater than 275.

There are only two tachyon free models among the chiral ones having gauge

groups DA7AU8 and They are derived from the Conway lattices E8Z10

and D12Z6 respectively, in agreement with the results of the previous section. The

details of these models are given in Table II.

Since the vectors of the left lattice corresponding to the zero mass matter mul

tiplets have length square two, the possible representations of the gauge group are

very restricted: only those representations are allowed where the maximal length

square of the weight vectors is less than or equal to two. These can be the ad

joint representations of all simply laced algebras, the 78 and the 27, 27* in the

case of E7 and E6, respectively, the vector and the two spinor representation (if

n 8) in the case of D and the k—fold antisymmetrized tensors in the case of A
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ifk.(n+1—k)/(n+1)2.

One gets further restrictions from the structure of the right lattice In

the non—supersymmetric case of TR1 there can be only scalars and vectors in the

[(O)L; (O)R] conjugacy class, in the corresponding supersymmetric case it contains

fermions as well. These and only these states are in the adjoint representation

of the gauge group. But the existence of zero mass adjoint scalars and the level

matching conditions imply that the right inner part of the corresponding lattice

vectors should have length square one, as the scalars are in the (v) conjugacy class

of the space—time lattice in the covariant formulation. But this is in contradiction

with the assumption of chirality, therefore in chiral models we never get zero mass

adjoint scalars favoured in the Higgs sectors of grand unified models.

Since in the non—supersymmetric case no fermions are contained in the zero

conjugacy class, the existence of adjoint zero mass fermions is excluded. Therefore

the constraints mentioned above are very close to the ones given in [12J to avoid

exotic fermion representations with respect to the colour group SU(3) in unified

gauge models.

VII. Perspectives in four dimensions

In order to get a feeling what will happen in the case of four space-time dimen

sions, we have carried out a small part of the classification of 4—dimensional chiral

rank 22 heterotic strings. The main differences from the 8—dimensional case are:

— there are not 13 but 68 odd self-dual lattices in 22 dimensions which the models

can be derived from,

— the possible world sheet supersmmetries, therefore the possible right lattices

have not been classified yet,

— there are chiral, space-time supersymmetric (N = 1) models,

— one accepts only the tachyon free models.

Apart from these points the classification can be done along the same lines as

in the 8—dimensional case.

It is clearly important to see how the number of the different models grows as

compared to the 8—dimensional case, so we have chosen a particular lattice, namely

theE8Z14 one, and a particular right lattice based on the ‘triplet constraints’, which
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leads to chiral models and contains 64 conjugacy classes similarly to the case of

in 8 dimensions.

The right lattice rR is generated by the conjugation classes

= (sOO sOO sOO s)

= (OsO OsO OsO s)
(7.1)

= (sss sss sss s)

v0 = (000 000 000 v)

while the zero conjugacy class I’ is .given by the root lattice of DD5 and the

following weight vectors:

(vvv 000 000 v), (000 vvv 000 v), (000 000 vvv v)

(vOO vOO 000 0), (000 vOO vOO 0) (7.2)

(OvO 0v0 000 0), (000 OvO OvO 0)

The final results can be found in tables III. and IV. Table III. contains all the

r lattices leading to chiral models, the zero mass matter multiplets corresponding

to the 8 tachyon free models can be read off from table IV. We make the following

remarks concerning the main differences between the four and the eight dimensional

case. The number of odd partitions is 18, not 11. In 4 dimensions there are 44

different gauge groups, while from the corresponding E8Z10 case one gets 25. The

corresponding numbers of the inequivalent (tachyon free) models are 54 (8) and

30 (1), respectively. As the increase in the number of models coming from similar
1 • 1 d- - 1 &L 1 .Ll_ A. 1 1 1 1 14 1iattices rs not so suusuanuai, we uiflK uiau mainly tne iarger numoer or seir-aua

lattices and even more importantly the right lattices will increase the number of

chiral models in 4 dimensions.

An interesting feature of the right lattice given in (7.1—7.2) that it does not lead

to mass square -1/2 tachyons, since the corresponding sectors of rR contain vectors

with length square greater than 2 only. Thus the indecomposable 22—dimensional

self-dual Euclidean lattices that do not contain Z factors, therefore vectors with

length square 1, give rise to tachyon free models automatically.

Another interesting property of this right lattice is that due to the presence of

the length square two vectors in 1’, there is a global SU(4) symmetry in these
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models. As a consequence, every zero mass fermion (scalar) multiplet comes with a

multiplicity of four (six), as is easily seen by examining the corresponding conjugacy

classes of the right lattice.

VIII. Conclusions

We succeeded to give a complete classification of all 8 dimensional chiral het

erotic strings which can be obtained from the covariant lattice approach based on

the triplet constraint. The extension of our method to obtain all such lattice based

models in 4 dimensions is entirely .straightforward. Our algorithm has been im

plemented on an IBM Personal Computer in compiled BASIC (Microsoft QUICK

BASIC 4.0). To carry out the classification in 4 dimensions one has to port the pro

gram to a mainfraim machine as the running time on a PC would be prohibitively

long. However as the total number of four dimensional chiral, supersymmetric mod

els would certainly exceed several thousands, the results can be only stored in a

database. However for the sake of completeness one should first classify all possible

world-sheet supercurrents, which seems to be rather difficult. It is clear that one

can play with these models but some more fundamental understanding is needed in

string theory as how to make contact with reality. As a side remark we mention that

one could also try to apply our approach for the classification of higher dimensional

(>25) self-dual lattices , where the number of lattices is still manageable.

Appendix A

In this Appendix we will discuss the construction of the internal part of the

world sheet supercurrent in some detail. Our starting point is Ansatz (3.6) which is

the most general form the internal supercurrent can take in the lattice compactified

bosonic formulation. Actually (3.6) can be written in the more accurate form

Sj11t(z) = A(a)!(a): e2c(z): +i B’(u)fl(u): Oz(z)e2(z): (A.1)
a2=3

taking into account the following two points not mentioned in Section 3. First,

the exponentials are normal ordered with respect to the usual decomposition of the

internal bosonic fields q52(z) into their positive and negative frequency parts

qS2(z) = z)+4(z), i = 1,2,...,N. (A.2)
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Here

(z) = —ip2 lnz + i (A.3a)
n>O

and

= xi + i -c4z-. (A.3b)
n<O

In the expansion (A.3) the {c4} are the usual string oscillators, x is the center-of-

mass coordinate and p is the momentum-operator taking its value in the momentum

lattice N is the dimension of the internal space which is 3 and 9 for 8 and 4

dimensional strings respectively. Second, the vertex operators in (A.1) are multiplied

by the cocycle generating Klein factors 12, the role of which is to ensure that the

different pieces of the supercurrent anticommute rather than commute. Such factors

can be constructed for any integer lattice [13]. If we assume that 12 is of the form

12(a) = e_1 a E Aj (A.4)

where

p A a =p2Aa’ , A = —A (A.5)

then the antisymmetric matrix A has to be chosen in such a way that for any pair

of lattice vectors a, /3

= (_1)a22(_1y. (A.6)

The coefficients A(a) and BZ(u) in (A.1) have to satisfy the following constraints:

A*(a) = A(—a) , B*i(u) = Bt(—u) , (A.7a)

u2B2(u) = 0. (A.7b)

(A.7a) and (A.7b) follow from the hermicity of Sj and the requirement that it is a

conformal spin 3/2 object with respect to the internal energy-momentum operator

7int, respectively.

Now by substituting (A.1) into (3.5c) we obtain the following set of quadratic

equations for the coefficients A(a) and B2(u):

(A(a)I2aaJ + {2B*Z(u)BJ(u) + UiuB*k(u)Bk(u)} = 25i (A.8a)
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+ e\UA(a){aJB3(u)(u
— a)’ + 2B’(u)} (A.Sb)

a+u=p

+ e2U’){2u2B3(v)B2(u) + v’[B2(u)B3(v) — v3uB2(u)Bk(v)]}
= 0

eMA(a)A(b)+ B(u)B2(u)
a+b=z’ 2u=v

• (A.8c)
—2 e’”A(a)a’B’(u) = 0.

a+u=v

Here (A.8b) has to be satisfied for all ,u E AR with /22 = 2. Similarly (A.8c) must

hold for any ii E AR for which v2 = 4.

As discussed in Section 3., if we want the spectrum of the string model to be

chiral, AR must not contain any vectors of unit norm. In this case the second term on

the right-hand-side of (A.1) is absent and the equations (A.8) simplify accordingly:

A(a)aa = 2Sf’ (A.9a)

eaA(a)A(b)a2 = 0 (A.9b)
a+b=p

eiaAbA(a)A(b) = 0. (A.9c)
a+b=i’

From (A.9a) it is seen that for chiral theories the lattice AR must be generated by

vectors of norm 3. In 1 dimension , the solution of (A.9) is

a = ; A(a) =. (A.10)

In 2 dimensions there are two indecomposable lattices generated by norm 3 vectors,

however, neither of them allows for a solution of (A.9). Hence the only possible

supercurrent in two dimensions is based on the direct sum of two copies of (A.10).

In 3 dimensions, which is the relevant one for 8 dimensional strings, the number

of such indécomposable lattices is 9, but a solution of (A.9) exists for only one of

them. This solution correspons to the ‘triplet constraint’ and this is the one we have

used in our construction of 8 dimensional strings.
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In higher dimensions the number of lattices generated by norm 3 vectors in

creases rapidly. In [10] and [11] a large number of supercurrents have been con

structed using different methods, but whether these solutions exhaust all possibilities

is not known.

Appendix B

Our construction of 8-dimensional string models was based on the existence of

an ‘odd’ basis for odd self-dual lattices. In this Appendix we will show that it is

indeed always possible to find such a basis for any odd self-dual lattice.

Let us first recall that the set of vectors {e}.1 is a basis for the N-dimensional

lattice AN if all lattice vectors can be written as integer linear conbinations of the

basis vectors:

N

w = ne n E Z (w E AN).
i=1

Clearly the choice of basis is not unique for a given lattice and a change of basis is

characterized by the transition matrix Q:

N N
= Qjej ej = (B.1)

j=1 j=1

Since the elements of both the ‘old’ and the ‘new’ bases themselves are lattice

vectors, both Q and its inverse Q must be integer matrices. This is possible if

det(Q) = ±1 or in other words

Q e SL(N,Z).

The Gram matrix

=

plays the role of the metric of the lattice and it transforms as a symmetric tensor

under (B.1):

MQMQT

M is an integer matrix for integer lattices, furthermore Idet(M)I = I for self-dual

lattices. (These are basis independent properties of M.)
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Now we wish to show that there always exists an ‘odd’ basis in which

6jj. (B.)

(In this Appendix means congruent modulo 2, unless otherwise stated.) It is

rather easy to show the existence of such a basis for those self-dual lattices that

contain at least one Z factor. In this case the N + 1-dimensional lattice AN+1 is

the direct sum of an N-dimensional self-dual lattice ‘N and Z:

(B.3)

If {e}.1 denotes a )N-basis with Gram matrix m, then the set {x, e} where

x2=1 and x•e=O i=1,2,...,N

is a basis for AN+1 and the Gram matrix of AN+1 takes the form:

Im O\
M=( I. (B.4)

\O 1)

The transition matrix Q that transforms M to the desired form

QMQT E (B.5)

(where E is the (N + 1) x (N + 1) dimensional unit matrix) can be found by the

following trick. Consider the N + 1-dimensional Lorentzian lattice

= e Z_ (B.6)

where Z is a timelike direction. A;1 has basis {x’, e} with

(x’)2=1 and x’e=O i=1,2,...,N

and in this basis its Gram matrix is given by

Im O\
M’=I ). (B.7)

\,O —1)

Clearly Ay;1 is self-dual since

det(M’) = —det(m) = —det(M) = —1.
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The fundamental theorem of Lorentzian self-dual lattices [14] mentioned in section

two states that Ar;1 is isomorphic to ZN e Z_, the N + 1 dimensional hypercubic

Lorentzian lattice:

Al f%rp
IIN;1LJNe -.

This means that it is possible to find an (N + 1) x (N + 1) Q such that

fO\
QM!QT =

J’ (B.9)

where e is the N x N unit matrix. Now (B.5) follows from (B.9) (with the same

Q transition matrix) taking into account that

lie
MEM’ and I lEE.

—1)

The proof of the existence of an odd basis for those lattices that do not contain Z
factors is more involved. Let us assume that AN itself is such a lattice . We can

still use the enlarged lattice AN+1 and assume that for AN+1 an odd basis {f}Y.j’
has been found. To complete the construction for AN we will have to perform an

additional basis transformation so that x becomes one of the basis vectors and the

rest are orthogonal to it and at the same time the ‘oddness’ of the basis is preserved.

To show that this is always possible we use the following

Lemma

Any primitive vector of the lattice can be extended to a complete lattice basis

(A vector is called primitive if it is not a multiple of any other lattice vector.)

We will give an inductive proof of this Lemma so we start at 2 dimensions. In

this case we are given

fi = aid +a2e2

where (ai, a2) are relative primes and we have to find

f2 = tie1 + ve2
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so that {fi, f2} is a new lattice basis . In other words

(ai

) SL(2,Z). (B.1O)

If a = 0 then a = ±1 and a solution is

u=1 v=0.

If ai 0 then (B.10) is equivalent to finding a solution of the congruence

a1v 1 (mod a2) (B.11)

which is always possible since (a1, a2) are relative primes. Note that if a is odd

then v can always be chosen to be even (by changing u and v to u = u + al and

= v + a if necessary). If v is chosen to be even then u becomes odd.

Now we proceed to the general case. fi is given by its components

(a1 a a3 ... an) (B.12)

and we are looking for an SL(n, Z) matrix Q the first row of which is (B.12). (B.12)

can be rewritten as

(al a2 a3 ... an) = (al ma2 ma3 ... man)

where (a1, m) are relative primes and the set {a2, a3, . . . , cr7j are relative primes.

Now using the induction hypothesis the (n — 1) dimensional row (a2, as,. . . ,

can be extended to an SL(n — 1, Z) matrix

a a ...

(B.13)

62 63 ...

With the help of (B.13) we now build the n x n matrix

ai ma2 ma3 ... ma

u vcr VO3 ... va

Q = 0 /2 /33 ... . (B.14)

0 62 63 ...
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The condition for Q being an element of SL(n, Z) is

aiv — mu = 1,

but this is the same as the two-dimensional problem we solved already. This com

pletes the proof of the Lemma.

Actually we have proven a slightly stronger statement, namely that Q can be

chosen to be almost triangular:

a a4

u --a !2a --a2 m2 2 m2 3 m2 4 m2 n—i m2

o U3 a3 a4 a_1 (B.15)

o 0 t14 -a4
... a,_j fan

0 0 0 V

Furthermore, if a is odd (which can be assumed without loss of generality) then

m = m, ma,... are all odd and v = v2,v3,... can all be chosen to be even so

u2,u3,... are all odd. In this case Q has the following structure:

0000”.o11.”11

1000...000.”00

0100.”000...o0

o o 1 0 ... 0 0 0 ... 0 0

0 0 0 0 ... 0 0 0 ... 1 0

Let us now return to the problem of separating the x direction from the lattice

AN+i without destroying the oddness of the basis . We will achieve this in three

steps.

In terms of the {f}t’ basis x can be written as

N+i

a’ = af

i=i
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where we will assume that

a1a2E...Eak0

and

ak+1 ak+2 ... 1.

(Clearly the total number of odd components must be odd since x is odd.)

Let us first perform the basis transformation corresponding to the matrix (B.15).

The new basis vectors are

gE(l,O,...,0;O,...,0,O)

(B.16)

gk+1 (0,0,...,0;l,...,O,0)

gN(O,O,...,O;O,...,1,O)

Next we define the set of vectors {e}1 where

ej=gj—(gj.x)x i=1,2,...,N.

The e vectors are orthogonal to x and form a basis for.AN. Finally the odd basis

for AN is obtained by defining

ë1=e1+y (1,O,...,O;1,1,...,1,O)

= e (0,l,...,O;0,0,... ,0,0)

ek=ek (O,O,...,1;O,0,...,O,O)

ek+1 = ek+1 +e1 (1,0,...,O;0,l,...,1,1) (B.17)

ek+2 =ek+2—el (1,O,...,0;1,0,...,1,1)

eNl =eN_1 +ei (1,0,...,0;1,1,...,1,1)

— (1,0,... ,0;1,1,. .. ,0,1)
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where

N

y= e.

i=k+1

Using (B.17) it is not difficult to see that {ej}f.1 is indeed an odd basis for ‘N, i.e.

it satisfies (B.2).

This concludes the proof of the existence of an odd basis for any odd self-

dual N• Unfortunately the proof was based on an other existence theorem (the

uniqueness theorem of Lorentzian self-dual lattices [14]) so it does not provide us
with an algorithm for actually constructing the odd basis for a given N• Although
we were able to construct by trial an error the odd basis for the 13 Conway lattices

that are relevant for 8 dimensional strings, it would be interesting to find such an
algorithm since the number and complexity of the Conway lattices relevant for 4
dimensional strings is much greater.
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Table I. The 275 possible gauge groups of 8—dimensional chiral heterotic string models corre

sponding to self-dual lattices with world sheet supersymmetry connected to the ‘triplet constraint’.

The semisimple groups and those of corresponding to tachyon-free models are marked. The num

bers in brackets are the numbers of inequivalent models with the given gauge group.

EgE6AU? (1) E8D7Uj3 (1) E8D5A3Uf (1)

E5A7A?Ui (1) E8AU1 (1) EU14 (1)

E7E6AU? (1) E7D7A1Uj3 (2) E7D6A1Uj’ (1)

E7D5A3Uf (3) E7D4A5U? (2) E7D4AUj (1)

E7A7AU1 (2) E7A5AU? (2) E7AA1U1 (2)

EA3Uf (1) EgAU’ (1) E6D8A?U? (2)

E6D6D4U? (1) E6D6AU? (2) E6D5A3U (1)

E6D5AU (1) E6DA?U? (2) E6.D4AU? (1)

E6A9A1U? (1) E6AsUj (1) E6A7A3U? (1)

E6A7AUj (2) E6A6A2Uj’ (1) E6A5A3A1Uj3 (2)

E6A5AU’ (1) E6AU (1) E6A4AUj’ (1)

E6AU? (1) E64AUj’ (1) E6AU (1)

D13A3U? (1) D13AUj (1) D12A3Uj3 (2)

D114U1 (1) D11A3A?LJ? (1) D10A7U1 (1)

D10A5A1U? (2) DioA3AU? (2) D9D7U? (1)

DgD6U (1) D9D5A3U1 (1) D9D5A?U? (1)

DgD4AUj3 (1) D9AA?Ui (1) D9AU? (1)

D8D7Uj (1) D8D5A3U? (1) D8D5AUj3 (2)

D8D4A3Uj3 (2) D8A7A?U1 (3) DsA5AU? (2)

D8AU1 (1) D84A?U (2) DsA3A1U (1)

DA3U1 (1) DA?U? (1) D7D6A3U? (1)

D7D6A?U? (2) D7DU1 (1) D7D54 (1)

D7D5A3A?Ui (1) D7D4A3A?U? (2) D7D4AU (1)

D7A7LTj (2) D7A5A1Uf (2) D7AA? ss (1)

D7AU (1) D7A3AU? (1) DA3U? (4)

DA?U (2) D6DU? (1) D6D5AU1 (1)

D6DsA3AU? (4) D6D5AUj3 (2) D6D4A7U1 (2)

D6D4A5A1U? (5) D6D4A3A?Uj3 (3) D6D4AUjt (1)

D6A7AU1 (4) D6A7U (1) D6AsAU? (5)

D6A5A1U (1) D6AA?Ui (2) D6AAU? (3)

D6AU (1) D6A3AU (2) DA3 ss (1)

r4A?U1 (1) DgD4AU (2) DAA? ss (1)

DA3U (1) DAU? (1) DA?U16 (1)

D5DA3LJ? (1) DsDAU? (2) D5D4AAU1 (2)

DsD4A3AU? (1) D5D4AU (1) D5A11U? (1)

D5A9A1U? (3) D5A8U (1) D5A7A3U (4)

D5A7A?U14 (3) D5A6A2U (2) DU? (3)
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(Table I. continued)

DgA3A1U (6) D5A5AU (2) D5AU (2)

D5A4AU (2) D5AU’ (2) D5AAU1 (1)

D5AAU (3) D5AU (1) D5AI°U? (1)

DA3Uf (1) DA7AU1 tf (3) DA5AU? (3)

DAUi (1) DAA?U? (3) DA3AUj3 (4)

DAU (1) D4A11U (2) D4A9A1U’ (1)

D4A8U (1) D4A7A3Uj1 (3) D4A7AU1 (1)

D4A7A?U (1) D4A6A2U? (1) D4AgU (2)

D4A5A3A1U (2) D4A5AtU? (3) D4A5AU (1)

D4AUf (1) D4A4AU (1) D4AA? (1)

D4AAU1 (1) D4ALJ15 (1) D4AAU? (2)

D4AA?U? (2) D4A3AUj (1) D4AUr (‘)
A15AUi (1) A15U (1) A14A1U (1)

Ai3AU? (2) A13A1Uj (1) A12A3U? (1)

A12A2A1Uf (1) Ai2A?U’ (1) A11A4U? (1)

A11AU1 (1) AiiA3AU? (3) A11A3Uj’ (1)

A11AUj3 (1) A11AU (1) A1iA?U (1)

AioA4AiU (1) A10A3A2U? (1) A10AA1Uf (1)

A1oA2AU (2) A9A7A1U1 (1) A9A6Uj3 (1)

AgA5AU? (3) A9A5U (1) A9A4A2Uj (1)

A9A4A1Uj’ (2) A9AAiU? (2) A9A3A?Uj3 (2)

A9A3A1U (1) A9AU (1) A9AA1U (1)

A9AU (1) A9AUf (1) A8A6A1Uf (1)

A8A5A1U14 (1) A8A4A3U (1) A8A4A2A1Uj (1)

A8A4AUj’ (2) A8A3AU (1) A8A3AU (1)

A8AA1Uf (1) AsAAUj’ (2) AA3U1 (1)

AAU? (5) AUj (1) A7A6A1U14 (1)

A7A5A3A1U? (2) A7A5AU (6) A7A5A1Uf (1)

A7A4A3U’ (2) A7A4A2A1U (2) A7A4AU (2)

A7AU? (2) A7AA?U (6) A7AU (1)

A7A3AU (1) A7A3A1U (2) A7A3A?Uf (1)

A7AA1Uj’ (1) A7AA?U (1) AA3U (1)

AA2AiU? (1) AAUj (2) AU (2)

A6A5A3U (1) A6A5A2A1Uj’ (2) A6AsA?U (1)

A6AA1Uj (1) A6A4A3A2U (1) A6A4AA1Uj3 (1)

A6A4A2AUj (3) A6A4A2U (2) A6AA1U (1)

AeA3AU? (1) A6A3A2AU (2) A6A3A?U (1)

A6AAUj (1) AA4U14 (2) AAUf (2)

AgA3AUf (6) AA3U (1) AAU’ (1)

AAU1 (5) AAUr (1) AU (1)

A5AA1U (2) A5A4A3A2Uj4 (2) A5A4A3A1U (3)
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(I)

\I.) JJoIv;

( ‘i
\L) 6”C

(
L) 911J7

( ‘

\L)

() JnfrfrcvT7v
(T)

() Jnfryfr
(I) Jnfrfr
(I) Jnfrvv
(i,;) flfrcVcy
(I) JJ7Ifry

(g) flhI?VV

(T) Jnfr (I)

(r) £IflVVcV (T)

(T) Jnvvv (I)

() Tnfrv (i)

(17) Jr.ifrfr (1)

(T) 91nfr’v ()
() Jnvfr’v ()
(c) Jnfrv ()
(T) (i)

(I) tntvr!v (I)

(I) ç’flfrfrV CL)

(i) n’vfrvv (U
(g) flv1Vsv ()
() JJ2frVVV ()

çjJ2frV

9LJ9V

I,-1Z £
11zV c

ss’J1 vfr

JflfryCy7y

J
J7

t7J1v

Tt

9’C

J-n’vfrv

‘flVCVV

Tvfrv

flTVVt?VV

(pnuiuo •i iq)



Table II. The left lattices and the matter representations corresponding to the two 8-

dimensional chiral tachyon-free models.

root lattice: UsA7A?D AA

glue vectors: 22110001 1111000011

04000101 0202001111

0022110011

rL generating

conjugacy classes:

so: 66101111 0200010101

s1: 42100000 2112000001

52: 75110011 3122000100

t,0: 40110000 3113000000

zero mass

fermions: —17001100 1001000001

06010000 0031000100

17000010 1030010000

20100001 0031001000

—20010100 1300001000

06100000 0330000001

17000011 1300000100

20010001 0301010000

—20100100 1001000010

—17001000 0330000010

1030100000

0301100000

zero mass

scalars: 04000000 0220000000

00000101 0000111100

00110001 2002000000

00110100 0022000000

22000000 0000001111

26000000 0000110011

—22000000 2200000000

—26000000 2020000000

40000000 0202000000

—40000000
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E8D9A3U?

E8DA3U1

E7D9A3A1U?

E7DA3A1U1

E6D10AU?

E6DA?U?

E6DA?U?

D11D6A?Uf

D9D8A3U?

D8D7D5Uf

D8DA3U1

D8A7AU1

D7DAU1

D6DsAA?

DDA3U1

(1) E8D7D5U?

(1) E8D5A

(1) E7D7D5A1U?

(1) E7D5AA1

tf (1) E6D8D6U?

tf (1) E6D6DU?

(1) D1A7U1

(1) D10D4A7U1

(2) D9D6A3A?U?

(1) D8D7AU1

(1) D8D5A

(1) D7D6D5A?U?

(1) DA7A?Ui

ss (1). D6DA7U1

(1) DA7AU1

(1) E8D7AU1

ss (1) E7D11A1Uf

(2) E7D7AA1U1

ss (1) E6D12A?U?

(1) E6D8D4A?U?

(1) E6D6D4AUf

tf (1) D12A7AU1

tf (2) D10A7AU1

(1) D9DA3U?

(2) D8D6A7U1

ss (1) D8D4A7AU1

(2) D7D6AA?Ui

(2) D6DA3A?Ui

tf (2) D6D4A7AU1

(1)

(1)

(2)

(1)

(1)

(1)

(1)

(1)

(1)

tf (1)

tf (2)

(1)

(2)

(1)
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Table III. The 44 possible gauge groups of 4—dimensional chiral heterotic string models

(derived from the E8Z14 Conway—Sloane lattice) that correspond to self-dual lattices with world

sheet supersymmetry connected to the “triplet constraint”. The semisimple groups and those of

corresponding to tachyon free models are marked. The numbers in brackets are the numbers of

inequivalent models with the given gauge group.

tf
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Table IV. The left lattices and the matter representations corresponding to the eight 4-

dimensional tachyon-free models

root lattice: U24UgE6AD10 U24U8E6A?D

glue vectors: 2 21001111 2 21001111

0 40110011 0 40110011

rL generating

conjugacy classes:

80: 2 61010110 6 20101010

s: 18 00000100 9 10100000

82: 19 32010000 3 50110010

v0: 12 00001100 6 60110000

zero mass

fermions: —6 00000100 0 20001000

—6 00001000 —3—30010000

—3 10101100 3 10000010

—1—11010000 3 10000001

—3 10011100 —3 10100011

0—20001011 1 12010000

0—20000111 3—10101100

0 20111000 —3—30100000

0 20110100 —3 10010011

—1—11100000 1 12100000

2 01000100 3—10011100

3 30010000 0 20000100

2 01001000

3—10100011

3—10010011

3 30100000

zero mass

scalars: 2—21000000 —6 20000000

—6 20000000 6 20000000

6 20000000 0 40000000

—4 01000000 0 00110011

—2—22000000 —2—22000000

0 00001111 4 02000000

0 40000000 0 00001111

2 21000000 2 21000000

0 00110011 6—20000000

4 02000000 —6—20000000

6—20000000 —2 22000000

—6—20000000 0 00111100

—2 22000000 2—21000000

0 00111100 —4 01000000
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(Table IV. continued)

root lattice: U8A7D14 U8A7A?Di2

glue vectors: 4400 221111

rL generating.

conjugacy classes:

so: 2201 660110

s: 6001 370000

82: 7300 751110

vo: 4011 340110

zero mass

fermions: —1300 370000

1711 020100

3100 111100

3700 —200111

1111 —130000

—1500 021000

—20.1011

—170011

zero mass

scalars: 4000 —260000

—2600 —220000

2600 400000

0400 001111

2200 220000

—2200 260000

040000
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(Table IV. continued)

root lattice: U8A7D4D10 U8A7D6D8

glue vectors: 220111 221111

rL generating

conjugacy classes:

so: 661010 440110

s1: 370000 370000

82: 531100 750010

v0: 620100 401100

zero mass

fermions: 370000 370000

171000 —201000

—130000 111100

171100 —200100

—170100 —130000

110011 —170011

zero mass

scalars: —260000 —260000

260000 —220000

040000 400000

000111 001111

220000 220000

—220000 260000

400000 040000
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(Table IV. continued)

root lattice: U8A7AD4D8U8A7DD6

glue vectors: 22110011 22000111

04000111 04010100

TL generating

conjugacy classes:

so: 22101110 04101010

s: 46100000 33110000

82: 77001100 75011000

v0: 04110000 22010000

zero mass

ferrnions: —17001100 —17100000

—20010011 —11001100

—20100011 —17110000

02100000 —11001000

02010000 —20000010

20010100 —20000001

20100100

—17001000

zero mass

scalars: 04000000 —26000000

—26000000 —22000000

—22000000 40000000

00000111 00000111

00110011 00010011

00110100 22000000

40000000 26000000

22000000 04000000

26000000 00010100
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