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ON THE SEQUENCE OF PEDAL TRIANGLES
by J. G. Kingston* and J. L. Synge, F.R.S.**

* Department of Mathematics, University of Nottingham, Nottingham NG7 2RD
** School of Theoretical Physics, Dublin Institute for Advanced Studies,

10 Burlington Road, Dublin 4, Ireland

Although geometers have studied the properties of triangles for over two
thousand years, there still remain problems of interest involving operations
performed infinitely often. A given triangle TO generates a sequence of tri-

angles T where T is the pedal triangle of T . This sequence was discussed
n n e n

+7
by Hobson [{897,‘ﬂ925] but, thle his formulae for the transition from Tn to

Tn+1 are correct, those For'Tn in terms of To are not. Lacking correct formulae,
we experimented ngmerically, taking the angles of TD to be integers in degrees.

To our Surpriée the angles.’in the pedal sequence bécame periodic with periods

of twelve steps. The explanation of thiskcurious tfact led to & general in-
vestigation of pedal sequences, revealing that (a) the sequence may stop by
degeneration of the triangle io a straight segmenﬁ, (b) the angles may develop
any periodicity, or (c) the sequence may proceed to infinity without periodicity.

We give necessary and sufficient conditions on the angles of TD corresponding to

these options, and discuss the periodic case in some detail.



1. Introgduction

e
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The pedal (or first pedal) triangle T' of a given triangle T is formed
by joining the feet of the perpendiculars dropped from the vertices of T on

the opposite sides, produced if necessary. Coxeter (1868) prefers the word

crthic to pedal, but we shall use the latter word, following a well~estab1ished
tradition.

The pedal of T' is the second pedal of T, and so on. The seguence stops
iff we encounter a right-angled triangle; its pedal is‘a straight line segment.
The condition for this is given in §3.

Hobson (1897, 1925) discussed pedal sequences, stating correctly that the
sides and angles of T' are given in terms of the elements of T by the Followiﬁg

formulae: if A,B,C, are all acute,

a' = 'a cos A, b' = b cos B, c' = c cos C;
(1.13

A' = - 2R, B' = - 2B, C' = - 2C;

if A is obtuse,

a' = - a cos A, b' = b cos B, c' = c cos C,
(1.2)

A' = 2A - m, B' = 2B, c'r =220,

with similar formulae if B or C is obtuse. He gave formulae for the elements

of the nth pedal, different according as n is odd or even. For n odd, his
formula for the first angle of the nth pedal is

(/332" + 1w - 2"A (1.3)
ifn =1 tfirst pedal) this gives m - 2A, correct for A acute by (1.1) but
false for A obtuse by (1.2). Consequently Hobson's forﬁulaetFor the angles of
the’nth pedal must be rejecfed. In fact the occurrence of obtuse angles makes
it impossible toc write down any reésonably simple explicit formulae for the angles
of the nth pedal. But Hobson's formulae for the sides of the nth pedal are

correct to within a sigr, and we may write for the first side of the nth pedal



a, = *oa cos A cos 2A cos 4A ... cos 2n—1A, (1.4)

the sign being chosen to give a positive value.

2. The sides. and angles of the nth pedal triangle

The notation Al, al, i =1,2,3 is now introduced to represent the angles
A.B,C and sides a,b,c of the triangle T. The angles and sides of the nth
pedai triangle will thus be represented as Ai and ai . Equations (1.1) and

(1.2) show that the angles progress according to the rule

Aj = 2EAT(mod %), i = 1,2,3, (2.1)

where E may be +1 or -1 according to the nature of the original triangle T,

but is independent of 1. For the angles of Tn’
At = 2"E AYGmod T (2.2)
n n
where En = +1 so that
sin AL = E- sin 2"A" (2.3)
. n n ,
where Ei = +1 and may differ for different i. It is known that the circumradius

is halved when we pass from a triangle to its pedal, and so

R =2 R. (2.4)
n .
i . i i . i - .

But a, = 2 Rn sin An’ a = 2 R sin A" and so (2.3) and (2.4) may be combined
to give

a~ =2 " E a sin2'A" /sin AT, (2.5)
Since sin 2"AY = 2 sin 2n—1Al cos 2n—1Al, (2.5) may be continually expanded until
sin Al cancels, becoming

ai = Ei a” cos A" cos 2A" cos 4AT ... cos Zn_qu, (2.6)

agreeing with (1.4).
Equations (2.2) and (2.5) enable Ai and ai to be computed precisely; (2.5)

determine ai and also the sign of Ea (since a; > 0); (2.2) then determine Ai.



3. FPedal degeneracy

The pedal of a right-angled triangle is a straight segment and this has no

pedal; the pedal sequence stops. We call a triangle T pedally degenerate (PD)
if a right angle occcurs in T or in the pedal sequence which starts with T. It
is evident from (2.3} that T is PD iff one of its angles is of the form
n -
m(2m-11/2, (2.1)
where m and n are positive integers. Thus the angles responsible for PD are
/2, w/4, w/8, ... 3w/4,:3%/8, ... 510/8, 51/16, ...

A pédal sequence is infinite if it starts from a triangle which is not PD.

4, Pedal cycles

Let T and TS+n be triangles in the pedal sequence which starts with T,

o

assumed not PD. It is clear that if TS+n is similar to Ts’ then TS is similar
to T , T , We say then that we have an n-cycle.starting with T .
S+2n s+3n : PP s

We need some formulae in preparation for a theorem about n-cycles, these

formulae being independent of the existence of an n-cycle. From (2.2)

AL - pt = E 292"+e)Aat  (mod ) (4.1)
s+n ) S s+n

where E = - ES/Eq+n = +1 and 1is independent of i. Also, from (2.5)
tosat = - 2TV ET gin 28T AT / sin 2% At (4.2)
s+N S

where ET = +1 and depends on i.
THEOREM I: Ts+n is similar to TS {and so TS starts an n-cycle) iff T is not PD

and its angles are of the form

A" = mpT / Fls,n,E), i = 1,2,3, (4.3)

i
N

where Fis,n,E]} (2 +£), E = +1 , (4.4)

and pl are positive integers satisfying
p1 + p2 + p3 = F(s,n,E), (4.5)

except that E=1 for n=1 and s=0 or 1.
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Proot of sufficiency

We have to show that, if the angles of T are of the form [4.3); then TS+n is

similar to T_.  From (4.3)
o

pl - apt s %" s BN,

so that

2SN al L gl s g 2® AT
aﬁd hence

sin 2 +nvA1 = Fi sin ZSAi,

where Fi = +1 and depends on 1. Since ai and ai+n are positive, (4.2) now
shows that

ai+n az = 27",
proving that Ts+n is similar to TS .
Proof of necessity

We haye to show that if T is similar to T_, then the angles of T are

sS+N S

n

as in (4.3). Since A AN, (4.1) gives
~sin s

2% 2ME) Al - 0 (mod ™
whefe E = *1 and is inaependent of i, so that Ai are indeed of the form (4.3).
The pi obviously satisfy (4.5). Necessity is now proved.

The exceptional cases noted after (4.5) are due to the fact that for n=1 and
s=0 or 1 there are no partitions of F(s,n,E) if E = -1.

It might appear from the preceding theorem that, if the angles of T are as
in (4.3), then the n-cycle does not start until we reach Ts. But that is not
necessarily the case. Suppose for example that s=1, so that the partition in
(4.5) is

pl o+ p? o+ pd = 2(2™4E) = 2F(0,n,E) . (4.6)
This partition can be realised by even numbers, pi = 2qi, and when these are

substituted in (4.3) we get
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AT =g / FIO,n,E), Ig = F(0,nE), (4.7)
and the theorem tells us that Tn is similar to TO (=T17. The general conclusion
is that for any positive integer s we can push back the beginning of the n-cycle

from TS to T by choosing pl = ZSql in the partition (4.5).

5. Examples

R

The only triangle which maintains its form under the pedal process is the
equilateral triangle: here we have a monocvcle (n=1), and there- seems that there

is no more to be said. But Theorem I shows that we may start with a scalene triangle
which,after a delay represented by s, settles down into a monocycle. Choose, for
example, n=1, s=4, E=1, so that F = 16 x 3 = 48, We are now to take a psrtition

of 48, but taking care toc avoid PD. Thus 48 = 3 + 5 + 40, 3/48 = 1/1B6 and this

is PD by (3.1). But 48 = 4 + 7 + 37 is not PD. To see how the sequence devalops,
Wwe go bacK to (1.1) and (1.2), starting with the angles 4n/48, 7n/48, 37w/48. The
factor w/48 béing undersgéoﬂ, so that a right angle is represented by 24, and with

obtuse angles marked by an asterisk, the calculation proceeds as follows:

4 7 37*

8 14 26*

16 28* 4
(5.1)

32* 8 8

16 16 16

16 16 16

The monocycle has been established in the fourth step.
We have vériFied Theorem I by numerical calculation for various values of

s, n and E. In 87 we shall discuss the dodekacycle from which this work
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originated. As one further example here we shall take the heptacycle (n=7)
without delay (s=0), but for both values of E.

For E=1, we have F = 2/ 4 1 =129 = 3 x 43, and we see from (3.1) that no
partition can be PD. Let us see what happens to a triangle which is nearly
equilateral, u5iﬁg the same notation as earlier, a right angle being represented
by 643%:

42 43 44
45 43 41

39 43 47

51 43 35

(5.2)
27 43 58
75* 43 M
21 88* 22
42 43 44
The cycle is completed in seven steps.
For E = -1, we have F = 27 - 1 = 127, which is prime and no partition can
give PD. With a right angle at 6331, and a triangle nearly equilateral, we have
40 43 44 |
47 41 39
33 45 - 49
61 37 29 (5.3)

5 53 69*
10 1068* 11
20 85* 22
40 43 44

The cycle is completed in seven steps.



G. Pedal ancestry

Given a triangle TD which 1s not PD, it generates a unique infinite pedal
seqguence, which may be cyclic or, iﬁ general, not so. A ffiangle T;q of
which TD is the pedal may be called the antipedal of To’ and so we are led to
consider all triangles T-n (with n positive) which include TD in the pedal

sequence generated by them. To use a biological term, these constitute the

ancestry of TO .

Consider the following relations between the angles Ai, Ai+1 of the
triangies T and T
n n+1
AT . =2e AL - me d, e = +1, d* = 0or +1. (6.1)
n+1 non nn n - n —

Although these Tormulae as they stand are highly ambiguous, they are in fact

equivalent to the basic formulae (1.1) and (1.2). Let ¥ denote summation

with respect to i. Then
i i _
ZAH = ZAn+1 T, (6.2)
and soc (6.1) implies
gdt =2 - e . : (6.3)
n n -
Ife = -1, then
n .
i
d- = (1,1,1), (6.4)
n .

i

_ . y i,
and (6.1) gives pr901sely,(1.1); since An = iq An+1’

all angles of Tn are
acute. But if e, = 1, we can satisfy (86.3) on;y by choosing
' = (1,0,00 (6.5)
or some permutation of that; this gives by (6.1)
ST E N N O S SOR (6.8)

which is the same as (1.2), and it is obvious that A; is obtuse.

Thus, when allied to the angle-sum equations (6.2), (8.1) is equivalent



to our basic equations, and has the advantage that we may read it the other way
round to give antipedals:
. 1 3 i :

A" =3 e A LT 1y Dn, (6.7)
where

e = +1, d- = 0 or +1, $d- = 2 - e . (6.8)

n - n n

But there is a big difference now: the ambiguities now refer to the anglés we
are seeking (those of Tn] and not to the given triangle Tn+1' There is in
fact a fourfold ambiguity in the antipedal: any triangle has four parents,
each step backward in the pedal sequence being determined only by our decision
to make Tn acute-angled, or to have a specified angle obtuse.

Every person now living (male or female) had a unique ancestor ten thousand
years ago if one goes back along a male line or a female line. Similarly
every triangle has a unique line of ancestors if it proceeds through acute-
angled triangles or through triangles in which some specified angle is obtuse.

To follow the acute ancestry, we are to choose e = -1, and di = (1,1,1)

so that (6.7) gives

i, i
A=t ln - A L) (5.9)
or
AL - /3 = - L (AN, - w/3) . ' (6.10)
n n+7 . .

Thus the ultimate acute ancestor of any triangle (itself acute or obtuse) is
an equileteral triangle, infinitely large since the circumradius is doubled
in each step backward.

As for the obtuse ancestry, with A; obtuse, we are to use (6.7) with
e, = 1 and di as in (6.5]. Thus at each step we halve the angles Ai ana Ag;
the ultimate ancestor has angles (w,0,0).

The fourfold ambiguity in the antipedal renders the backward extension of
a pedal cycle complicated, since, to reproduce it, we would need to choose the

proper parent at each step. Our knowledge of the distribution of obtuse
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angles in a cycle is so far purelyAexperimental. But note that no cycle, except
the 1—cyclef can consist of purely acute angles, fo? (6.10) shows that, as a
sequenbe»of’acute triangles progresses, each acute angle differs from 7/3 by
twice as much as its predécessor. Obviously one angle will sooner our later

become obtuse.

7. The likelihood of dodekacycles

The preceding results are the outcome of observing the existence of 12-cycles
in numerical experiments with triangles whose angles were egach an integral number
of degrees. This was initially proved by noting that>22 (212-1] is a multiple
of 180, the index in 22 indicating a possible delay of é before the dodekacycle
éommences. A more complete statement follows.

THEOREM ITI: Consider a triangle T in which the angles are‘integral in degrees,
but does not have an angle of 450, 30° or 135°. Then. T generates a 12-cycle. It
T has any odd angles, this cycle starts with the second pedal of T; if all the

angles of T are even, but not divisible by 4, the cycle starts with the first

and if all the angles of T are divisible by 4, the cycle starts with

pedal T1;
T itself.
Proof: The exclusion of the specified angles implies, by {3.1), that the

sequence is infinite. Since the angles are integral in degrees, in radians
they are of the form
At = 1 qt/1s0, (7.4)
where qi are pnsitive integers satisfying
zqt - 180. (7.2)
Define positive integers by

p* = 91 g, (7.3)

so that
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EpT = 91 x 180 = 4 x 4095 = 4 (2% - 1) = F(2,12,-1) (7.4)
by (4.4). Thus we have

A = mp” / (10 x 81) = p /F . (7.5)

These are of the form (4.3) with s = 2, n = 12, E = -1, and soc by Theorem I
they generate a 12-cycle. As for the possible delay in starting the 12-cycle,

these are covered by the remarks at the end of §4. That completes the proof.

To illustrate the delays, here are examples, the angles being given in

degrees:
61 B3 56 B2 64 54 B4 68 48
58 54 BB 56 52 72 52 44 84
59T se 76 36 76  92*% 12
52 36  g2* 44 28 108%  152% 4 24
104% 72 4 88 55’ 36 124% 8 48
28 144* B 4 68’ 108* 68 16  96*
56 108% 16 8 136* 36 136 32 12
112* 38 32 16 92 72 92% B4 24
44 72 B4 32 4 144% 4 128% 48
92* 36 52 64 8 108* 8 76 96*
4 72 104* 128% 18 38 16 152% 42
8 144* 28 76 32 72 32 124* 24
16 108* 58 28 116* 3B 64 656 48
32 35 112 565773
Yy

In the first example the 12-cycle starts with T2, in the second with Tq' and the

third with T.

We have to thank the Babylonians for dividing the semicircle into 180 degrees,
since otherwise pedél cveles might have remained undiscovered. But a closer
examination shows that cycles would have been found had we taken angles integral

- - 3 - n ") O
in seconds of arc or integral in gradee (100 grades = 90 ] or, more generally,
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(in radians)

A:.L = wqi / M, (7.8)
where qi and M are positive integers. By Theorem I we know that, if T has
such angles, and is not PD, it generates'an n-cycle iff there exist positive
integers pi, s, n (with s = 0 permitted) to satisfy
gt 2% "By = pt o, | (7.7)
with E = 1 or -1.

| A Solu?ion [not unique) can always be found by making use of the Euler

function ¢ whose relevant properties (Dickson, 1938) are as ?ollgws: ¢ (m)
is the number of positive integers, nof exceeding the positive integer m,

are the distinct prime

which are relatively prime to m: if p1,'p2, e Py

factors of m then

g =m (1 - )y - 7.8
if a is prime to m,
2™ = tnod m). (7.9)
THEOREM II1T1: If a triangle T has angles
Al = wgt som,
where qi, M afe positive integers, then T generates an n-cycle with n = 3 ¢[M1)

where M1 is the odd integer obtained from M by dividing out all powers of 2

contained in M.

Proof: Write
t

M= 2t (7.10)

where t is zero or a positive integer and M, is an odd integer. The form of

1
¢(M13 given in (7.8) shows that ¢[M1] is even and it may be shown that

RICIVZ

E1 (mod M1] (7.11)

where E,1 = 1 or -1 and where l"l1 is odd, M1 > 3 (See Appendix A.) A solution

of (7.7) may be obtained by taking

- = )
1 n ¢(M1,/2 F7.12]
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Pl = gl (7.13)

where v is the positive integer deltermined by

2T e ey, (7.14)

and so the thecrem is proved.

Let us apply the theorem to the case of a triangle with angles integral

5 ,
in degrees. If M= 180 = 27 x 45, so that s = 2, M1 = 45, ¢[M1) = 24,

Theorem III shows that we must get 12-cycles as already proved by Theorem IT.
For M= 180 Theorem III gives the "best” result in that triangles exist whose

shortest pedal cycle is a 12-cycle.

What cycles are generated by T if its angles are integral in grades?

With M = 200 = 23 x 25, 8 = 3, M1 = 25 and ¢(M1] = 20, so that Theorem III
indicates 10-cycles.  Here are two experiments, first with a highly obtuse
triangle and second with one which i1s nearly eguilateral. The angles are

measured in grades, so that the sum is 200 and the right angle 100.

1 2 1g97* 65 67 68

2 4 194% 70 66 64
4 8 188* B0 B8 72
B 16  176* 80 B4 5B
16 32 152¢ 40 72 88
32 84 104* 120% 56 24
64 128* B 40 112* 48
128+ 58 16 80 24 96
56 112% 32 40  152% 8
112% 24 B4 80 104* 15
24 48 128* 160* 8 32
48 96 56 120* 16 64
104* B 88 40 32 1ze

8 16 176* 80 B4 56
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In each case we get a delay of 3 steps (carresponding to s=3) and,
as the shortest cycle in each sequence is a 10-cycle, Theorem III again
gives the best possible result.

However this is not always the case and the estimate ¢[M1]/2 for
cycle length can be wildly out as the following example (Ribenboim, 1872)

shows: when M = M1 = 10932 (1093 1is primel, ¢[M1]/2 = 1093.546 = 598,778.

But 2182 = - 1 (mod Mq}’ sc that a solution of (7.7) may be found with

n=182, and we may conclude that there exists a cycle of length 182, a con-’

siderable improvement on ¢[M1)/2.

8. Spin and rotation in a pedal sequence

Having labelled the vertices of a triangle T with the 1ettefs ABC,

the labelling of its pedal T' is definmed by putting A’B’C’' on the vertices
of T' which lie on the sides opposite ABC. Thus a pedal sequence consists
of labelled triangles in each of which the alpﬁabetic passage round the
ftriangle is either clockwise or the reverse; following ths usual convention
for rotations, we shall say that a triangle has spin +1 if the passage is
counter-clockwise and -1 if it is clockwise, and we shall denote the spin
by c.

" If T has spin o, its pedal T' has spin o if T is acute-angled and
spin -a if T has an cbtuse angle. This is seen at once from inspection.
THECREM IV: Let T start an n-cycle so that the angles of Tn are the same
as those of T. Let ng be‘the number of obtuse angles in the set T to Tnm1'
Let ¢ be the spin of T and o that of Tn' Then o, = o according as N,

is even or odd.

-

This follows immediately from the preceding statement. In the examplas

{5.2) and (5.3) and those of §7 we have ng = 2,3,10,8,10,9,7; we have no



theory to predict such values and they remain merely observed facts.

To bring out certain points, consider ancther example. Put s=0, n=3, E=-1
in (4.3), so that F=7, and pi form a partition of 7, say 1.2,4. The angles
of T are then w/7, 2u/7, and 4u/7, and, with the factor w/7 understood, the

sgguence runs

1 2 4*
2 4% 1
(8-1)
4* 1 2
1 2 4%
A tricycle is completed. The first point is that all four triangles are

similar, but different, not only in size, but because the labelling of the
several angles changes. The second point is that, although we see four
asterisks, no=3 for cne complete cycle bgcause we do not include the last
line of entries.

To deal with the third pqint, we need to clarify our terms. Two triangles
are congruent 1f the three sides of one are equal to those of the other {(Coxeter
1968, p.5). But two congruent triangles may have different orientations, so
that, to superimpose them, we must either take one out of the plane and turn it
over, or, equivalently, reflect it in a line. As a simple notation we suggest

Cs to denote congruence with the same orientation and Cd to denote congruence

with different orientations. The following theorem can be verified by a simple
sketch:

THEOREM V: Let T and 7' be two congruent triangles. Let the vertices of T

be labelled A,B,C and those of T' labelled A',B',C’' so that for the angles we
have A=A', B=B', C=C'. Then T éhd T' are CS if they have the samz spin and

Cd if theilr spins differ.

Since no=3 in (8.1}, it follows from Theorem IV that T and T3 (magnified

v s Fartar AY are O



_16_.

(a) Rotation in pedal cycles

Starting from a triangle T which is not PD, we may derive from it a pedal
sequence, infinite and in general not cyclic in respect of angles. There is
no sense in speaking of the "rotation” of the triangles in such a sequence.
But it is different if T starts an‘n—cycle. Then Tn is congruent to T if it
is magnified by a factor 2" with respect to any point. This magnification
does not change the directions of the sides of Tn, and so, if Tn has the same
spin as T, we can tranéform T into the magnified Tn by a translation and
rotaticn, the rotation being independent of centre of magnification. Indeed
the magnification is unnecessary if we are to consider only rotation.

Te study this rotation, we start with the following theorem:

THEOREM VI: Let T be a triangle with vertices A,B,C and T' its pedal with
vertices A',B',C"'. Let R(BC), R(CA), R(AB) be the angles through which the
directed sides BC, CA, AB must be turned to make them coincide with the directed
sides B'C’, C'A', A'B’. Then

T (mod 27} if T is acute-angled,

R(BC) + R{CA) + R(AB) = (8.2)
0 (mod 2w} if T has an obtuse angle.

Proof: Let T be acute-angled. If the pedal T' is remcved, we are left with

three triangles (Fig.1) each congruent to T but with different orientation. We

Fig. 1 here

cha%ge the direction of BC to that of A'B’ by rotation through the angle A, and
A'B' to B'C' by rotation through an angle 2B, so that R(BC) = A +2B. The other
rotations are given by cyclic permutation, and so we get the first part of (8.2).
This result is easy to remember if we take T equilateral, in which case each of

the three rotations is obviously 7.
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The second part of (8.2) may élso be proved from a figure, but it is com-
plicated. An algebréid proof is given in §9, and the result will be assumed
here. Again it is easy to remember thg result from a particular case, namely
that in which T has angles 2n/3, /6, w/B; the pedal T' is then equilateral.

Consider now an n-cycle which starts with T and is compléted with Tn’ a

triangle similar to T. When magnified by a factor 2n, Tn is congruent tn T,

but they may be either CS or C Let n, as before be the number of obtuse angles

a4

in the set T to Tn {or eguivalently T,l to Tnﬂ and n, the number of acute-

. '1

angled triangles in that set, so that

We have to consider four casest

n n n
o a
{13 even even even
(i1} even odd odd (8.4)
(iii) odd even odd
(iv] odd odd even

Case (i)
Theorem IV tells us that spin is conserved (on = ¢l); by Theorem V then T
and Tn {magnified) are CS; the rotations of the thiree sides are therefore the
same, say en, and by (8.2), since n, is even, we have
6 = 2mr/3, r=0, +1, ... (8.5)

On completion of the cycle, the triangle has rotated through one of the angles
Bn = 0, 2n/3, -2n/3 (all mod 2w) . (8.8)

Case (ii)

Again T and Tn {magnified) are CS, so that all three sides have the same

rotation 6_, which by (8.2) is
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= 1 (n 7w+ 2wr), v = 0, +1,
n 3 a —

D
1

(8.7

]

(25 + 1)}n/3, s =0, +1,

so that on completion of the cycle the triangle has rotated through one of the
angles

6 = nu/3, w, -u/3 (all mod 2m). (8.8)

Cases (iii) and (iv]

With ng odd, T and Tn (magnified) are Cd,‘and the sum of the rotations of
the sides as in (8.2) has no simple meaning.v We shall not pursue these cases

further.

(b) Repeated cycles

If we repeat an n~cycle,.we get a Zn-cycle, starting with T and ending with
T2n' Since this 2n-cycle contains an even nqmber of triangles of each kind,
Case (i) alone applies, and by (8.6) T2n is rotated relative to T through one of
the angles

6, = 0, 2n/3, -2w/3 (all mod Zmw). (8.9)
If we repeat again, we get a 3n-cycle, starting with T and ending with TSn'

Since multiplication by 3 does not alter parity, all cases in (8.4) apply, and

we get an interesting result. In Case (i) the rctation is

6. =0 (mod 2m), (8.10)
on

so that the sides of T3n are parallel to those of T, while in Case (ii) the

rotation 1is
8 = 17 (mod 2w}, (8.113]
3n :

so that the sides are parallel but reversed in direction.

If we repeat the 3n-cycle, obtaining a Bn;cycle from T to TBn’ again only

Case (i) applies, and we get the following thecrem:



THEOREM VII: I T starts a sequence of six n-cycles completed by Hm:. those

two triangles are similarly o%wmzwmavﬁnmu and, if T is magnified by a factor

Bn

mm: with respect to any point, the resulting triangle may be obtained from asz

NM<H:m T a translation.
-This translation will of course depend on our choice of centre of magnification,

such as perhaps the centroid of T. But we have not been able to find the trans-

lation for this or any other choice.

9. Algebraic methods

When we pin logical reasoning to a diagram, we take the risk that the diagram
faile to cover all cases to which logic applies. This is particularly true for

pedal seguences in which we have to deal with triangles of both types - acute-

8)]

ngled and obtuse-angled. These require different diagrams. Further, when
diagrams become complicated, reasoning based on them is sometimes hard to follow.
Algebraic methods have the advantage that they cover all cases; they have of
course the disadvantage that they tend to bring us out of contact with rapid
visual intuitions. .

Define a triangle T by a triad (X,Y.,Z)}, these being either the position

vectors of the vertices of T relative to some arbitrarily chosen origin or complex

numbers in an Argand diagram with arbitrarily chosen axes. Dm*w:m the directed
sides by
x =Y -7, y =27 - X, z=X-Y, {(9.1)

so that

X +y + z =0, (8.2)
I¥ T' is the pedal of T, it is easy to show that its vertices are

X' o= (Y + 7 + ux),

Y' o= 37+ X+ owy), (9.3)

Z' = (X o+ Y o+ owz),



where

u = [b2

2 .
-¢”1 7 &’ = sin (B-C) / sin A, (8.4)
v and w being obtained by cyclic permutation; f(a,b,c) and (A,B,C] are the sides

and angles of T; (u,v,w) satisfy two equations:

ua2 + vb2 + wcz = 0, (9.5)
and

u+v+w+ouw = 0, . (9.6)
or equivalently

T+ W) = I - u, | (9.7)

these being cyclic products; (9.5) follows from the concurrence of three
prependiculars to the sides of T, and (89.8) from the concurrence cf three lines

drawn from the vertices to the opposite sides of T (Cevé’s theoreml.

We might write (9.3) in matrix form, the elements of the matrix involving
only {u,v,w), and proceed to follbw a pedal sequence by multiplying matrices.
Since the iteration of {9.3) tells the whole story of a pedal sequence, this
would be the obvious plan if the goal were to find the pedal éequence arithmetic-
ally, startiﬁg from some given triangle. But the numbers (u,v,w) would have
to be reviséd at each step and their structure (9.4) is éuch that such a method is
not likely to reveal general properties of mathematical interest.

By subtraction (9.3]) gives formulae for the transformation of the directed
sides

x' = 3(- x + vy - wz), etec. (9.8)

By (9.2) these may be written

X' = 1 (1 +Vy+01-wz ,
y' = :‘—Z (’l + W)Z + (1 - U)X 3 (9,9)
z' o= 1 (1 s ulx o+ (1 - vy

Iteration of these equations would give the whole history of a pedal sequence
to within a translation.

We shall now use these formulae to 111 in the procf of Theorem VI, treating
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X,y,z as complex nunbers. Writing P for the products in (9.73, we get
2

Bx'y'z' = 2xyzP + EL(1-u )(1+v]x2y + Z[1~u2](1—w)x22, {9.10)
Y denoting a cyclic sum. By (8.4)

1 +u = 2 sin B cos C / sin A, 17 -u = 2cos B sin C/ sin A,

P = 8 cos A cos B cos C,
> 2 2 (9.11)

(1 - UM +v) = P sin C / sin™A,

(- 01 - w) = P sinB / sin’A.
Thus (9.10) gives

. 2 . 2 . 2 A
Bx'y'z'/(xyz) = P(2 + £(x/z)sin"C/sin"A + Z(x/y)sin B/sin"Al}. (8.12)

If we now substitute for x from (9.2}, the two summations together give
2, 2
A N T S Y SN A (9.13)

Now it is =2asy to see that

y/z = - (b/c) elOA, (9.14)
where o is the spin of T, and (9.13) reduces to -3. Hence
x'y'z'/(xyz) = - P/B = - cos A cos B cos C. ' (3.15)

The essential point here is that the guotient of two complex numbers comes out
real, the argument being independent o? acuteness or obtuseness. Since
arg(x'/x) is the angle of rotation from x to x', we see from (8.15) that the
sum of the rotations from x to x', from y to y' and from z ﬁo z' is 7 (mod 2m)
when T is acute-angled and 0 mod (27) when T is obtuée-angled.

We shall'now use the algebraic method, with vectors rather than complex
numbers, to establish aAresult needed later. This result is indeed well known,
but the usual prcof uses a diagram, or rather two, to take care of both acute-
and obtuse-angled triangies.

Let 4, K and G be respectively the ocrthocentre, circumcentre and centroid‘oF T,
so0 that Euler's equation reads
H + 2k = 30G. (9.16)

Magnify T' by a factor 2 with H as centre; this generates points X, Y", Z"



such that
X" o= 2X' - H, etc. (9.17)
Take the origin at the circumcentre of T so that K = 0; then (9.16]) gives
H = 36 = X+Y + Z. (9.18)
By (8.3) we have from (9.17)
Xmoo= - X+ oux,

X"2 = X2 - 2uXx + uzxz, etc.,

(3.19)
scalar products being written without dotes. Now H-X' is perpendicular
to x, and so

(H - X")lx = 0, (8.20)
or by (89.18) and (8.3)

(Y + Z)x + (2X - ux)lx = O. . (8.21)
But (Y +x = (Y+DY -2 = Yi-77 = 0, (9.22)
since X,Y,Z lie on the circumcircle of T. Hence by (8.19)

N -C (9.23)

where R is the circumradius of T. This is the desired result: the points

X",Y",Z" lie on the circumcircle of T.

10. Representation on a circle

A triangle T is completely specified if we know (i) its circumcentre K,
{ii) its circumradius R and (iii) the positions of its vertices A,B,C on the
circumcircle. Let T' be the pedal of T. Then, from the result at the end
of the preceding section, magnification by a factor 2 with centre at H, the
orthocentre of T, carries the vertices of T' onto the circumcircle of T, giving

us three points which describe T' to within a translation. Proceeding in this
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way, we may represent all members of a pedal sequence by triads of points on a
single circle, the circumcircle of the triangle from which the sequence starts.

To illustrate this, let’us put s=0, n=4, E=-1 in (4.4), so that F=15, and
start with the partition (1,3,11). Then, with a factor m/15 understocd, the
tetracycle is as follows:

1 3 1%

2 6 7
11* 3 1 (10.1)
7 B 2

1 3 11*
Since ng and n, arsc both even, Case (i) of (8.4) applies, so that spin is
conserved, and if we reseat the cycle twice to obtain T12, we get by (8.5) a

total rotation 0 (mod 27), so thet T is similar and parallel to T, its sides

12

reduced by a factor 2—12, s0 that it is extremely small. .

But it we adopt the magnification process described above, using as centre
of magnification for each triangle the orthocentre of its predécessor, and
dencte by fr‘the magnified version of Tr’ then all vertices lie on the circum-

circle of T, as shown in Fig. 2, which goes as far as T This triangle is

6.

identical with T except for the exchange in pcsition of two vertices: AB=C,

C8=A, these letters referring to the vertices of the magnified triangles.

Evidently another 6 steps will produce f12 in exactly the =ame position as T,

C. This is entirely consistent with Theorem VII which

predicts that six 4-cycles produce a triangle which when magnified by 224 will

i = = mn -
with A12 A, 812 B, €0

be a pure translation of the original triangle. In the present representation
this means that T is in exactly tha sam2 position as T, which is verified for

24

this example.

Fig. 2 here
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Representation on a circle permits us to write down, in a single form
irrespective of acuteness or obtuseness, formulae for an angular step in the
pedal process,:including rotation of sides. From a triangle T with vertices

(X,Y,7). we generate, as in (8.19), the magnified pedal T" with vertices
(X", Y",2") where |
X" = - X v uly-z), u = (b2-c?)/a’, etc. (10.2)
Although derived in a vector context, we can now use complex variables, since
the equations are linear. Write

ig

. 7 = Re™”, (10.3)

X = Re 7, Y = Re™ ',

with double primes inserted for X", Y", Z", so that (10.2) gives

eth = - elg s oule™ - elc). (10.4)
Now
_az = Rz[eln - elcl[e—in - elC)
2 (10.5)
= 2R“(1 - cos(n-z))J,
and so

u . —COS(E_:—T)) - COS(S‘;’_Q) , . ('}D.B]

1 - cosln - )

with v and w given by cyclic permutation. When these are substituted into
(10.4) and its cyclic companions, we have formulae for g£",n",z", and hence
for X",Y",Z", the vertices of the magnified pedal. From these the angles

of that triangle are easily obtained. The advantage of this approach lies
in the fact that we avoid reference to the fact that the sum of the angles of
a triangle is w; &,n,7 are completely arbitrary, except for the avoidance of

pedal degeneracy.
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1. EEEEEEEiDH

We have discovered two facts: the negative fact that Hobson was
in error and the positive fact that pedal cycles exist. But’we have
been unable to locate the pedal point, by which we mean that point which
is the limit of an infinite pedal sequence, cyclic or not. Another
unsolved problem is to locate the in-point, which is the limit of a

sequence in which the vertices of Tn are the points of contact of the

+1
sides of Tn with its inscribed circle. There are no cycles in this
sequence since the angles tend steadily to n/3.

One of us (J.L.S.) thanks a colleague, Professor J. T. Lewis, for

useful discussions.

Appendix A

Theorem: Let n and a be positive integers greater than unity, relatively

prime and with n odd. Then

aé¢(n) = El(a,n) {mod n) (A1)
where E(a,n) is 1 or -1 according to the following rules:
(i) If n is a prime p, then Ela,p) = 1 iff the guadratic congruence

2
X

i

a (mod p) (A.2)

has a solution.

(ii) If n is a power of a prime p, then E(a,n} = Ela,p).

(iii) If n is divisible by at least two different primes, then Ela,n) = 1.
(iv) If a = 2 and n is a prime p, then

E(2,p) =1 if p 1 (mod 8)

n
|+

{A.3)

==1 if p 3 (mod 8).

i
|+
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Proof:
(1) Here ¢{n) = p-1 and

a%¢(n) = aé(p—1) =1 or -1 (A.4)
according as the congruence (A.2) has, or has not, a solution (Vinogradov
19547 . This determines E(a,p).

(ii) Here n = pm, and we know that the result is true for m = 1. We

proceed by induction using

o (0™ = posrp™, (A.5)
and assuming that
1, .M
az(b[LJ . E + kp', : (A.B)
m m
where Em = +1 and km is an integer. Raising to the power p, we get
1 m+1 . * -
1o(p ) - e m+1
a = Em+1 (mod p= ), o (A.7)
where
= p
E e S (A.8)

Since p is odd, all the E's have the same value, viz. E(a,p), and so [(ii) is
proved.
(iii) Now n = MyMNyeeen where these factors are powers of different

primes and r exceeds 1, this being in fact the factorisation of any odd

composite number. Since these factors are relatively prime we have
p(nl = ¢(nq) ¢[n?] e ¢(nr) (A.9)
and so
1 i
:o(n) 30(n, ) Nq -
a La 17770, N1 = ¢[n23 ¢(n3) ces ¢[nr). (A.10)
Thus by (ii)
i .
a2¢(n1] = E +kn1 » B = +1. k = integer. (A.11)

Since the n's are odd, the ¢'s are even; thus N1 is even, and the

ambiguity in E disappears when we raise to the power N_, obtainin
PP g

1
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a§¢[ﬂ]

1+ CiNys ©y = integer. (A.12)
Similarly
1 =

L2000 1+ c,n,, ete.
and so there exist integers €,, C,s ««vy C such that

c4n, f Cofl, = ... = Con. (A.13)
Hence c, contains n,, n_, n_ as factors, and so

1 2 3 T

1
200 o0 hed M (A.14)

This establishes (iii).
(iv) Now a = 2, and n is a pfime p,'so that this is a special case
of (i]. Thus it is a gquestion of seeing whether the congruence

x2 = 2 (mod p) (A.15)
has solutions. But we can do it otherwise by equating two different
exprassions for the Legendre symbol (Vinogradov 1954, pp. 81, 85J);

2 2178

1o
( $(p-1)
P

) = 2 (mod p) = (-1)P (A.16)
Now any odd prime p may be written in one of the forms 8mt+1, 8mz3, with m
an integer; (p2—1)/8 is even in the first case and odd in the second.
Thus (iv]) is established.
As for E(2,n), the results (ii) and (iii) are available:
E(z,p™ = E(2,p), E(2,n) = 1, (A.17)

when n is divisible by at least two different primes.
References

Coxeter, H. S. M. 1869 Introduction to Geometry (second edition), pp. 5, 18.
New York: John Wiley and Sons.

Dickson, L. E. 19338 Modern Elementary Theory of Numbers pp. 9-12,Chicago:
The Univergity Press.

Hobson, E. U. 1897 A Treatise on Plane Trigon;metry {second edition),

pp. 184-200, Cambridge: University Press.



L3

_28_

Hobson, E. W. 1925 A Treatise on Plane Trigonometry (sixth edition],

pp. 187-203. Cambridge: University Press.
Ribenboim, P. 1972 Algebraic Numbers, p. 84. New York: Wiley-Interscience.
Vinogradev, I. M. 1954 Elements of Number Theory, pp. 80, 81, 85. U.S.A.

Dover Publications Inc.






i i3
< : ‘ sl (f (S
) g OV ( O.\‘.\Lw
“‘\\. : l'zfu, CQJJ\ 0 Y
e




