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§1 Introduction

At the 1983 Swansea meeting I described joint work with J.V. Pulè {i] on the

weak law of large numbers in statistical mechanics; at that time we were unaware

of its connection with the principle of large deviations as formulated by Varadhan

[2]. Since then, we have found Varadhan’s theorems to be a powerful tool in

statistical mechanics (results of use in investigating models of an interacting boson

gas are described elsewhere in this volume [3]) and so it may prove worthwhile to

look again at the results of [1] with the benefit of hindsight.

§2 The Grand Canonical Pressure

Since the pioneering work of van Hove [4], the importance of proving the

existence of thermodynamic functions in the thermodynamic limit has been recog

nized. We recall the definition of the grand canonical pressure: consider a sequence

{At : £ = 1, 2, ...} of regions of Euclidean space R”, and denote the volume of At

by V; associated with each region A, is a countable set c2,, the set of configu

rations of particles in Aj; on 12, are defined random variables H, : —+R and

N, : I2 —+N; Hg(w) is interpreted as the energy of the configuration w and N,(w)

as the number of particles in w. The grand canonical measure P7 with chemical

potential j& is defined on subsets of 12, by

P7 [A] = 2,(,.r1 (2.1)

wA

here ,6 = 1/kT is the inverse temperature and (j) is the grand canonical parti

tion function given by

e(i) =
(2.2)

W

The grand canonical pressure p(JA) is defined by

pt(jh) = (flV,)11ng(j.). ,(2.3)



It is closely related to the cumulant generating function for the particle number

density Xt = Nt/Vt; a straightforward calculation yields the formula

[ extK[dz} = (2.4)

J[O,oo)

where K is the distribution function for Xt defined by K’ = c X7’. We

have introduced the concepts associated with the grand canonical pressure in the

simplest case. namely, when fl, is a countable set. But the formula (2.4) linking

the distribution function K with the grand canonical pressure holds in wider

contexts; for example, when 12 is an arbitrary measure space carrying a pair

of random variables Ht and Nj from which a grand canonical Gibbs measure can

be defined, or when H and N are commuting seif-adjoint operators on some

hubert space lt such that trace (er3{ ‘eHe}) is finite. Our first assumption in

the remainder of this note is that the distribution function K7 satisfies (2.4) for

some function pj(jA). Our second assumption is that p(ji) = lim1 p(i) exists.

From these two assumptions, much follows: the large deviation upper bound holds

and, with it, the Berezin-Sinai criterion for a first-order phase-transition; the

large deviation lower bound holds in the complement of first-order phase-transition

segments; if the limit function j.t i—÷ p() is differentiable at some j. then {K°

= 1, 2, . . .} converges in distribution to the degenerate distribution concentrated

at p’(,u0).

In probability theory, it is natural to prove large deviation results for sums of

independent, or weakly dependent, random variables: the Markov chain condi

tion is an example of a condition of weak dependence. I claim that. in statistical

mechanics, the natural condition of weak dependence is the existence of the pres

sure. In this note, we explore the consequences for the distribution of the particle

number density of the existence of the pressure.

§3 The General Setting

For each , in some open interval D of the real line, let {K : = 1. 2, ...} be

a sequence of probability measures on [0, oo) satisfying

(P1)

eV€txKh1dz1 — eV{pe(+t)_pt(1.)} <
Cl 1—

where {Vt : I = 1, 2, ...} is a sequence of positive constants diverging to +co.

(P2) The limit p(p) = limj1 pj(p) exists for all values of p in the interval of

definition, D.

The first consequence makes use of Holder’s Inequality and we omit the proof:



Lemma 1

Assume that (P1) holds; then ‘—p pe(,u) is convex. Assume. in additpp

j$j (P2) holds; then j p(u) is convex.

Lemma 2

For all + a in the domain of definition of K, the measures K and

are mutually absolutely continuous:

= e” ()K[dzJ, (3.1)

where
c(x; a) = az + p(jA) — pt(J4 + a). (3.2)

Proof:

f eK[dz]
=

[o,)

by (P 1); again, by (P 1), we have

P
j xt 1+

e’’ep(M)
i[O,oo)

= VPe(

The claim follows from the uniqueness theorem for Laplace transforms.

Theorem 1

Assume that (P1) and (P2) hold and that p is differentiable at j; then

(1) the limit p = lime1 f[o,) z K7[dz] exists.

(2) the sequence {K : I = 1, 2, . . .} converges weakly to the

degenerate distribution 5,, concentrated at p.

The proof utilises the convexity of the functions p, I = 1, 2, ..., established in

Lemma 1. This enables us to apply



Griffith’s Lemma

kt. {f = 1, 2, . . .} be a sequence of convex functions defined on a

common open interval G converging pointwise to a funct f. Let {zt

1, 2, ...} be a sequence of points of G converging to a poi x çf G. Then

f4_(z) liminf(fe)...(xe) limsup (ft)’(xt) f’÷(x).
+

(See {1j and references contained therein.)

Proof of Theorem 1:

By an elementary computation, f[O) zK[dz] = p(j) since, by (P1), the

moment generating function 8 I—’ J0) e8z K[dzj of K is finite on a neigh

bourhood of zero. Since p is assumed to be differentiable at j, it follows from

Griffith’s Lemma that {p(j.) = 1, 2, ...} converges to p’(jA)since, by(P2),

{pe : t = 1, 2, ..} converges pointwise to p on D. Thus (1) holds with p

By (P1), we have

e82K{dz} =
(3.3)

for s in a neighbourhood of zero and hence for all s in {-oo, 0]. Fix s and put

= + for sufficiently large, , is in D: moreover, limet j = u. By the

convexity of u t-+ pt(jA), we have

(pe)) {pj( + ) - p)}/() (p ) (). (3.4)

Since p is differentiable at jt, it follows from Griffith’s Lemma that both {(pj)(j.L)}

and {(pe)L(je)} converge to p’(j.). Thus we have

urn I e83 K[dz] = e9P; (3.5)
t—oo J[O,00)

But f[o,) e&Xöp[dz] = e’, so that (2) follows by the continuity and uniqueness

theorems for the Laplace transform.

Thus we have established that if the pressure p exists and is differentiable at

ji then the sequence {K’ I = 1,2, ..} satisfies the weak law of large numbers.



§4 The Heuristics of Large Deviatin

Returning to the context of §2, we have the following reformulation of

Theorem 1:

Suppose that the pressure p = limti p exists pointwise on the interval D

on which the p are delined and tha4 p is differentiable at j; then

(1) the limit p = lim1E[Xtj exists.

(2) jj g : [0, oo) —+ R be a bounded function which is continuous at p;

then limg1E[g(Xg)] = g(p).

Proof: (1) is a straight translation:

E[X] = Xt(w)P[w]
= f zK{dzJ.

[O,oo)

To prove (2), choose 6 > 0; by the continuity of g at p, there exists a neighbourhood

I,, of p on which I g(x) — g(p) <E Now

g(p) - E[g(Xg)j
= f (g(p) - g(z))K[dzJ (41)

[O,o)

Thus

g(p) - E[g(Xe)] f Jg(p) - g(z)K[dzJ

+ f g(p) - g(z)1K7[dz] 6+ 2M K7{Ij, (42)

where M = sup g(x). But, by Theorem 1, K7 —+ ö; this means that there

x€[O ,oo)

exists L, such that, for all t> t, we have K7[I] < E. Hence, for all 1> t,,

jg(p) — E7[g(Xe)] E (1 + 2M), (4 3)

but E was an arbitrary positive number, so that

urn E7[g(X)] = g(p) (4 4)

It sometimes happens in statistical mechanics that we find it interesting to intro

duce a perturbed grand canonical measure P7 which as conveniently defined via

its expectation functional E7[ I
- EM1Ae’th1()

EMrA1. LL 45
£ L 1



where u is a continuous function on [O,co) which is bounded above C we say

anything about
iixn

If the V factor were absent from the exponent, we could conclude that the limit

would be the same as before: g(p). However, the presence of the factor V causes

the fluctuations in X to contribute to the limiting value; we expect that the answer

will be g() where p, in general. There are two ways of proving this; they are

closely related, as we might expect.

We can introduce a perturbed Hamiltonian Ht(.i) = Hj() + V(u Xt)(w)

and use it to define a perturbed pressure t(ji). A straightforward manipulation

gives

= Pe(IL) + in E[e’<j (46)

Since

= f e1V(c)K[dz], (4.7)

[O,co)

proof of the existence of the pressure

= urn 5.i)

amounts to proving the existence of the limit

urn
1

in I e’NK[dxj:

&—oO,flV J[O,)

conditions on {K : = 1, 2, . . .} sufficient to ensure this were given by Varadhan

[2] in a general setting, and we will give a precise statement of them in the next

section Roughly speaking, they are that there exists a function P( ) [0 cc) —

[0, cc] such that K[dx1 e_1Ve(c)dx, in our case the only zero of L is at x =

p = p’(j), so that IM(. ) determines the rate at which P [A] goes to zero if p is

not in A Intuitively, one would expect that

1
In f e)K[dzj = sup {u(x) —

PL(x)}; (4.8)

tCO j3V [O,) [O,oo)

this is the conclusion of Varadhan’s First Theorem It follows that the perturbed

pressure (ji) exists and is given by

= p(jh) + sup {u(x) — I(x)}, (4.9)

[O,)



7

provided that u and {K} satisfy the hypotheses of the theorem. If is differen

tiable at , it follows from our previous argument that

urn E’{g(Xe)] = g5) (4.10)
t—oo

where now
‘= ‘().

Another way of computing this limit is via Varad.han’s Second Theorem: if

the supremum sup {u(x-P(x)} as attained at an isolated poant , then
[o,)

urn E[g(X)] = g(x).

We shall see, in our case, that the suprernum is attained at an isolated point if

and only if is differentiable at u and then x*
=

We have seen that large deviations from the mean (deviations on the scale of

V) are of importance in the evaluation of

1

It is for this reason that we are interested in the rate at which the degenerate

distribution is approached; those distributions which approach the degenerate dis

tribution exponentially fast are said to satisfy the large deviation principle Next,

we turn to the precise definition of this concept.

§ 5 Varadhan’s Theorems

Donsker initiated the study of singular perturbations of partial differential

equations by means of functional integration; he showed how, in the case of

Burger’s equation, a transformation introduced by Hopf can be used to convert

the equation to a linear equation which can be solved as a function space integral.

The perturbation problem can then be studied by an analysis of the asymptotic

behaviour of function space integrals; in the case of Burger’s equation, the asymp

totic analysis was carried out by Schilder [5]. Varadhan [2] showed how a class of

such problems can be treated using more general families of measures on function

space whose asymptotic behaviour is to be investigated; in §3 of [2], Varadhan gave

an account of the asymptotic analysis in an abstract setting. Subsequently, in a

sequence of papers, Donsker and Varadhan applied these methods to a wide va

riety of problems involving stochastic processes (a full bibliography can be found

in Varadhan’s monograph [6]). The method is a far-reaching generalization of



q

the saddle-point method or Laplace’s method for one-dimensional integ-rals It

our experience that whenever, in statistical mechanics an author claims to use the

saddle-point method, an efficient way of giving a rigorous proof is to check that the

hypotheses of Varad.han’s Theorems are verified For that reason, we summarize

here the results proved in §3 of [2J

Let E be a complete separable metric space; let {Kt : = 1, 2,
.. .} be a

sequence of probability measures on the a - field of Borel subsets of E and let

{Vt : I = 1, 2, ...} be a sequence of non-negative numbers such that V cc.

We say that {Kt} obeys the large deviation principle with constan {V} .i

rate-function I(.) if there exists a function I : E —+ [0, oo} satisfying:

(LD1): I(.) is lower semi-continuous on E.

(LD2): For each finite m, {z : 1(z) m} is con

(LD3): For each closed subset C of E,

urn sup— in Kt[C] — inf 1(z).
£_00Ve C

(LD4): For each open subset C of E,

1iminf! in Kt[G}> — inf 1(z).
t—ooVe —

For example, if I(.) is a lower semi-continuous function whose level sets are

compact and m is a a - finite measure on E such that x—÷ e(z) is integrable with

respect to m, and {V} is a sequence of non-negative numbers such that Vt

then the sequence {K} of probability measures defined by

f e’()m(dz)
Ke[AJ

= fEe3)m(dz)

(5 1)

satisfies the large deviation principle with constants {Vt} and rate-function I(.).

The definition above has the advantage that it does not require the existence of a

reference measure such as m. We are now in a position to state

Varadhan’s First Theorem

Let {K,t : I = 1, 2, ..} be a sequence of obability measures on Eobey.g

the large deviation principle with constants {Vt} p.nd rate-function I(.). Then,

any continuous function C on E which is bounded above, we have

urn —-- in f eV(x) Kt[dz] = sup {G(z) — 1(z)}.

[O,co) E

The condition that G be bounded above can be weakened;, it is enoug1ig

suppose that sup{G(z) : Z 6 Ue>1 suppK} is finite. The theorem can be extended



Cl!

to cover the situation where the function G is replaced by a sequence of functjo

{G : = 1, 2, ...}; this is Theorem 3.4 of [2 1.
Let Kj be defined by

It[A}
= ‘A

eV(x) K[dz]/ e’(z) Ke[dzj;

Varadhan’s Second Theorem gives sufficient conditions for the sequence of per

turbed measures to converge weakly to a degenerate distribution.

Varad.han’s Second Theorem

Suppose that A =sup {G(z) — I(z)} is attained at a point x’ of E and that
E

sup {G(z)—I(z)}<A
{x d(x,x9 }

for every E > 0; if gis a bounded function on E which is continuous at x then

urn f g(x)[dz] = g(z*).

§6 The Upper Bound in the General Setting

In this section we return to the programme, begun in §3, of exploring the

consequences of the existence of the pressure in the thermodynamic limit.

Theorem 2

Let {K : £ = 1, 2, . . .} be a sequence of probability measures on [0, cc)

satisfying (P1) and (P2); then (LD3) holds with rate-function I’(.) given_by

I’(z) = p(is) + f(z) —

where f(.) is the free-energy, the Legendre transform of p(.) : f(x) = sup {jix —

p(j’)}.

Proof:

First consider an interval I = [0, P1] with P1 < p’...(JA) (since ji t-+ p(,u) is

convex, the left-hand derivative p (JA) and the right-hand derivative p (,u) exist

for all pinD). Foreachtandeacha<0,wehave



K[IiJ
= f i1o,11(z)K[dz] f e’K[dxJ

[O,) [O,co)

= (6 1)

Thus
1

urn sup — in K[I1] p(,a + a)
— pCu) — aPi, a <0. (6.2)

e— T74f

It follows that

urn sup in K{I1J inf {p( + a)
—

p() — ap1 }
t—oo V a<O

sup {a’p1 — p(a’ )} — ppj}. (6.3)

But
sup{ap1 —p(a)} = sup {ap1 — p(a)}

since p <p(jA); hence

limsup in K[I1} —I(pi). (6.4)

Next consider 12 = [P2, co), where P2 > p. (,u). It follows in analagous fashion

that

urn sup in K7{12j
_L(p2). (6.5)

Now let C be an arbitrary closed subset of [0 , co); if C fl [p (a), p. (u)J is non-

empty then inf0 IM(x) = 0 and the inequality holds trivially since, for an arbitrary

Borel set A, we have K[A} 1; on the other hand, if C fl [pL(j4), p(j)] is empty,

let (p4, p) be the largest open interval containing [p’(j.&), p(jh)j which does not

intersect C so that C c [0, P1] U [P2, co) and
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linisup’ Lu K[C} Iimsup- ln{K{IiJ +K[I2}}

e— e—.,o t

(urn sup in K[J1j) V (urn sup in K [ j)

= (—I’(pjj) V (—P’ (P2))

=—infP(z), (66)

since x ‘— P (x) is decreasing on [0, p(jA)j and increasing on {p(jA), cc)

§7 The Berezin-Sinai Criterion for a First-Order Phase-Transition

We call an interval [xi, x2J of the positive real axis a first-order phase-

transition segment if the free-energy function z i—’. f(z) is linear for z1 z z2.

Since f(x) = sup {pz—p(jA)}, each first-order phase-transition segment corresponds

to a point j at which the grand canonical pressure is non-differentiable: there

exists j such that

[X1,X2] = p(j.i)J.

On such an interval, the pressure as a function of the density is constant In [7],

Berezin and Sinai established a criterion for the existence of a first-order phase-

transition segment; Dobrushin [8] simplified the proof considerably, pointing out

that the criterion reduces the question of the existence of a phase-transition to the

question of a “violation of the law of large numbers” in the grand canonical en

semble. Here we point out that the proof of the Berezin-Sinai criterion makes use

only of the large-deviation upper bound and this, as we have seen, holds whenever

the pressure exists.

The Berezin-Sinai Criterion

Suppse that, for some j of j, the rate function is symmetric about some

point x.3:
I0(z0 +y) =I0 (x0 —y)

for all y. ippe also that for some 5 > 0:

p7o[IXjxj 6 c >0

for all t sufficiently large. Then there is a first-order pase-trition at j

and the interval [x0 — 6, x0 + 6] is contained in the phase-transition segment



[P(1Lo), pCuo)]

Proof

Let C = (—cc, x0 —
6] U [x0 + 6, cc), then, by hypothesis

lim in K0 [C] = 0; (7.1)

by Theorem 2,

limsup— lnK°[C] —infI’°(x) 0. (7.2)
C

Hence II0(x) = 0; by the symmetry of P0(e) about x0,

inf{P0(x) : xE[—oo,x0J}

=inf{II0(x) : xE[x0+6,co)}=O (7.3)

so that x0 — 6 and x0 + 6 must lie in {p... (u°), (JA0)j and therefore

[x0 — ö,x0 +6] C [p(Jo),p(/o)]

§8 The Lower Bound in the General Setting

We define the first-order phase-transition set F to be the union of the first-

order phase- transition segments:

F = U[p(j.) Pf.(IA)]

where
S = { : p..(,u) p()}.

Theorem 3

Let {Ke, : t = 1,2, ...} be a sequence of probability measures on [0, cc)

satisfying (P1) and (P2); let G be an open subset of ran 9p\ F where t9p(j4) isth

sub-differential of p at ,u, then

iimi.uf in K7[G] _inflM(x).
t— V G



Let y be an arbitrary point of G; choose S so that the neighbourhood B =

(y — 5, y + 5) is contained in G; then

K[G] K[B}
fB

K[dxJ
= fB

eV()K7[d.x] (8.1)

for all JA in the domain D of K (by Lemma 2 of §3). Now choose a so that y

p’(JA + a); this is possible because, by hypothesis, y is in ran ap\ F. Then

K[B] = e_V() fB
e_61’ K7[B1. (8.2)

and, by Theorem 1, {K7+a}
—‘

5 so that K[B] > 4 for all t sufficiently

large. Hence

liminf in K[GJ> —I’s — Slat;
t—boo V

but S was an arbitrary positive number and y an arbitrary point of G; it follows

that

iiminf — in K[GJ sup(—I1(y)) — infI’(y) (8.3)
t—oO V G G

§9 The Large Deviation Principle in the General Setting

In this section we put together the results of §6 and §8. First. we note some

properties of the rate-function stemming from the convexity of the pressure j

p(). The free-energy f(s) is the Legendre transform of p(.):

f(x) = sup{jx p(j4)}. (9.1)

Hence
IM(x) = p(jh) + f(x) — jx 0.

We may regard IM(.) itself as the Legendre transform of the convex function

a i—p p(j4+ a) —p(Jh); it follows that x i-+
L (x) is a closed convex function and hence

lower semi-continuous, so that (LD1) holds. Since IM(x)+p(p+a) —p () — ax 0,

it follows that on the level set

Lm = {x : I’(x) m} ‘(9.2)
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we have
cx m + p(JA + ) — p(j.L); (9.3)

hence, for a > 0

ax= sup oxm+ sup p(+t)—p(j)
c[—a,a]

< 00. (9.4)

It follows that Lm is bounded; since x P(x) is lower semi-continuous, Lm is

closed; hence Lm is compact and so (LD2) holds.

In §6 we saw that (LD3) holds whenever the pressure exists in the thermody

namic limit; on the other hand, it is clear from §8 that more is required for (LD4)

to hold since it asserts the lower bound for all open sets while the existence of the

pressure suffices to establish the lower bound only for open subsets of ran 8p\ F.

A sufficient condition for (LD4) to hold is that p exists and is differentiable on the

whole of R and that ran p’ = [0, co); this is far from being necessary, however,

as can be seen from the case of the free boson gas (see [3J in this volume). Never

theless, this condition is satisfied sufficiently often to make the following theorem

useful:

Theorem 4

Let {K,: = 1, 2, ..} be a family of sequences of probability measures on

[0. 00) defined for all values of u in R and satisfyjg (P1) and (P2).

that p(.) is differentiable and that ran p’ = [0, 00): then. for each value of

JA, the sequence {K7 : = 1, 2, ..} satisfies the large deviati principle wit.

constants {Vt} and rate-function IM(.) given_by Pt(x) = p(j.L) + f( x) — px where

f(x) sup, {jx — p(J4)}.



§10 Remarks

I have attempted in this lecture to set out the results described in [1] in

the framework established by Varadhan [2], thus showing the probabilistic con

sequences of the existence of the grand canonical pressure in the thermodynamic

limit. Independently of [1], Ellis [9] proved a large deviation result for vector-

valued random variables; his basic hypothesis is the existence of the limit of a

sequence of cumulant generating functions, and Theorem 4 is a special case of his

theorem.
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