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Introduction

Finite temperature field(FTF) theory provides an elegant method for

describing thermal and quantum noise in an electrical network. This method

is applied to give fluctuation dissipation theorem results for the second

moments representing noise in a dissipative LRC quantum oscillator. Class

ical dissipation is understood from a phase space analysis. Quantum

dissipation can be studied with the aid of an effective Lagrangian obtained

from considering a semi—infinite low—pass filter. This provides a frequency

cut—off which yields finite second moments for both charge and current. The

method has been extended to interacting oscillators, coupled by mutual

inductance, to investigate a system which may be useful in the detection

of vibrations induced by gravitational radiation.

FTF Quantization of an Electrical Network

Extending methods from Refs. 2, and 3, the charge density field at

inverse temperature B = l/KT is represented as a spectral integral

Q(x,y,) = fQ(x,y,)dw.
(1)

This field along with its conjugate momentum satisfies the canonical commu

tation relation. These fields can be expanded in terms of the filter in

field operators

f(B)=l/(e—l), (2)

which satisfy Boson commutation relations.

At frequency w the Lagrangian density for a lumped circuit of induc

tances and capacitances Cj is

—

+ H(x) E LTj((atQwj)2
—v2(w)(aQj)2)/2.

+A longer version is available upon request.
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The part associated with the Heaviside distribution represents the effective 2

Lagrangian for a low—pass filter of impedance

Z(a,b) = iwL0/2 + (L0/C0 — w2L02/4)
(4)

which determines the velocity of propagation and the cut—off frequency.

The field equations are found from the action

S=fJf atQ,6)dxdtdw.
(5)

Dissipative LRC Oscillator

Classical dissipation for an LRC oscillator of charge q and momentum

p=L4 is obtained in phase space from the modified Hamilton’s equations

dQ/dt=aH/P, dP/dt = — aH/3Q — a(P2/2)/aP
(6)

with P=p/(w0LY, Q=q/(w0C)’, =R/Lw0, t= tc0,w0=(LC), and 2H=P2÷Q2.

The phase space spirals are found from

dP/dQ+-i-P/Q = 0, (P+aQ)a/(P÷bQ)b = Constant.
(7)

-‘ 2 Y

with a=/2÷c, b=y/2—f, and c=((/2) _l)2.

Quantum dissipation is described by a spectral Langevin equation,

obtained from (5), with a frequency dependent damping constant. The moments

in terms of z=2KT/$aj0 are found as matrix elements with finite temperature

vacuum states to be

a2(Q,z) = ){K1(Q,z)/Lw2K
2(Q,O)

(8a)

o2(L,z) =Lc0K3(Q0,z)/K2(Q0,O)2
(8b)

where Q0(v) =Q0/(l(/A
)2)’,Q0=Lw0/R, = w/w0, A=2Q0C/C0 and where

Km(Qo,z) = fdvv coth (v/z)/Q0()(
(

2-l
)

2+(v/Q
0()

)
2)2.

(8c)

The solutions are normalized so that Q(t,a) and LQ(t,6) satisfy the Dirac

bracket.

These methods have been extended to the case of interacting LRC oscilla

tors which are coupled by mutual inductance. Expressions similar to (8) for

the second moments of the separate branches of the circuit may be obtained

in the fluctuation dissipation theorem form

a2(Q ,6) = (tk/21T) I Z(z1(w), z2(w))w coth (Thi/KT)dw. (9)

Circuits of this type are being studied for their possible use in the

detection of gravitational radiation.
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