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ON THE SEQUENCE OF PEDAL YRIANQLES

by J. G. ingston* and J. C. Synge Fp*

*
Ospart of flathemati University of NOtting0 Nottingh NG7 2R0

School of Theoreca
1 Physics Oub7in InstitLltS for Advanced Studies

10 Ourlingto, Road, Dublin
, Ireland

Altjou goompt have Studied the properties of triangles for Over two

thousand years, there still remain problems of interest involving
operations

performec
infinite7y

often. A given trianglc T genera55 a seque00 of tri

angles T where T1 is the Pedal triangle of T. This seque00 was discussed

by Hobson 11897 1925) hut, while his formulae for the traflsiti0 from T to

n÷1 n 0
T are correct those for T in terms of T are not. Lacking correct formulae,

we experiment d numerically taking the angles of T to be integers in degree2

To our surprise the angles in th Pedal sequence became Periodic with periods

of twci,5 Steps The explanation of this curious fact led to a gener0 in-

VC5tigj
00 of pedal sequences reveaijg that (a) the seque9 may stop by

of the triangle to a straight segmen (b3 the angle5 may devei0

any Periodicity or Ic) the sequence may proceed to infinity without Periodicity.

We give necessary and sufficient conditions on the angles of T corresponding to

these Options nd discuss the periodic case in some deta±i.



t IntOuctiOn

The pedal (or fir triangle T’ of a given triangle T is forIed

by ioining the feet of the perpendicUlar droppec from the Vertices of T o

the °PP°5ite Sides produced if necessary.
OXeter (1959) prefeis the word

orthic to peda’ but we shall Use the latter word, following a welle5tablsd

tradition

The pedal of T’ the second Pedal of 1, and so on. Th sequeno Stops

iff we encounter a rightang
triangle, its peda] is a Straight line segmer

The condition for this is givej, in

Hobson (1897, 19253 discussed Pedal sequen
05 stating correctly that the

SIdEs and angles of T’ are given in terms of the elements of T by the following

formulae. if A,B,g are all acute

a’ a cos A, b’ = b cos 6, c’ = c cos C

(1.13

A’ = 2A, B’
-

26, 6’
-

26;

if A is obtuse,

a’ = a co A, b’ b cos 6, c’ c Oo ,

(1.2)

A’ 2A -

,
6’ 26, C’ 2 0,

with similar formulae if B or C is obtuse. He gave formulae for the elements

of the nt(i pedal, different according as n is odd or evenS For n odd, his

foula for the first angle of the nth pedal is

(1/3312n ÷ 2 (1.33

if n i (fir’st pedal) this gives 2A, correct for A acute by (1.13 but

false for A obtuse by 11.2) Consequently Hobsons formulae for th angles of

the nth Pedal must be relected In fact the Occurrence of obtuse angles makes

it impossible to write down any reasor]abl
simple eXplicit formulae for the

of the nth pedal. But Hobson’s formulae for the Sides of the nth pedal are

corract to within a sign, and we may write for tho first Side of th nth Pedal
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n—I
a D cos A cos 2/\ cos 4A cos 2 A (1 4)

n —

the sign bong chosen to give a positive va]ue

2. The sidos.and angles of the nth pedal triangle

The notation A’ a ‘ = 1 2 3 s now introduced to represent the angles

A,B,L and sides a h c of the triangle T The angles and sidos of the ih

pedal triangle will thus be represented as A’ and a . Equations (1.1) and

(1.2) show that the angles progress according to the rule

= 2EA’(mod ii], I = 1,2,3, (2.1)

c’here E may be +1 or -i according to the nature of the original triangle T

bul is independen’c of 1 For the ang1e of

A’ =

2E
A’(mod T) (2.2)

n n

where F = ÷1 so that
n —

I I. ni
9sin A = F sin 2 A (.3)

n n

wherp E = ÷1 and may differ for dfferent i It is [nown ihat the cicumradius

is halved when we pasc’ from a triangle to ,t pedal and so

R = 2nR (2.4)
n

I . I i . i
But a = 2 R sin A , a = 2 R sin A and so (.3) and (2.4) may be combined

n n n

to give

1 -n i i P1 1
a = 2 E a sin 2 A / sin A (2 51

n n

ni . n-li n-li
Since sin 2 A = 2 sin 2 A cos 2 A , (2.5) may be continually expanded until

sin A’ cancels, becoming

i ii i ,,i i n—li
a = F a cos A cos LA cos 4A ... cos 2 A , (2.6)

n n

agreeing with (1.4).

Equatiuns (2 2) and (2 5) enable A’ and a to he computed pacicly (2 5)

determLne e1 and also the sign of E (since a1 > 0) (2 2) then determne A’
ii - n n n
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3. Pedal degenEracy

The pedal of a right-angled triangle is a straight segment and this has no

pedal; the pedal sequence stops. We call a triangle T pedally degenerate (PD)

if a right angle occurs in T or in the pedal sequence which starts with T. It

is evident from (2.3) that I is PD iff one of its angles is of the form

(3.1)

where rn and n are positive integers. Thus the angles responsible for PD are

/2, 1T/4, it/B, .. 3ir/4,. 3n/B, . Sit/B, Sir/16,

A pedal sequence is infinite i-i’ it starts from a triangle which is not PD.

4. Pedal cycles

Let T and T he triangles in the pedal sequence which starts with I,

assumed not PD. It is clear that if I is similar to T , then T is similar
s+n s s

to T , I , .. We say then that we have an n-cycle starting with T
s+2n s+3n —— S

We need some formulae id preparation for a theorem about n-cycles, these

formulae being independent of the existence of an n-cycle. From (2.2)

A’ - A’ = E 2s(7n+E)Ai (mod it) (4.1)
s±n s sn

where E = - F /E = +1 and is independent of i. Also, from 12.5)
S s-f-n —

i i -n i . s-i-n i . s i
a /a --2 E sin2 A /sn2 A (4.2)

s+n s

where F’ = ±1 and depends on i.

1HEDREfI I: T is similar to T (and so I starts an n-cycle) iff T is not PD
s+n S S

and its angles are of the form

A’ it p’ / F(s,n,E), i = 1,2,3, (43)

- s n
where FEs,n,E) = 2 (2 +e), F = +1 , (4.4)

and p’ are positive integers satisfying

1 2 3
p ÷ p + p F(z,n,E), (4.5)

except that E=1 for n=1 and s=D or 1.
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Proof of sufficiency

We have to show that, if the angles of T are of the form (43J then T is
S+n

similar to T From (45)

A’ = p’ / (2(2 + H)

so that

s+n i i S i
2 A= ‘rip -E2 A

and hence

,,s-’n i i Si
sin = F sin 2 A

where F’ = +1 and depends on i. Since a1 and a1 are positives (42) now
— S 5fl

shows that

i i -n
a /a = 2
sn s

proving that T is similar to T
50 S

Proof of_necessity

We have to show that if T is similar to T , then the angles of T are
50 S

i i
as n (1.3L Since A = A, (41) gives

bO S

2 (2÷E) A’ = 0 (mod ii)

where E = ±1 and is independent of i, so that A’ are indeed of the form (43).

The p’ obviously satisfy (45). Necessity is now proved

The exceptional cases noted after (45) are due to the fact that for rn-I and

s=0 or I there are no partitions of F(s,n,E) if E = -1.

It might appear from the preceding theorem that, if the angles of T are as

in (43), then the n-cycle does not start until we reach T But that is not

necessarily the caseS Suppose for example that s=1, so that the partition in

(4.5) is

p1 + p2 p3 = 2(2°+E) = 2F(0,n,E) (46)

This partition can he realised by even numbers, p’ = 2q’, and when these are

substituted in (4.3) we get
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=
qi

/ F(O,n,E), E
qi

F(O,n,E), (4.7)

and the theorem tells us that T1, is similar to T0 (=T). Tho general conclusion

is that for any positive integer s we can push back the beginning of the n-cycle

from T5 to T by choosing
i = 25qi in the partition (4.5).

5. Examples

The only triangle which maintains its form under the pedal process is the

ii
equilateral triangle: here we have a monocycle (n=1), and there seems that there

is no more to be said. But Theorem I shows that we may start with a scalene trianglc

which,after a delay represented by s, settles down into a monocycle. Choose, for

example, n=1, s=4, E=1, so that F = 16 x 3 = 48. We are now to take a partition

of 48, but taking care to avoid PD. Thus 48 = 3 + S + 40, 3/48 = 1/16 and this

is PD by (3.1). But 48 = 4 + 7 + 37 is not PD. To see how the sequence develops,

we go back to (1.1) and (1.2), starting with the angles 4w(48, 7w/48, 37w/Ill. The

fantor w/48 being understood, so that a right angle is represented by 24, and with

obtuse angles marked by an asterisk, the calculation proceeds as follows:

4 7 37*

8 14 26

16 28 4
(5.1)

32 8 8

16 16 16

16 16 16

The monocycle has been established in the fourth step.

We have verified Theorem I by numerical calculation for various values of

s, n and E. In §7 we shall discuss the dodekecycle from which this work
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originated. one further example here we shall take the heptacycle (n=7)

without delay (s=0), but for both values of E.

For E=1, we have F = 2 + I = 129 = 3 x 43, and we see from (3.1) that no

partition can be PD. Let us see what happens to a triangle which is nearly

equiiateral, using the same notation as earlier, a right angle being represented

by 64&:

42 43 44

45 43 41

39 43 47

51 (5.2)

27 43 59

75* 43 11

21 86 22

42 43 44

The cyclo is completed in seven steps.

7
For E = -1, we have F = 2 - I = 127, which is prime and no partition can

give PD. With a right angle at 63j, and a triangle nearly equilateral, we have

40 43 44

47 41 39

33 45 49

61 37 29
(5.3)

5 53 69*

10 105* 11

20 85* 22

40 43 44

The cyc)e is completed in seven steps.
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6 Penal ancostry

Given a triangle T which is not PD, it generates a unique infiniLe pedal

sequence, which may be cyclic or, in general, not so. A triangle T1 c-F

which T is the pedal may be called the antipedal of T, and so we are led to

consider all triangles T (with n positive) which include T in the pedal

sequence generated by them. To use a biological term, these constitute the

ancestry of 1
— 0

Consider the followin relations between the ang’es A’ A’ of the
n n+1

trangies T and F
n n-’

i i i i
A . 2e A - TIC d , e = 1, d 0 or 1. (6.)

n÷’l no nn n — n —

Although theso formulae as they stand are highly ambiguous, they are in -Fact

equivalent to the basic formulae (1.1) and (1.2). Let denote summation

with respect to i. Then

= A’ = , (6.2)
n n+1

and so (6 1) implies

= 2 - e (6 3)
n n

iFe ---1 then
n

d’= (1,1,1), (6.4)
n

and (6.1) gives precisely (1.1); since A’ = - A’÷1, all angles of T are

acute. But if e = 1, we can satisfy (6.3) only by choosing

= (1,0,0) (6.5)
n

or some peimuation of thdt this gives by (6 1)

A’ - 12 A1 - 2 A2 2 A3) (6 6)
n n n

s the came oz (1 2) and it i obvious that A1 s obtuse

Thu t’hen ali,od to the angle-sum equaLion iC 2) (6 Ii is cquvalent
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to our basic equations, ahd has the advantage that we may read it the other way

round to give antipedals:

A =je A +4wd,
n n n+1 n

where

i i
e +1, d =Oor+1, Ed =2-e. (8.8)

n — n — n n

But there is a big difference now: the ambiguities now refer to the angles we

are seeking (thoce of Tn) and not to the given triangle Tn+i• There is in

fact a fourfold ambiguity in the antipedal: any triangle has four parents,

each step backward in the pedal sequence being determined only by our decision

to make T acute-angled, or to have a specified anglo obtuse.

Every person now living (male or female) had a unique ancestor ten thousand

years ago if one goes back along a male line or a female line. Similarly

every triangle has a unique line of ancestors if it proceeds through acute-

angled triangles or through triangles in which some specified angle is obtuse.

i
To follow the acute ancestry, we are to choose e - -1, and dn = (1,1,1)

so that (6.7) gives

= I hr — A1) (6.9)

or

- ir/3 = - I (A.1 - ir/3) . (6.10)

Thus the ultimate acute ancostor of any triangle (itself acute or obtuse) is

an equilateral triangle, infinitely large since the circumradius is doubled

in each step backward.

As for the obtuse ancestry, with A obtuse, we are to use (6.7) with

en = I and d as in (6.5). Thus at each step we halve the angles A and Ai

the ultimate ancestor has angles (ir,O,O).

The fourfold ambiguity in the antipedal renders the backward extension of

a pedal cycle complicated, since, to reproduce it, we would need to choose the

proper pdrent at each step. Our knowledge of the distribution of obtuse
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angles in a cycle is so far purely experimental. But note that no cycle, except

the 1-cycle,, can consist of purely acute angles, for (6.10) shows that, as a

sequence of acute triangles progresses, each acute angle differs from w/3 by

twice as much as its predecessor. Obviously one angle will sooner or later

become obtuse.

7. The likelihood of dodekacycles

The preceding results are the outcome of observing the existence of 12-cycles

in numerical experiments with triangles whose angles were each an integral number

of degrees. This was initially proved by noting that 22 (212_I) is a multiple

of 180, the index in 22 indicating a possible delay of 2 before the dodekacycie

commences. A more complete statement follows.

THEOREM II: Consider a triangle T in which the angles are integral in degrees,

but does not have an angle of
450, 900 or 1350. Then T generates a 12-cycle. If

T has any odd angles, this cycle starts with the second pedal of T; if all the

angles of T are even, but not divisible by 4, the cycle starts with the first

pedal T1; and if all the angles of T are divisible by 4, the cycle starts with

T itself.

Proof: The exclusion of the specified angles implies, by (3.1), that the

sequence is infinite. Since the angles are integral in degrees, in radians

they are of the form

Ai = 11 q’/18O, (7.1)

whore
qi

are positive integers satisfying

Eqs’ = 180. (7.2)

OeWine positive integers by

= 91 , (7.3)

so that
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We have to thank the Babylonians for dividing the semicircle into 180 degrees,

since otherwise pedal cycles might have remained undiscovered. But a closer

examination shows that cycles would hove been found had we taken angles integral

in seconds of arc or integral in grades (IbO grades 900) or, more generally,

91 x 180 4 x 4095 = 4 (2 - I) = F(2,12,-1)

Thus we have

A1 = p1 / (180 x 91) = p / F

(7.4)

(7.5)

rate the delays, hero are examples, the angles being given in

pi =

by (44).

These are of the form (4.3) with s = 2, n = 12, F = -1, and so by Theorem I

they goneiate a 12-cycle. As for the possible delay in starting the 12-cycle,

these are covered by the remarks at the end of §4. That completes the proof.

To illust

degrees:

61 63 56 62 64 54 64 68 48

58 54 68 56 52 72 52 44 84

64 72 44 68 76 36 76 92* 12

52 36 92* 44 28 108* 152* 4 24

104* 72 4 88 56 36 124* 8 48

28 114* 8 4 68 100* 68 16 96*

56 108* 16 8 136* 36 136* 32 12

112* 36 32 16 92* 72 92* 64 21

44 72 64 32 4 144* 4 128* 48

92* 36 52 64 8 108* 8 76 96*

4 72 104* 128* 16 36 16 152* 12

8 144* 28 76 32 72 32 124* 24

16 108* 56 28 116* 36 64 68 48

32 36 112* 56 52 72

64 72 44

In the first example

third with T.

the 12-cycle starts with T2, in the second with T1, and the
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(in radians)

Ai = wqi / M, (7.6)

where
qi

and M are positive integers. By Theorem I we knnw that, if T has

such angles, and is not PD, it generates an n-cycle iff there exist positive

integers s, n (with s = 0 permitted) to satisfy

qi25(2n+E) =piM, (7.7)

with E = I or -1.

A solution (nob unique) can always be found by making use of the Euler

function $ whose relevant properties (Dickson, 1939) are as follows: •(rn)

is the number of positive integers, not exceeding the positive integer m,

which are relatively prime to m: if p1, p2, p are the dIstinct prime

factors of m then

$(m) = m (1 — p’1) (1 — p21) ... (1 — p’): (7.8)

if a is prime to m,

E I (mod m). (7.9)

THEOREM III: If a triangle T has angles

i i
A =wq /M,

where M are positive integers, then T generates an n-cycle with n = &

where M1 is the odd integer obtained from M by dividing out all powers of 2

contained in M.

Proof: Write

M
=

2 M1 (7.10)

where t is zero or a positive integer and M1 is an odd integer. The form of

+(M1) given in (7.8) shows that •(M1) is even and it may be”shown that

2(M1)t’2
= E1 (mod M1) (7.11)

where E1 = I or -1 and where M1 is odd, M1 3 (Sce Appendix A.) A solution

of (7.7) may be obtained by taking

s = t, E = - E1, n = •(M1)/2 (7.12)
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i i
p = yq , (7.13)

whero y is the positive integer determined by

- = y M1 (7.14)

and so the theorem is proved.

Let us apply the theorem to the case of a triangle with ang)es integral

in degrees. If M= 180 = 22 x 45, so that s = 2, = 45, 4i(M1) = 24,

Theorem III shows that we must get 12-cycles as already proved by Theorem II.

For M 180 Theorem III gives the “best” result in that triangles exist whose

shortest pedal cycle is a 12-cycle.

What cycles are generated by T if its angles are integral in grades?

With 11 = 200 = 2 x 25, s = 3, 111 = 25 and +(M1) = 20, so that Theorem III

indicatos 10-cycles. Here are two experiments, first with a high)y obtuse

triangle and socond with one which is nearly equilateral. The angles are

measured in grades, so that the sum is 200 and the right angle 100.

1 2 197’ 65 67 68

2 4 194’ 70 66 64

4 8 188’ 60 68 72

8 16 176’ 80 64 56

16 32 152’ 40 72 88

32 64 104’ 120’ 56 24

64 128’ 8 40 112’ 48

128’ 56 16 80 24 96

56 112’ 32 40 152’ 8

112’ 24 64 80 104’ 16

24 48 128’ 160’ 8 32

48 96 56 120’ 16 64

104’ 8 08 40 32 128

8 16 176’ 80 64 66
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In each case we get a delay of 3 steps (corresponding to s=3) and,

as the shortest cycle in each sequence is a 10-cycle, Theorem III again

gives the best possible result.

However this is not always the case and the estimate 4(M1]/2 for

cycle length can be wildly out as the following example (Ribenboim, 1972)

shows: when N = 10932 (1093 is prime), (N1)/2 = 1093.546 = 598,778.

But 2182 E - I (mod N1), so that a solution of (7.7) may be found with

n=182, and we may conclude that there exists a cycle of length 182, a con

siderable improvement on 4(N1)/2.

8. Spin and rotation in a pedal sequence

Having labelled the vertices of a lriangle T with the letters ABC,

Lhe labelling of its pedal T’ is defined by putting R’B’C’ on the vertices

of 1’ which lie on thd sides opposite ABC. Thus a pedal sequence consists

of labelled triangles in each of which the alphabetic passage round the

triangle is either clockwise or the reverses following the usual convention

for rotations, we shall say that a triangle has spin ÷1 if the passage is

counter-clockwise and -1 if it is clockwise, and we shall denote the spin

by a.

If T has spin a, its pedal P has spin a if T is acute-angled and

spin -a if T has an obtuse angle. This is seen at once from inspection.

THEOREN IV: Let T start an n-cycle so that the angles oF T are the same

as those of T. Let n be he number of obtuse angles in the set T to T
0 n1

Let a he the coin of T and a that of T . Then a = a according as n
0 n n — 0

is oven or odd.

This follows immndiaely from the preceding statement, In the examp]es

(5.2] and (5.3] and those of §7 we have n = 2,3,10,8 10 9 7 we have no
0
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theory to predict such values and they remain merely observed faces.

To bring out certain points, consider another example. Put s0, n’3, E=-1

in (.3), so that F=7, and p’ form a partition of 7, say 1,2,. The angles

of T are then ir/7, 2ii/7, and 4j/7, and, with the factor ir/7 understood, the

sequence runs

1 2 4*

2 4* 1
(81)

4* 2

1 2 4*

A tricycle s comp]eted. The first point is that all four triangles are

similar, but different, not only in size, but because the labelling of the

several angles changes. The second point is that, although we see four

asterisks, n=3 for one complete cycle because we do not include the last

line of entries.

To deal with the third point, we need to clarify our terms. Two triangles

are congruent if the three sides of one are equal to those of the other (Coxeter

1969, p.5). But two congruent triangles may have different orientations, so

that, to superimpose them, we must either take one out of the plane and turn it

over, or, equivalently, reflect it in a line. As a simple notation we suggest

C to denote congruence with the same orientation and Cd to denote congruence

with different orientations. The following theorem can be verified by a simple

sketch:

THEOREII V: Let T and T’ be two congruent triangles. Let the vertices of T

be labelled A,B,C and those of T’ labelled A’,B1,C’ so that for the angles we

have Az-A’, B-B’, C=C’. Then T and P are C if they have the same spin and

Cd if their spins dif+er.

Since n=3 in (8.1), it follows from Theorem lV that T and 13 (magnified

rr’ ,y’r P
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(a) Rotation in pedal cycles

Starting from a triangle T which is not PD, we may derive from it a pedal

sequence, infinite and in general not cyclic in respect of angles. There is

no sense in speaking of the “rotation’ of the triangles in such a sequence.

But it is different if T starts an n—cycle. Then T0 is congruent to T if it

is magnified by a factor
2n

with respect to any point. This magnification

does not change the directions of the sides of T , and so, if T has the samen n

spin as [, we can transform T into the magnified T by a translation and

rotation, the rotation being independent of centre of magnification. Indeed

the magnification is unnecessary if we are to consider only rotation.

Tc study this rotation, we start with the following theorem:

THEOREN VI: Let T be a triangle with vertices A,B,C and P its pedal with

vertices A’,B’..C’. Let R(BC), RICA), R(AB) bo the angles through which the

directed sides BC, CA, 1B must be turned bo make them coincide with the directed

sides B’C’, C’At, A’. Then

ç it (mod 2it) if T is acute-angled,
R(BC) + RICA) + R(A6) =

(8.2)

C 0 (mod 2ir) if T has an obtuse angle.

Proof: Let T be acute-angled. If the pedal T’ is removed, we are left with

three triangles (Fig.1) each congruent to T but with different orientation. We

Fig. I here

change the direction of BC to that of A’B’ by rotation through the angle A, and

A’B’ to B’C’ by rotation through an angle 26, so that R(BC) = A +2B. The other

rotations are given by cyclic permutation, and so we get the first part of (8.2).

This result is easy to remember if we take T equilateral, in which case each of

the three rotations is obviously Ti.
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itie second part of (8.2) may also be proved from a figure, but it is com

plicated. An algebraic proof is given in §9, and the result will be assumed

here. Again it is easy to remember the result from a particular case, namely

that in which T has angles 2u/3, rr/6, triG; the pedal T’ is then equilateral.

Consider now an n-cycle which starts with T and is completed with Tn a

triangle similar to T. When magnified by a factor 211, T is congruent to T,

but they may be either C or Cd. Let n0 as before be the number of obtuse angles

in the set T to Tn_i (or equivalently Ti to and na the number of acute-

angled triangles in that set, so that

n +n =n. (8.3)
0 a

We have to consider four cases:

n n n
o a

(i) even even even

(ill even odd odd (8.4)

(iii) odd even odd

(iv) odd odd even

Case (i)

Theorem IV tells us that spin is consorved (an = a); by Theorem V then T

and Tn (magnified) are C5; the rotations of the three sides are therefore the

same, say
8n’

and by (8.2), since is even, we have

= 2irr/3, r = 0, +1, ... (8.5)

On completion of the cycle, the triangle has rotated through one of the angles

= 0, 2ir/3, -2ir/3 (all mod 2w) . (8.6)

Case (ii)

Again T and T11 (magnified) are C5, so that all three sides have the same

rotation
3n’

which by (8.2) is
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I
o = -- In Ti ± 2rr), r = 0, --1,

fl .3 a —

(B.7)

= (2s + 1)ir/3, s = 0, +1,

so thaL on completion of the cycle the triangle has rotated Lhrough one of the

angles

O = Ti/3, Ti, -H/3 (all mod 2Ti). (8.8)
n

Cases (ai) and (iv)

With n odd, T and T (magnified) are C and the sum of the rotations of
o n d

the sides as in (8.2) has no simple meaning. We shall not pursue these cases

furt her

(b) Repeated cycles

I-F we repeat an n-cycle, we get a 2n--cycle, starting with T and ending with

T2. Since this 2n-cyc3e contains an even number of triangles of each kind,

Case Ii) alone applies, and by (8.6) T2 is rototed relative to T through one of

the angles

02n = 0, 2g/3, —2jr/3 (all mod 2ir). (8.9)

I-F we repeat again, we get a 3n-cycle, starting with T and ending with T3n

Since multiplication by 3 does not alter parity, all cases in (8.4) apply, and

we get an interesting result. In Case Ii) the rotation is

8, = 0 (mod 2ir), (8.10)

so tnat the sides o T re parallel to tnose of I while in Case (i) the

rotation is

0 = ir (mod 2Ti), (8.11)
3n

so that the sides are parallel but reversed in direction.

I-F we repeat the. do-cycle obtaining a Cn-cycls from T to T6 again only

Case (i) applies, and we get the following theorem:
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where

u = (b2 - c7) / a2 = sin (B-C) / sin A (9.4)

v and w being obtained by cyclic permutation, (a,b,c) and (A,B,C) are the sides

and angles of T; (uvw) satisfy two equations:

ua2 + vb2 + wc2 = 0, (9.5)

and

u + v + w ‘ uvw 0, (9.8)

or equivalently

11(1+ u) = 11(1 - u), (9.7)

these being cyclIc products, (9.5) follows from the concurrence of three

prependiculars to the sides of T, and (9.8) from the concurrence of three lines

drawn from the vertices to tho opposite sides of T (Ceva’s theorem).

We might write (9.3) in matrix form, the elements of the matrix involving

only (u,v,w), and proceed to follow a pedal sequence by multiplying matrices.

Since the iteration of (9.3) tells the whole story of a pedal sequence, this

would be the obvious plan if the goal were to find the pedal sequence arithmetic

ally, starting from some given triangle. But the numbers (u,v,w) would have

to be revised at each step and their structure (9.4) is such that such a method is

not likely to reveal general properties of mathematical interest.

By subtraction (9.3) gives formulae for the transformation of the directed

sides

= B- x + vy - wz), etc. (9.8)

By (9.2) these may be written

= & (1+v)y+(1—w)z

y’ = & (1+w)z(1—u)x , (9.9)

z’ = j (1u)x+(1—v)y

Iteration of these equations would give the whole history of a pedal sequence

to within a translation.

We shall now use these formulae to fill in the proof of Theorem VI, treating
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x,y,z as complex numbers. Writing P for the products in (9.7], we get

0xy’z’ 2xyzP + I(i-u2)(1+v)x2y Z(1-u2)(1-w)x2z, (9.10]

) denoting a cyclic sum By 19 4)

I + u = 2 sin B ccJs C / sin A, 1 - u = 2 coo B sin C / sin f\,

p = 8 coo A cos B coo C,

2 ‘2 2
(911]

(1 - u 3(1 + v) = P sin’C / sin A

2 .2 .2
(i — u 3(1 — w) = P sin B / sin A.

Thus (9.10) gives

8x’yz’/(xyz) = P12 (x/z)sin2C/sn2A + (x/y)sin2B/oin2A (9 12)

If we now substitute for x from (9.2), the two summations together give

- 1h2 + c2]/a2 - Z(y/z)c2/a2 - I(z/y)b2/a2. (9.13)

No it is easy to see that

y/z = - (b/c) e10A, (914)

where e is the spin of T, and 19.13) reduces to -3. Hence

x’yz’/(xyz) = -P/B - -cosAcosBcosC (915)

The essential point here is that the quotient of two complex numbers comes out

real, the argument being independent of acuteness or obtuseness. Since

arg(x’/x) is the angle of rotation from x to x’, we see from (9.15) that the

corn of the rotations from x to x’, from y to y’ and from z to z’ is (mod 27r)

when I is adute-angled and 0 mod (2H) when T is obtuse-angled.

We shll now use the algebraic method, with vectors rather than complex

numbers, to establish a result needed later. This result is indeed well known,

but the usual proof uses a diagram, or rather two, to take care of both acute-

and obLuse-a-igled riangies

Let H, K end 0 be respectively the orthocentre, circumeentre and centroid o I,

so that Euler’s equation reads

H - 2K = 30 (9 Ci

liagn] fy T’ Lu a I arto’ 2 iLIi H as centre this encrates ponts X , Y’ 7’



such that

= 2X’ - H, etc. (917)

Take the origin at the clfcumcentra of T so that K = P tken (9 16) gives

H = 30 = X+Y÷Z. (9.16)

By (9.3) we have from (9.17)

- x + uy

2 2 22
(919)

= X 2uXx ± u x , etc.,

scalar products being written without dots. Now H-X’ is perpendicular

to x, and so

(H - X’)x = 0, (9.20)

or by [91B) and (9.3)

(Y + Z)x (2X - ux)x 0. (9.21)

But ( + Z)x = (Y + Z)(Y - 7) = (2
- 0, (9.22)

since X,Y,Z lie on the circurncircle of T. Hence by (9.19)

x2 = = = R, (9.23)

where R is the circurnradius of T. This is the desired result: the points

X”,Y”,Z” lie on the circumcircle of T.

10. Representation on a circle

A triangle T is completely specified if we know (i) its circumcentre K,

(ii) its circumradius R and (iii) the positions of its verLices A 6,0 on the

circumcircle. Let T’ be the pedal of 1. Then, from the result at the end

of the preceding section, magnification by a factor 2 with centre at H, the

orthocentre of T, carries the vertices o-F P onto the circumcircle of T, giving

us three points which describe T’ to within a translation. Proceeding in this
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way, we may represent all members of a pedal sequence by triads of points on a

single circle, the circurncirclo of the triangle from which the soquonce starts.

To illustrate this, let us put s.0, n=4, E=-1 in (4.4), eo that F=15, and

start with the partition (1,3,11). Then, with a factor ir/15 understood, the

totracycle is as follows:

1 3 11*

2 6 7

11 3 1 (10.1)

7 6 2

1 3 11

Since n and na arc both even, Case (i) of (8.4) applies, so that spin is

conserved, and if we repeat the cycle twice to obtain T12, we get by (8.5) a

total rotation 0 (mod 2w), so that T12 is similar and parallel to T, its sides

reduced by a factor 212, so that it is extremely small.

But if we adopt the magnification process described above, using as centre

of magnification for each triangle the orthocentre of its predecessor, and

denote by Tr the magnified version of Tn then all vertices lie on the circum

circle of T, as shown in Fig. 2, which goes as far as This triangle is

identical with T except for the exchange in position of two vertices:

C6=A, these letters referring to the vertices of the magnified triangles.

Evidently another 6 steps will produce f12 in exactly the same position as T,

with A12=A, B12=B, C12=C. This is entirely consistent with Theorem VII which

predicts that six 4-cycles produce a triangle which when magnified by 224 will

be a pure translation of the original triangle. In the present representation

this means that f24 is in exactly the same position as T, which is verified for

this example.

[ Fig.2here



Representation on a circle permits us to write down, in a single form

irrespective of acuteness or obtuseness, formulae -For an angular step in the

pedal process, including rotation of sides From a triangle T with vertices

(X,Y..7), we generate, as in (9.19), the magnified pedal T” with verticos

(X’,Y”,Z”) whore

=
- X + u(YZ), u (b2-c2)/a2, etc. [10.2) -

Although derived in a vector context, we can now use complex variables, since

the equations are linear. Write

X = Re’, Y = 7 = Re’, (10.3)

with double primes inserted -For X”, Y”, Zr’, so that (10.2) gives

=
- - u[e’

-

(10.4)

Now

a2 = R2(e1
-- e)(e’ - e’)

(10.5)

= 2R2(1 - cos(-)),

and so

u (10.6)

I - cos(n -

with v and w given by cyc]ic permutation. When these are substituted into

(10.4) and its cyclic companions, we have formulae for and hence

-For X”,.Y..Z”, the vertices of the magnified pedal. From these the angles

of that triangle are easily obtained. The advantage of this approach lies

in the fact that we avoid reference to the -Fact that the sum of the angles of

a triangle is are completely arbitrary, except fnr the avoidance of

pedal degeneracy.



11 Conelu on

We have discovered two facts: the negative -Fact that Hobson was

in error and the positive fact that pedal cycles exist. But we have

been unable to locate the pedal point, by which we mean that point which

is the limit oF an infinite pedal sequence cyclic or not Another

unsolved prDblem is to locate the in—poini which is the limit of a

sequence Ln wh±cn the vertices oF T1 are the points o-F contact o-F the

sides of Tn with its inscribed circle. There are no cycles in this

sequence since the angles tend steadily to ir/3.

One of us (J.L.S.) thanks a colleague, Professor J. T, Lewis, -For

useful discussions.

Pppenoix A

Tneorem Let n and a be positive integers greater than unity relaLvcly

prime and with n odd. Then

a2n) E(a,n) (mod n) (A.1)

where E(a,n) is 1 or -1 according to the following rules:

(i) I-F n is a prime p. then E(a,p) = 1 i-Ff the quadratic congrue.nce

2
X E a (mod p) (A 2)

has a solution

(ii) I-F n is a power c-F a prime p then E(a,n) = E(a,p)

(iai) IF n is divisible by at least two different primes tnen F(a n)

(iv) If a = 2 and n is a prime p, then

E(2,p) = I i-F p = -- I (mod B)

(A. 3)

=—1 i-F p = + 3 (mod B).
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Proof:

Ci) Hero +(n) = p-I and

= aI1) = I or -I (A.4)

according as the congruence (A.2) has, or has not, a solution (Vinogradov

1954). This determines E(a,p).

(ii) Here n
= m,

and we know that the result is true for m = I. We

proceed by induction using

•(Pm+1)
= •(“)1 (A.5)

and assuming that

= Em +
kPm, CA.6)

where Em = +1 and km is an integer. Raising to the power p, we get

mI
9 E1 (mod

m+1)
(A.7)

where

E = E. (A.8)m+1 m

Since p is odd, all the E’s have the same value, viz. E(a,p), and so Cii) is

proved.

Ciii) Now n = nln2...nr where these factors are powers of different

primes and r exceeds 1, this being in fact the factorisation of any odd

composite number. Since these factors are relatively prime we have

•Cnl = •Cn1) •Cn2) •Cn) CA.9)

and so

a4 = N1 = •Cn2) •Cn3)
... +(n). CA.1O)

Thus by Cii)

= E kn1 , E = +1. k = integer. CA.11)

Since the n’s are odd, the +‘s are even; thus N1 is even, and the

ambiguity in E disappears when we raise to the power N1, obtaining



Similarly

a*(h1) i + c2n, etc.

and so there exist integers c1, c2,
... cr such that

Hence c1 contains n2,n3,
... nr

9 1 (mod n),

of (i). Thus it is a question of seeing whether the congruence

2
x 92 (modp) (A.15)

has solutions. But we can do it otherwise by equating two different

:t.expressions for the Legendre symbol (Vinogradov 1954, pp.. 81, 85), H.

2
Hp-I)

(mod p) 9 (fl(P1)/8 (A 16)

Now any odd prime p may be written in one of the forms 8m±I, 8rrj3, with m

an integer, (p2-I)/8 is even in the first case and odd in the second

Thus (iv) is established

As for E(2,n), the results (ii) and (iii) are available:

E(2,Pm) = E(2,p), E(2,n) = I,

when n is divisible by at least two different primes.

Dickson, L. E. 1939 Modern Elementary Theory of Numbers pp. 9-12,Chicago:

The University Press.

...Hobson, E. W. 1897 A Treatise on Plane

pp 194-200 Cambridge

Trigonometry (second edition),

University Press

= I + c1n1, c1 = integer1

c1n1
= czn2

.(A.12)

(A.13)

(A.

.H.:t..:This establishes (iii).

(iv)

= cn.
rr

as factors, and so

11)

Now a = 2, and n is a prime p, so that this is a special case

(A.I7)
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