DIAS Access to
Institutional Repository

Title	On SU(3) Monopoles in the Yang R-Gauge
Creators	Tchrakian, D. H.
Date	1983
Citation	Tchrakian, D. H. (1983) On SU(3) Monopoles in the Yang R-Gauge. (Preprint)
URL	https://dair.dias.ie/id/eprint/868/
DOI	DIAS-STP-83-20

ON SU(3) MONOFOLES IN THE YANG R-GAUGE

D.H. Tchrakian

St. Patrick's College, Maynooth, Co. Kildare, Ireland and

Dublin Institute for Advanced Studies.

> ABSTRACT: The self-duality equations for the static Su(3) Yang-Mills-Higgs systen in the R-gauge has been reduced to a set of coupled ordinary differential equations, by means of a one function Ansatz. The SU(2) embedding solutions are recovered.

The Yang R-gauge ${ }^{(1)}$ has proved to be a very useful tool in the search for exact solutions to the Yang -Mills field equations ${ }^{(2)}$. As it happens, the method of the R-gauge turns out to be more useful in the case of static monopole solutions to the Yang-Mills-Higgs system, than it is for the pure Yang-Mills, and is implicit in Ward's $s^{(3)}$ construction of SU(2) monopole solutions. Subsequently. Prasad (4) has highlighted the -7? roble of the R-gauge in the construction of SU(2) multimonopules.

It is therefore natural to ask whether the Yang R-gauge plays a similarly useful role in the search for $\operatorname{SU}(3)$ self-dual monopoles. It is this task that we address ourselves to in the present article. Recently, Ward ${ }^{(5)}$ has found a class of SU(3) monopole solutions without recourse to the R-gauge method.

In a recent paper ${ }^{(B)}$, the self-dual Yang-Mills potentials were parametrised in terms of two real, ϕ_{1}, \boldsymbol{P}_{2} and three pairs of complex, $\varepsilon_{1}, \bar{\rho}_{3}$, $P_{2}, \bar{P}_{3}, P_{2}, \bar{P}_{8}$, functions of the complex variables $y, \bar{y}=\frac{1}{\sqrt{2}}\left(x_{1}, i_{2}\right) ; 2, \bar{z}=\frac{1}{\sqrt{2}}\left(x_{3}+i x_{4}\right)$ These potentials in the R-gauge will have real values for their Cartesian components for real values of $x_{\mu}\left(\mu=1-\frac{1}{1}\right)$, provided that the following conditions are satisfied

$$
\begin{equation*}
\bar{P}_{i}=p_{i} \quad, i=1,2,3 \tag{1}
\end{equation*}
$$

with the notation of Ref. (1) for $=$.
Here we seek solutions to the self-duality equations (10a,b), (11a,b), (12), (13), (14) and (15) of ref. (6), satisfying (a) a one function Ansatz, and (b) boundary conditions suitable for a monopole solution.
(a) We start with the assumption that each of the above named functions that parametrise the SU(3) Yang-Mills potentials, depend on $5, \bar{y}, z, \bar{z}$ through the single function $f(y, \bar{y}, \bar{a}, \bar{z})$, which is subject to

$$
\begin{equation*}
f_{y 3}+f_{22}=0 \text {. } \tag{2}
\end{equation*}
$$

Our Ansatz is then stated as follows

$$
\begin{aligned}
& \left.\begin{array}{l}
\bar{p}_{1 y}=\psi(f) f_{z} \\
\bar{p}_{12}=-\psi(f) f_{y}
\end{array}\right\} \quad \text { (aa) } \\
& \begin{array}{l}
\rho_{1 y}=\bar{\psi}(f) f_{a} \\
\rho_{12}=-\bar{\psi}(f) \rho_{\bar{y}},
\end{array}
\end{aligned}
$$

be determined, and satisfy, due to condition (1); the following

$$
\bar{\theta}(f): \theta^{*}(f), \quad \bar{f}(f)=\eta^{6}(f) . \quad(1 a, b)
$$

It is immediately seen that $(3 a, b)$ and $(4 a, b)$ solve, respectively, equations (10a,b) and (11a,b) of ref. (6).

Denoting the derivatives of all functions of $\&$ with respect to f es $\dot{q}_{1}=\frac{d d}{d}, \dot{p}_{1}=\frac{d p_{1}}{d}$, etc. we write down the consequences of our onefunction Ansatz. First we learn from (Ba, b), (Aa, b) and (2) that 4 band $\vec{\psi}=\vec{C}$, where c and \vec{C} are constants, conjugate complex to each other, and that

$$
\begin{equation*}
\dot{\theta}+c \dot{\vec{p}}=0 \quad, \quad \frac{\dot{\theta}}{\hat{\theta}}+\vec{c} \dot{p}=0 \tag{5a,b}
\end{equation*}
$$

It then follows from our Ansatz, that the remaining self-duality equations, namely (12)-(15) of ref. (6), reduce to the following set of coupled non-linear ordinary differential equation in the variable f :

$$
\begin{align*}
& \frac{d^{2}}{d q^{2}} \operatorname{la} \phi_{1}+\frac{1 c_{1}^{2}}{\phi_{1}^{2}}+\frac{1}{2} \frac{\left.18\right|^{2}}{\phi_{2}^{2}}-\frac{1}{2}\left(\frac{\phi_{1}}{\phi_{2}}\right)^{2} \frac{\mid \theta^{2}}{1 a^{2}}=0 \tag{6}\\
& \frac{\theta^{2}}{\theta \phi^{2}} \ln \phi_{2}+\frac{1}{2} \frac{10}{\phi_{1}^{2}}+\frac{101^{3}}{\phi_{2}^{2}}+\frac{1}{2}\left(\frac{\phi_{1}}{\phi_{2}}\right)^{2} \frac{\left|\theta_{0}\right|^{2}}{|0|^{2}}=0 \tag{7}\\
& \stackrel{\theta}{\theta}+\dot{\theta} \frac{d}{d} \ln \left(\frac{\phi_{1}}{\phi_{2}}\right)^{2}-\frac{c}{\phi_{1}^{2}} \theta=0 \tag{Ba}\\
& \ddot{\theta}+\frac{\dot{\theta}}{\hat{\theta}} \frac{d}{\theta} \ln \left(\frac{p_{1}}{q_{2}}\right)^{2}-\frac{\vec{c}_{2}}{p_{1}^{2}} \vec{\theta}=0 \text {. } \tag{Bb}
\end{align*}
$$

A solution to these equations would yield the functions $\phi_{1}, \phi_{s}, \overline{0}, \vec{\theta}$ in terms of f. The last step in this systematic procedure would be the integration, with respect to y, 孚, $\overline{3}$, of $(3 a, b),(4 a, b)$ and (5a,b) to yield $P_{1}, \bar{P}_{1}, P_{2}, \vec{P}_{2}$ and P_{3}, \vec{P}_{3}, respectively. (b) Next, we must make sure that the integration of (6)-(8) should give rise to solutions that exhibit the appropriate behaviour for a monopole solution. This requirement will impose further conditions that the solutions must satisfy, which are given below.

Following the procedures of refs.(3)(4), we perform the dimensional reduction leading to the static (X_{y}-indepenent) Yang-Mills-Higgs-system with the fourth component of the potential identified as the Wigs field . This we do by attributing the following explicit x_{4}-dependences to the R-gauge parameters
which result into X_{m}-independent potentials $A_{\mu}, c . f$. eqs. $(G a, b)$ of ref. (6). It is then possible to express the square of the magnitude of the Higgs field in terms of the derivatives with respect to \vec{y}, \vec{y}, z, $\overline{\text { z }}$ of the R-gauge parameters:

We are now in a position to impose the behaviour required of $\left\|\sum\right\|^{2}$ (suitable) for a monopole solution
$\|\Phi\|^{2}=\operatorname{cons} t \cdot-\operatorname{H} \cdot \operatorname{P} \cdot$
where the coefficient of the $\frac{1}{\gamma}$ term in the expansion of $\|\xi\|^{2}$ is related to the topological charge of the solution. (3)

Fron (11) and (12) then follow the two additional conditions to be satisfied by the solutions of (6)-(8):

$$
\begin{array}{r}
\mathcal{S}_{3}\left[\left(\dot{\phi}_{1}\right)^{2}+\left(\frac{\dot{\phi}_{2}}{\phi_{0}}\right)^{2}-\left(\frac{\phi_{1}}{\phi_{1}}\right)\left(\dot{\phi}_{2}\right)\right]+\left(\frac{\phi_{1}}{\phi_{2}}\right)^{2} \frac{\mid \hat{\theta}_{2}^{2}}{|c|^{2}}=\frac{\mu}{f^{2}} \\
\qquad \frac{\mid a^{2}}{\phi_{1}^{2}}+\frac{\left.10\right|^{2}}{\phi_{s}^{2}}=\frac{\mu}{\rho^{2}} . \tag{14}
\end{array}
$$

Finally, since we are interested in the static solutions of the Yang-Mills-Higgs system, we must determine the explicit $\%_{s}$-dependence of the function f in terms of which all the R-gauge parameters are expressed. For this we must first integrate (6)-(8) with respect to f, but this we have not yet done. Fortunately however, substituting (14) into (6) and (7) and adding leads, after integration, to

$$
\begin{equation*}
\phi_{1} \phi_{2}=f^{3 \mu / 2} \tag{15}
\end{equation*}
$$

according to which it follows that the x_{i}-dependence of f is

$$
\begin{equation*}
f\left(x_{p}\right)=f(\hat{x}) e^{\frac{\left(x^{(}\left(\frac{\alpha x_{2}}{r}\right) x_{4}\right.}{r}}=\int_{j}(\vec{x}) e^{i x_{4}} . \tag{15}
\end{equation*}
$$

with a sphericelly symmetrio solution
(1) $\bar{\theta}=a, \bar{\theta}=\bar{a}, a$ and $\bar{d}=a^{n} \quad$ constants. Then (B) lead to $\hat{0}=\hat{0}=0$, recovering $\operatorname{su}(2)$ embedding solutions and one wich violates the reality
condition (5). We present these below. This is a rather complicated task and we have only succeeded in are also satisfied. along with A, B and of will have to be chosen so that (13) and (14) of f, Then the two constants arising from this last integration, the linear second order homogeneous equations for θ and $\vec{\theta}$ in terms
Having found ϕ_{i} and ϕ_{B}, it is now in principle possible to solve,
The general solution for ϕ_{1} is then

$$
g=A f^{n_{1}}+B f^{N_{2}}
$$

and whose homogeneous part has general solution
which is an equation of Euler type with particular integral

$$
\frac{2}{\operatorname{m}^{3} \sqrt{2}^{2 x}}=\left(\frac{1}{0}\right) \int_{0}
$$

It then follows from (2) that $\%$ satisfies the Helmholz equation
$\stackrel{\rightharpoonup}{\mathrm{V}}$
 $\phi_{2}=f^{\frac{1}{2}}$, and therefore the only choice for μ is $\mu=1$. This solution automatically satisfies (13).

Then, from (5) it follows that ρ and \bar{P} are constants and hence this solution only involves the parameters ϕ_{1}, ϕ_{2} and P_{1}, \bar{P}_{1}.

We now insert the parameters of this solution into the Higgs field
which then reduces to

$$
A_{4}=\dot{\alpha}\left[\begin{array}{ccc}
\frac{1}{2} \partial_{3} \ln f & \frac{c}{\sqrt{2}} \partial_{5} \ln f & 0 \\
\frac{c}{\sqrt{2}} \partial_{y} \ln f & -\frac{1}{2} \partial_{3} \ln f & 0 \\
0 & 0 & 0
\end{array}\right]
$$

clearly, an SU(2) embedding.
(ii) $\dot{\psi}=0, \overline{4}=0$, implying through (5) that $\theta=k, \vec{\theta}=\vec{k}=k^{2}=$ canst.

 where \mathcal{Q}, \vec{l} are constants, conjugate complex to each other. Substitouting these for $|\vec{P}|^{2}$ into(6) or (7) leads to one of the two restrictions: 1. $\mu=2$, which is a non-SU(2) embedding solution as seen from (22).

But this solution is subject to the final condition $\left\|\left\|^{2}\right\|\right\|^{2} \& 2,0$,
which violates the reality condition (5) and hence is not interesting. 2. $\mu=1$ and $|l|=0$ and therefore $|\hat{P}|=0$. Condition (13) is automatically satified. (as in 1. above). In this case the potentials in the R-gauge are parametrised by ϕ_{1}, ℓ_{2} and ρ_{2}, \bar{P}_{2}. Inserting these into (22) yields

$$
A_{4}=i\left[\begin{array}{ccc}
\frac{1}{2} \partial_{3} \operatorname{hi} & 0 & \frac{c}{\sqrt{2}} \partial_{y} \operatorname{hif} f \\
0 & 0 & 0 \\
\frac{c}{\sqrt{2}} \partial_{5} \operatorname{hin} & 0 & -\frac{1}{2} \partial_{3} \operatorname{Laf}
\end{array}\right]
$$

which is obviously another $S U(2)$ embedding.
It appears therefore that neither θ nor Y can vanish if we wish to find a non-SU(2) embedding solution. In this -case the expressions become very complicated, and simple solutions do not seem to work. For example, if we considered the special case of (21)

$$
Q_{1}=|c| \sqrt{d} g \quad, \quad A=B=0,
$$

the solutions of $(8 a, b)$ are

$$
\begin{align*}
& \theta=f^{\frac{2}{2}(\mu-1)}\left[A^{\prime} f^{n}+B^{\prime} f^{-n}\right] \tag{23a}\\
& \hat{\theta}=f^{\frac{3}{2}(\mu-1)}\left[\bar{A}^{\prime} f^{n}+\bar{B}^{\prime} f^{-12}\right], n=\sqrt{1+6 k-3 \mu^{2}} \tag{23b}
\end{align*}
$$

and consistency with (14) leads to the $B^{\prime}=\bar{B}^{\prime}=0$ a $)^{\prime=}=1 \pm(2 / \sqrt{3})$ and $1 c 1^{2} A^{\prime} A^{\prime}+6\left(2+\frac{1}{2}\right)=0$. This last condition cannot be satisfied without violating the reality conditions (1).

The usefulness of the Yang R-gauge method in the search for SU(3) monopole solutions depends on being able to integrate the equations (6)-(8) without violating the reality conditions. So far we have only succeeded in recovering the two SU(2) embedding solutions.

References

(1) C.N. Yang, Phys. Rev. Lett. 38, 1377 (1977)
(2) E.F. Corrigan, D.B. Fairlie, P. Goddard and R.G. Yates, Commun. Math. Phys. 58, 223 (1978)
(3) R.S. Ward, Commun. Math. Phys. 79, 317 (1981)
(4) M.K. Prasad, Commun. Math. Phys. 80, 137 (1981)
(5) R.S. Ward, Magnetic Monopoles with Gauge Group SU(3) Broken to U(2), TCD preprint
(6) L.P. Singh and D.H. Tchrakian, Phys.Lett. B104, 463 (1981)

