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ABSTRACT

The macroscopic description of a quantum particle with

passive dissipation and moving in an arbitrary external potential

is formulated in terms of the generalized Langevin equation. The

coupling with the heat bath corresnds to two terms: a mean force

characterized by a memory function i-i(t) and an operator-valued

random force. Explicit expressions are given for the correlation

and commutator of the random force. The random force is rever

Markovian. it is shown that (z), the Fourier transform of the

memory function, is a positive real function, analytic in the

upper half plane and with Re{(& + i0)} a positive distribution

on the real axis. This form is then derived for the

independent-oscillator (10) model of a heat bath. It is shown that

the most general quantum Langevin equation can be realized by this

simple model. A critical comparison is made with a number of other

models which have appeared in the literature.
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I. INTRODUCTION

The problem of a quantum particle coupled to a heat bath

appears in many fields of physics: statistical mechanics,

condensed-matter, quantum optics, atomic physics, etc. Here we

formulate the description of such a system in terms of the quantum

Langevin equation for a particle in an arbitrary external

potential. This description has the advantage that it is complete

and can be characterized in a general way. We then show how this

description can be realized by a simple independent-oscillator

model of the heat bath.

In Section II we describe the quantum Langevin equation. The

key point there is that this is a maCrOSCOPic equation

corresponding to a reduced description of the system. Central to

this description is the requirement that the bath be pasVe. A

passive system is one for which there is a unique thermal

equilibrium state. In the present case this physical requirement

of passivity is expressed explicitly in the mathematical

requirement that the Fourier transform of the memory function be a

stVe reaL fwctor, analytic in the upper half plane and with

real part positive on the real axis. We show that this property of

the memory function is a consequence of causality and, in Section

III, of the second law of thermodynamics.

In Section IV we discuss the independent-Oscillator model of

the heat bath. The key result there is that the most general

quantum Langevin equation can be ralized with such a model. Then,

in Section V we show in some detail the relation of this model to

various other models which have appeared in the literature.

Before proceeding we should perhaps make something of a

disclaimer. Knowing readers will recognize that some of what we

have to say is not entirely new. Yet, for example, the genera]

description we give in Section II appears explicitly nowhere in

th .iterature. On the other hand, a famous discussion remark of

Kubo at the 1968 conference on Statistical Mechanics makes clear

that at least something of the general idea has long been known to

many scholars, and the general characterization in terms of

positive real functions is straight out of the electrical

engineering literature. We have attempted by an eclectic choice of
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references to give credit to earlier authors and to indicate where

our ideas have grown out of theirs. At the same time we have

supressed references to more recent authors who have, perhaps

independently, only rediscovered what has for a long time been in

the literature.
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II. THE QUANTUM LANGEVIN EQUATION

In this section we describe the quantum Langevin equation,

which can be taken as the basis of the macroscopic description of

a quantum particle linearly coupled to a passive heat bath. In

Section IV we derive this equation from a simple model, the

independent oscillator ( 10 ) model. Our reasons for, so to speak,

inverting the order and stating the results before describing a

basis for their derivation are, first, the description and

characterization of the equation is somewhat lengthy and should be

clearer as a separate whole, and, second and more important, we

claim the description given is more general than the model.

We consider, therefore, a quantum particle of mass m moving

in a one-dimensional portential V(x) and linearly coupled to a

passive heat bath at temperature T. The macroscopic equation

describing the time-development of the particle motion is the

quantum Langevin equation:

t
mx + fdt’(t - t)x(t’) + V?(x) F(t) , (21)

where the dot and prime denote, resp., the derivative with respect

to t and x. This is the Heisenberg equation of motion for the

coordinate operator x. The coupling with the heat bath is

described by two terms: an operator-valued random force F(t) with

mean zero, and a mean force charboterized by a memory function

.i(t). The (symmetric) autocorrelation of F(t) is

<F(t)F(t’) + F(t’ )F(t)>

(2.2)
z fdc Re{(c +iO)) hc coth(h/2kT) cosu(t - t )

and the nonequal-time commutator of F(t) is

[F(t),F(t’ )] = fd Re( + iO)} h sin(t - t’ ) . (2.3)

In these expressions

izt= fdte p(t) , Imz > 0 (2.4)

is the Fourier transform of the memory function i(t). (By
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convention, the memory function vanishes for negative times.)

Finally, F(t) has the Gaussian property: correlations of an odd

number of factors of F vanish, those of an even number of factors

are equal to the sum of products of pair correlations

(autocorrelations), the sum being over all pairings with the order

of the factors preserved within each pair

It is clear from the above description that, as in the

classical case,2 the coupling to the heat bath is characterized by

the function (z) Now this function has three important

mathematical properties which follow in turn from three

corresponding general physical principles. The first of these, as

we see from (2.4), is that (z) is analytic in the upper

half-plane Imz > 0. This is a consequence of causality; the mean

force exerted by the heat bath on the particle depends oriiy upon

the past motion of the particle. The second property is that the

boundary value of (z) on the real axis has everywhere a positive

real part

+
Re{p(c + iO )} : 0 , - < u < Co (2 5)

This, as we show in Section III, is a consequence of the second

law of thermodynamics. The third property is the reality

condition:

+ ..- +*
i( + 10 ) = u(— + iO ) (2.6)

which follows from the fact that x is a Hermitian operator. Thus

Re{(o + iO+)) is an even function of Such functions of a

complex variable, analytic in the upper half-plane and with real

part a positive, even distribution on the real axis, are termed

positive real functions. They form a very restricted class of

functions of a complex variable. Among their properties are the

following.3’4

1° The most general positive real function has the

representation in the upper half-plane (the Stielties inversion

theorem) :

(z) = -icz + fd + i0H (2 7)
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where c is a positive constant. Thus the real positive

dstrbi.ton Re{(c + iO+)} characterizes the function, except for

the constant c, which in our case can be absorbed into the

particle mass (beware, this is not mass renormalization). With

some hesitation in introducing a new terminology in an old

subject, we shall call this the spectral distribution of the

memory function.

2° The real part of a positive real function is positive in

the upper half-plane:

Re{(zH > 0 , Im z >0 . (2.8)

Thus there are neither poles nor zeros in the upper half-plane.

3° The reciprocal of a positive real function is a positive

real function.

4° The sum of two positive real functions is a positive real

function.

5° On the real axis, a positive real function can have only

simple zeros, each with negative imaginary coefficient, and simple

poles, each with positive imaginary residue.

Before we conclude this section, we make a number of general

remarks about this description of a quantum stochastic process by

the generalized Langevin equation.

The quantum Langevin equation (2,1) is a rmacroscopic

equation. What we mean by this is that it is a contracted

description of the system; the d:;riamical variables of the heat

bath do not appear. It is also a phenomen.oiogzcaL equation. By

this we mean that the interaction with the heat bath is uniquely

characterized by the spectral distribution Re{(c + i0)}, which

in principle could be determined experimentally, although in most

applications it is derived on the basis of some microscopic model

of the bath. As with all macroscopic descriptions, this one has

the subtle difficulty that, although we believe that it is

appropriate to the description of a wide variety of systems

( e.g., a Brownian particle in a dense fluid, or the electrons in

a metal, or a Josephson junction), we can only derive it for

simple microscopic models ( e.g., systems of coupled

Oscillators). In this regard perhaps it is worth quoting the
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remark of Benuria and Kac,’ It follows that either the Langeviri

equation here is a fluke of the special FKM model which led to it

or that there is no general valid quantum Langevin equation

Ii this is a general macroscopic phenomenological

description, then some general constraints are set by our physical

intuition about the systems to which it applies. One of these is

that the mean force exerted by the heat bath (sometimes called the

radiation reaction force) is linear in the particle motion.

Another is that this force is the result of a gerL motion of the

particle and is independent of how that motion arose. This last

implies that the memory function -(t) should be independent of the

potential V(x) and the particle mass m, depending only upon the

parameters describing the coupling to the heat bath

The classical Langevin equation corresponds to a constant

spectral distribution: iQi + i0) = C, where C is the friction

constant. The equation (2.1) then takes the form:

mx + Cx + V’ Cx) F(t) . (2.9)

In this case, since the past motion does not appear, one says

there is no memory. On the other hand, the expression (2.2) for

the autocorrelation of the quantum mechanical random force takes

the form

<F(t)F(tr) + F(t’ )F(t)>

fdc h coth(N/2kT) cos(t - tt )

kTC coth[rrkT(t-t )/N] (2,10)

which is not proportional to a delta function in time. Thus we

have the situation that, although there is no memory, the quantum

mechanical process is not Markovian in the customary sense of the

term In the classical mechanical case, taking the limit h — 0,

we see from (2 3) that the commutator vanishes arid the

autocorrelation (2 10) of the random force becomes

<F(t)F(t’ )>
—-

2kTCÔ(t—t ) , (2 11)

which is the familiar form of the (Markoviani) classical theory.8

Note that this limit is not uniform. The time scale is h/kT,
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independent of the friction constant C and becomes longer the

lower the temperature

As a final remark, we draw attention to the fact that the

lower limit on the time integration in the memory term in (2.1) is

t -. This is first of all a clear indication that time reversal

invariance is broken, since the distant past is singled out over

the distant future On the other hand the equation is invariant

under time translations; t —* t + t0, which means that the

solutions x(t) correspond to a statton.ary quantum stochastic

process.

8
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TTT. THF POSITIVITY CONDITION

Here we show that the positivity condition (2.5) is a

consequence of the second law of thermodynamics, which in the

Kelvin-Planck form states: “It is impossible to construct an

engine which will work in a complete cycle, and produce no effect

excepting the raising of a weight and the cooling of a heat

reservoir” In our case we choose the heat reservoir to be the

system of a quantum particle coupled to the heat bath. We then

consider the effect of an applied c-number force f(t) that acts on

the particle. We suppose that this applied force vanishes in the

distant future and past, hut is otherwise arbitrary. Its effect,

therefore, is to carry the reservoir (particle coupled to the heat

bath) from a state of equilibrium, through a (continuous) sequence

of intermediate states, and back to a state of equilibrium. Thus,

the external force works in a complete cycle on an otherwise

isolated reservoir. The second law requires that the net work done

by this force be positive.

In this cycle, the instantaneous power supplied by the force

f(t) is

P f(t)<v(t)> , (3.1)

where v = x is the particle velocity operator. The net work done

on the system in the cycle is, therefore,

W = fdtf(t)<v(t)> . (3.2)

The mean or expectation value of the velocity appears in these

expressions because the second law addresses mean values,

fluctuations are another matter. The work (3.2) is therefore the

thermodynamic work and must be positive.

If we introduce Fourier transforms, the Parseval formula

allows us to write:

- 1
cx

W Jd()<v(-cs.)> > 0 , (3.3)

where, as in (2.4), we denote the Fourier transform by a

superposed tilde, e.g.,

= Jdte1tv(t)
. (3.4)

9
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Now since the memory function is independent of the external

potential, it is sufficient to consider the case of a free

particle, for which the Langevin equation (2.1) takes the form:

my ÷ fdt’i.i(t - t’)v(t’) F(t) + f(t) . (3.5)

Forming the mean and taking the Fourier transform, we get

[ -im + (ø + O)]<()> () (3.6)

where we have used the fact that F(t) has mean zero. Putting this

in (3.3), we find

W = fd [ -im + + . (3.7)

Replacing in the integration c —* - and using the reality

condition (2.6), we see that within the square bracket only

Re{( + iO)} contributes to the integral. If we then use the

reality condition on the velocity: (-) ()*,
we obtain the

following expression for the net work done by the force f(t).

w = Re{(
+ io+)}I<()>j2 (3.8)

The second law requires that this be positive for any f(t) which

vanishes at t = ±. Since (c) and, through (3.6), <(cL-)> are

therefore arbitrary, the integrand in this expression must be

positive for all We thus obtain the positivity condition (2.5).

We conclude this section witS; a pair of remarks about this

deceptively simple proof.

Clearly it is important that the operator x be a displacement

operator, so that f(t.)<v(t)> is the instantaneous power supplied

by f. Another way of saying this is that a term V(x,t) -xf(t)

added to the Hamiltonian of the system.. of particle plus heat bath

must result in a term f(t) added to the right hand side of (2.1).

One must therefore be cautious in applying the description in

Set±on II to an equation which is formally similar to the

Langevin equation but in which the physical meaning of x is

different.

In the proof we have assumed that when f(t) 0 the system

will in the course of time relax to a unique thermal equilibrium
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state. This is the passivity condition. In practice this requires

that the number of degrees of freedom in the heat bath must be

infinite and that the memory function must vanish for long times,5

i(t) 0 (3.8)

Indeed, when these conditions are not met there is in our opinion

no macroscopic description of the form (2 1)
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IV. THE INDEPENDENT OSCILLATOR MODEL OF A HEAT BATH

The 10 model is the very simple model in which the quantum

particle is surrounded by a large (eventually infinite) number of

heat bath particles, each attached to it by a spring The

Hamiltonian of the system is then

H F + V(x) + + m2(q - x)2j (4 1)

We of course have the usual commutation rules:

[x,p] z jh [JP] =
6jk (4.2)

and all other commutators vanish. This model is not original with

us, yet it appears rarely in the literature. Much more

frequently appearing is the superficially similar linear coupling

model in which the bath particles are attached to a fixed origin

(i e , in the sum in (4 1) x is set equal to zero) and the

coupling is represented by adding a term of the form xq We

shall have more to say about such models in Section IV. Here we

only stress that for any potential V(x) for which the uncoupled

particle Hamiltonian,

H0 z + V(x) , (4.3)

has a spectrum with a lower bound. i.e., has a ground state, the

same will be true of our Hamiltonin (4.1). It will not be true in

general for these other models

The derivation of the generalized Langevin equation from this

model takes but a few steps. The Heisenberg equations of motion

from (4 1) are

x = [x,H]/ih p/rn

p [p,H]/ih -V’(x) + m.2(q. - x)

q = [q.,H]/ih = p/rn.
(4.4)

p. z [p ,H]/ih -mw.2(q. - x)

where dot and prime represent, respectively, differentiation with

respect to t and x Elininating the the momentum variables, we can

12
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write these in the form:

mx + V’ (x) m.c.2(q. — x) , (4.5)

q. + c’.q (4.6)

The equations (4.6) are inhomogeneous differential equations for

the q., whose general solution is

t
q.(t) q(t) + x(t) - $dt cos’.(t - t’ ) x(t’ ) , (4.7)

where q(t) is the general solution of the homogeneous equation

( x 0 ). This is given by

sinc.>.t
q(t) q.cosw.t + p. , (4.8)

where q. and p. are time independent operators satisfying the same

commutation rules (4.2).

The seemingly straightforward step leading to (4.7) is in

fact profound, since in choosing the retarded solution of the

inhomogeneous equation we have broken the time reversal invariance

of the original equations. The picture we have is that in the

distant past the quantum particle is held fixed at x 0, say, by

fastening it to a large mass. The oscillators are then allowed to

come to equilibrium at temperature T, say, by a weak coupling with

still another bath. Then, still in the distant past, the system is

released and the subsequent motion is governed by the Hamiltonian

(4.1). This is typical of the way time reversal invariance is

broken in macroscopic equations: they describe only the time

development of a class of solutions of the microscopic equations.

The remaining steps are indeed straightforward, We put (4.7)

in (45) to get the Langevin eqution (2,1) with

y(t) = m..2cos.t (t) , (4.9)

where (t) is the Heaviside step function, and with

F(t) m.2q(t) . (4.10)

To find expressions for the autocorrelation and commutator of

we recall the expression (4,8) for q’(t) and that in the

distant past the oscillators are in equilibrium at temperature T

13
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and with respect to the Hamiltonian:
1 2 1 22

HB ( p. + q. )
corresponding to fixing x 0 in (4.1)

<q.q> Tr{.kexP(
- HB/kT )}/Tr{exP(

This means that

- H/kT

(4.11)

2,coth(hc./2kT)
6jk

hm .>.

<PJPk> 3coth(hc/2kT)
6jk

- <P1> jh
6•k

With these,using (4.8) and (4.10), we find

<F(t)F(tt) + F(t’ )F(t)>

(4.12)

3coth(h
(413)

2L

In a similar way, using the commutation relations (4.2), we find

[F(t),F(t’ )] = -i hm,o.3sinc.(t-t’ ) (4.14)

The final step is to form

(z) = Sdt eiZt m<2cos.t
0 (4.15)

2, 1

____

=
— ) m.. I2 z. j j ‘z —

J 3

/2kT)cosc. (t -

+ 1)
Z + La).

3

Using the well known result: 1/(x 4 i0) = P(1/x) - irrã(x), we see

that the spectral distribution is given by

+ i0)} . m.2[ 6( - .) + 6(c + Lo)] (4.16)

With this it is

that (4.14) is

positive, even

property of F(t)

and p.. We won’t

it is adequately

It is clear

the frequencies

oscillators, one

clear that (4.13) is equivalent with (2.2) and

equivalent with (2.3). (Note that this is a

distribution.) Finally, we have the Gaussian

which follows from the same property of the q.

discuss this Gaussian property further here since

treated in the literature.2

that, by suitably choosing the distribution of

and force constants for the independent

can with (4.16) represent the most general real,
14
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positive, even distribution, i e , the most general spectral

distribution This in turn means that, with the Stielt,jes

inversion theorem (2.7), one can represent the most general

positive real function, and through it the most general quantum

Langevin equation. We stress that this does not mean that in every

physical situation in which this equation arises the actual bath

is an IC bath, but rather that from a study of the equation and

its solutions (i.e.,from the macroscopic description) one cannot

tell the difference. It is remarkable that such a naive and simple

model has such generality.
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V RELATION WITH OTHER MODELS

In this section we consider a number of

generality it corresponds to the Hamiltonian:

Hvc = +
mcqj2 + V(x) + [

2

This model has a number of attractive features,

invariance for the free particle

immediately obvious. It is however identical with the 10 model,

We first make

transformation corresponding to the operator:

Again, it is straightforward to show that

2 1 22
- mc.x) + —mc. q.

33 3

operator:

1 21
—m.q.)l . (5.4)
2i 33 j

models and their relation with the 10 model.

A. Velocity coupling model.

This model is a version of the 10 model

coupling is through

other heat bath

but in which the

With sufficientthe particle momentum.

transi at ion

pi

2m.
3

I+ 2m33 qj

which we can see as follows.

(5.1)

e.g., the

(V0) is

U exp( - x )
It is a simple matter to show that under this

p — UpU p - m.L).q.

p3 —+ p - m.c.x

H — UtHU
2

-p
2m

a unitary

(5.2)

transformation,

X —4 X

(53)

+ V(x)
+ :: [

Next we make a second unitary transformation of the bath variables

alone, corresponding to the unitary

rin 1 2
= exj z( 2m.i +

tq. —U q.U
j i j i m.. j

33

H +UtH U =—+
i VCs 2m

2

p3 —‘

2

V(x)
+

r
[ 2m,

But this is exactly the Hamiltonian (4.1) of the 10

1 2 2
+ (q.

- x)

distribution Re{( + iO)

Therefore, the velocity coupling model is equivalent with the IC

model, and leads to the identical form (4.16) for the

(5 5)

model.

characteri sing

16

the quantum

spectral

Langevin
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equation. We should perhaps stress the fact that in making this

conclusion it is important that the unitary transformations (5.2)

and (5.4) do not change the coordinate operator x.

B. The blackbody radiation field.

A one-electron atom interacting with the radiation field in

the dipole approximation corresponds to the HamIltonian:

HD —( + + V() + hk(ata + (5.6)

where the vector potential is given by

2 i/2

X =
(2h

fke,S ( a + at ) (5 7)

Here the symbols have their usual meanings.3 The quantity k
the electron form factor (Fourier transform of the electron charge

distribution). Without loss of generality we have taken the form

factor as well as the polarization vector to be real. The

form factor, which is sometimes called a cut-off factor, must have

ths property that it is unity up to some large cut-off frequency )

after which it falls to zero.

The electrodynamic Hamiltonian (5.6) is a three dimensional

version of the velocity coupling Hamiltonian (5.1). To see this

more precisely, we introduce

2 2
4ne

= 2 ()
CkV

and write

+ ip

_______

(5 9)

I 2mh

The Hamiltonian (5.6) then can be written:

2rn[’ + mkk,S,S] + V()

2
(5.10)

2 1 2 2
+ ‘ +—m&) q-’

2m k,s 2 k k k,s
-. k
k,s

This form is clearly equivalent to the velocity coupling model

(5.1), excepting only the trivial difference that, because of the
17
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transversality condition, only two of the three components of

contribute to the coupling in each spatial direction. This gives a

factor of 2/3, so that for the blackbody radiation heat bath

the expression (4.16) for the spectral distribution takes the form:

+ iO) m]ez)[ 6(c
-

+ 6(c +

2 2
(5.11)

4re
k[

6(
-

+ 6(>
+ k]

Although with this expression we have shown the equivalence

of the blackbody field to an IC heat bath and have in principle

completely characterized the quantum Langevin equation for the

blackbody field, it is perhaps useful to exhibit some more

explicit formulas. Thus, the (three dimensional) random force is

= . (5.12)

In the limit of large volume for the blackbody cavity, we can use

the familiar prescription:

—+ V 3ç , (5.13)
(2n)

to write the spectral distribution in the form:

+ iO) = fdfk26(
2e2Zf 2

(5.14)

The physically significant results for this model should not

depend upon details of the electron form factor, subject, of

course, to the condition that it be unity up to some large

frequency C2 and falls to zero thereafter. A convenient form which

satisfies this condition is

2 2
(5.15)

LL) +C2

Using this in (5.14) the Stieltjes inversion formula (2.7) gives

(z) =
2e

.

(5,16)

This is the form obtained by direct calculation in an earlier

publication,15 Note, incidentally, that we see here a

manifestation of the general feature that the memory function is

independent of the external potential and the particle mass,
18



C.Linear coupling models.

The linear coupling model appears frequently in the

literature and in many guises. It is sometimes called the Ullersma

model,although it was discussed by several authors before
i7,iB,4

Ullersma. Another equivalent version is the

Schwabl-Thirring model. These are all oscillator-bath models in

which the coupling to the particle is through a term linear in the

particle displacement. The Hamiltonian is therefore of the form:

HLC = ÷ V(x) + ( ÷ M2q2 ) + x X.q. . (5.17)

However,this Hamiltonian has a grave defect: for a free particle,

V(x) = 0, there is no lower bound on the energy. This means that

there i no thermal equilibrium state; the bath is not passive. A

separate defect is that, again for the free particle, the

Hamiltonian is not invariant under spatial translations. Now, in

the papers we have cited, the authors have, at least implicitly,

recognized this and repaired the linear coupling Hamiltonian by

adding at a later stage a term:

‘ 2x2. (5.18)
2M..

JJ

With this addition the linear coupling Hamiltonian (5.17) becomes

2

+ V(x) + ( + M2[q
+ ) . (5.19)

But this is just the 10 model. To see this explicitly, one makes

the canonical transformation: q.—+ -(X./Mci)q.,

p.— -(M,c./X.)p.. Then one obtains the 10 Hamiltonian (4.1) with

m. = (5,20)
J J JJ

For this repaired model, the spectral distribution (4.16) is

Re( + iO)} = .) + 6 + . (5.21)

Thus, when properly repaired, the linear coupling model is

equivalent with an 10 model. Unfortunately, it is not always
19



realized that such a repair is necessary to make a physically

consistent model, and this has led to errors in the subsequent

literature. Moreover, the repair is riot unique. For example, an

added term of the form:

.Kx2
+ •-R1: xq)2, (5.22)

where K is a positive constant, will also repair the Hamiltonian.

But the result is a cUfferent model. In the well known work of

Ullersma, it was just such a confusion which led to an incorrect

form for the Langevin equation for a charged oscillator

interacting with the radiation field [Eef.16,Sec.6], a form which

misses the important high-temperature T2 dependence of the

oscillator energy.4

It would perhaps be useful to give here the relation with a

pair of functions which have appeared in the literature in

connection with the linear coupling model. The first of these

is Ullersma’s strength function (in Ullersma’s paper M.

r()

2

- ,) + 6( + )]
.

(5.23)

The second has been called the spectral denzity, and is given

by:

- .) - 6(c + )] . (5.24)

The relation with the spectral dis;ribution (5.21) of the repaired

model is

+ iQ+)
(5.25)

D.The rotating wave approximation.

This is a version of the linear coupling model. It appears

frequently in works on quantum optics, where it is generally

applied to the case of the oscillator, We do so here and consider

the Hamiltonian (5.17) for the linear coupling model with external

potential of the form:

1 22
V(x) x . (5.26)
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Tf one then introduces the familiar oscillator operators:

mc0x+ip M..q +ip.
a = , b. , (5.27)

(2mh
)i/2

(2M.h.)2
0

this linear coupling Hamiltonian becomes

= hc (aat + + hA)(bb + 1)

___________

t t t (5.28)
+ (ab. + ab, + a b. + a b. ).

3
3 3 3 3

The rotating wave approximation consists in discarding the terms
-s.f.

ab. and a b. in the second sum, to get

HRWA h<(aa + + h.(bb. +

(5.29)

+ (ab. + ab.).
i/Z 3 3

j (mM.w,)
303

This is the rotating wave approximation Hamiltonian.2

If we return to the original operators, using the expressions

(5.27) for the oscillator operators, the rotating wave

approximation Hamiltontian takes the form:

2
2 p

p 1 22 ‘ j 1 2 2
- + -m& x + ( + q )

(5.30)

p..2L4 jj 2mcL M.c.
3 03 33

Here we see that the rotating wave approximation consists in

replacing in the linear coupling model half of the

coordinate-coordinate interaction term with a corresponding

momentum—momentum interaction term. Like the linear coupling

Hamiltonian this one is defective in that the bath is not

passve. [In the language of quantum optics and the form (5.29) of

the Harniltonjan, for sufficiently small the lowest normal mode

frequency of the system is negative. There will then be an

associated ladder of energy eigenvalues stretching down to -.]

The Hamiltonjan must therefore he repaired and, again as with the
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linear coupling Hamiltonian, this repair is riot unique. One

obvious possibility is to add the terms (in the language of

quantum optics these would be called self-interaction terms)

X, 2

8M..2 + 8mLL02
(5.31)

which results in the Hamiltonian:

2
1

____

1 22

HEWA + 0p] + mu x

2

+ [ J + ij2[q
÷ 2x]2]

This repaired Hamiltonian is equivalent with an 10 Hamiltonian. To

see this we first make a unitary transformation with the operator:

ex[_ix 2h0.] . (533)

Under this transformation,

p UPU p - 2M&0j X — X

(5.34)

p. —* p , q. — q.
+ 2M.cc x

330

and the Hamiltonian (5.32) takes the form:

HEWA U2tu
(5 35)

22 p +c)
p 1 22 VI j 1 2r i j 0

= — + —m x + )C + —M.<. Iq. +
2m 2 0 211. 2 L

33 0

Finally a canonical scale transformation:

2
X.(c +c) 2Mü c

3 3 0

__

jj 0

2 q , p
- + )

pi, (5.36)
2M.c j 0

33 0

puts this Hamiltonian in the 10 form (4.1) with

2 2
.

((i> +.)
rn. =

°
. (5.37)

3 4 2
4rn w

33 0

Thus, the result of all these shenanigans j again an 10 model,
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This means that the rotating wave approximation is to no purpose

whatever. That is, it is only a variant of the seriously flawed

linear coupling model, and when the flaw is repaired one gets an

10 model. It would be much simpler to start from the beginning

with the 10 model, which is exactly solvable, with no need for any

approximation. It is surprising that this does not seem to have

been recognized in the many papers in which this approximation has

been applied. Lest we be misunderstood, we hasten to say that this

remark does not apply to the use of the rotating wave

approximation in discussing spin motion as in the nuclear magnetic

resonance problem.

Before we leave these linear coupling models we want to

stress again that they all correspond to a bath which is not

passive. This means that they must be repaired and the repair is

not unique. We have just seen how, starting from the same linear

coupling model, one is lead by what seems only a trivial change

of formalism to make different repairs which seem natural but

which give quite different forms for the Langevin equation.

E. The FKM model.

The FK.M model is of interest chiefly because the paper

in which it appeared was the first in which the correct

formulation of the quantum Langevin equation was

indicated.2 The model corresponds to a system of (2N+1)

identical coupled oscillators, with the one with index 0 singled

out arid placed in an external potential V. The Hamiltonian is of

the form:

H =
12

+ + V(%) , (5.38)

where the interaction matrix A is a symmetric cyclic matrix whose

elements can be written in the form

2N÷lki2312N÷1H . (5.39)

The eigenvalues of the matrix A are
k2

=
-k’

k z 1,2, ,N, arid

= 0. These are therefore the normal mode frequencies of the

coupled system in the absence of the external potential V. The

23
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system is therefore guaranteed to be passive. The eigenvalue zero

corresponds to the uniform translation mode. Thus it is possible

to write the Hamiltonian in the form:

H
12

+ + V() (5.40)

From this form it is clear that by a canonical coordinate

transformation this Hamiltonian can be brought into the 10

Hamiltonian. However, the transformation is rather complicated and

uninstructive, so we will forgo giving its explicit form. We can

however express the relation with the 10 model simply in terms of

the positive real function:

N
2 -i 1 ‘c

________

G(z) —izjj(A — z ) 1100 2N+1 2 2 (5.41)
() —2

k=—N k

where IL indicates the 00 element of the matrix within the

double bars. The function of the corresponding 10 model is given

by

(z) = m/G(z) + imz . (5.42)

(Note that for large , G(z) ‘

If one introduces the normalized spectrum of

eigenfrequencies,

g() 2N+1[6
-

+ 6(
+

, (5.43)

then one can write

G(z) -izJ (5.44)

Here one sees that, by appropriately choosing the spectrum of

eigenfrequencies, one can represent the most general positive real

function through these last three equations. Thus, the model

described by the Hamjltonjan (5.38) is completely equivalent with

th eneral IC) model. This generality was, however, not made

explicit in the original FKM paper, where the interest was in

deriving a model with a constant friction constant. Therefore at
an early stage the transition to the limit of a continuous

distribution of eigenfrequencjes was made. The spectrum was then
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chosen to be g(()) = (2f/n)(2
+ f2)i

which leads to the

Langevin equation (2.9) with (ü + i0) mf. This is the FKN

model.

F. The Lamb model

The Lamb model is the simple, physically intuitive, model in

which the particle is attached to the center of an infinite

stretched string. It was introduced by Horace Lamb in a paper

written in 1900,22 with the purpose of understanding the then new

notion of radiation reaction in electrodynamics. It will be

convenient for our discussion to generalize the model slightly,

and consider the particle attached to the center of the string by

a spring with force constant k and placed in an external potential

V(x). The Hamiltonian for the system is then

H F + V(x) + fdy[ +
+ [x - u(0)]2. (5.45)

Here u(y) is the string displacement and rz(y) is the corresponding

canonical field momentum. The mass per unit length of the string

is o and the tension is -r,

Rather than construct the canonical transformation to an IC

model, we think it more instructive to repeat the derivation of

the Langevin equation in the field theoretic language appropriate
23

to this Hamiltonian. The equations of motion are

x = , p -V’(x) - K[x - u(0)]

it 82u
(5.46)

+ K[x - u(0)]6(y)

Eliminating the momentum variables, the particle equations of

motion become

mx + v’ (x) -K[x - u(0)] , (5.47)

and the field equations of motion for the string become the

inhomogeneous wave equation:

2 2
2ôU K

—-

- c [x - u(0)]ó(y) , (5.48)
ày

where c (T/a)1’2 is the wave velocity. The retarded solution of

25
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this equation is

t-IyI/c
u(y,t) = uh(y,t) + 5dt’ [x(t’ ) - u(0,t’ )], (5.49)

Setting y = 0, we can solve for u(0,t) to write:

x(t) - u(0,t) = Idt’exp{
- K(tt’)}[ x(t’)

- öu(O:t) ] (550)

Putting this in (5.47) we get the Langevin equation (2.1) with

K exp{
-

} (t) 1 - 2iac/K (5.51)

In the limit K —. cx this becomes the classical Langevin equation

(2.9) with friction constant

= 2ac = 21 (5.52)

This is the Lamb model. It is clear that the quantum

generalization is straightforward; one need only quantize the

string field.
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VI Concluding remarks

Heat bath problems occur in such diverse areas of physics as

statistical mechanics, condensed matter, quantum optics, and even

atomic physics. The quantum Langevin equation affords a powerful

and physically appealing approach to such problems. Our point of

view in this work has been that this equation corresponds to a

macroscopic description of a quantum particle interacting with a

heat bath. Our main motive has been to show that this description

can be formulated with accuracy and precision, using such general

physical principles as causality and the second law of

thermodynamics, and such mathematical notions as the theory of

positive real functions. We have stressed that this formulation is

model-independent.

The fact that the description is macroscopic does not mean to

say that the “particle is necessarily macroscopic; the

description applies to a single atom,15 or to a Josephson
24

junction. Rather, as we have stressed, the bath must be

macroscopic, with an infinite number of degrees of freedom. This

requirement is not superficially obvious from the general

description we give in Section II and derive from the 10 model in

Section IV. Indeed, the derivation given in Section IV formally

applies for a bath consisting of a single particle! Rather, it

appears in more subtle ways, e.g., in the requirement that there

be a unique equilibrium state.

The 10 model has played a pr’minent role in our discussion.

We stress that this is only for reasons of convenience, It is a

simple general model that can easily be solved exactly and is

therefore very handy for calculations. But the macroscopic

description is model-independent.

An additional advantage of the IC model is that it

incorporates many other models that have appeared in the

literature. This allowed us in Section V to discuss in a unified

way such diverse models as the velocity coupling model, the

blackbody radiation heat bath, and the FKM model. There, too, we

discussed the linear coupling models arid pointed out that, since

they must be repaired to make them physical arid the repair is not

unique, they are dangerous to use and have led to errors in the
27



literature. Moreover, any repaired liner coupling model is an 10

model, so one might as well have started with the latter. Based on

similar reasoning, we showed that there is no computational

advantage in using the rotating wave approximation which, on the

contrary, is only a variant of the flawed linear coupling model.

And when the flaw is repaired one gets again an 10 model
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