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SKYRMUl1KE MODFI,S IN GAUGE THEORY
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ABS’IRACi’
‘7,70 1(5 4 S stems n higher dimensions gcneralising the Yang Millslit sti’I lie eVietV(d. These involve hi/’hel’ powers ot he totally antisymmetrised(1(7 (5,11 iV(’S t lit’ Iii’ltts, (Ii ( ommon sitti the SkvrTue model, heir sottii ions asisi’II ,ic heir iti’sii’iii to tower ttiiiit’nsio S is tlisctissed, ;iid as examples of onr(7 5 ‘duo’ I Ii(/5 llflidl,’lS iii 2,4 .tiitt ttitiictisioiis ill’(’ prcsented in sonic detail.

1. Introduction

1.1 /SIO(ji’,t(jOJl

An iinporttnl role in 11w study of non perturbative ellecls in quantumfield 117(7 ui’s is plived by the finite act ion Field (‘00 Figurations which minimisethe action. I’lwse tn,’ 11w topologicallv stable instanlon solutions of 11wdynamical eq nat ions oF 1 lie niodel in quest inn. It is important therefore to find11w appropriate instanton solutions of 11w 1551) models of lutidamentalinteractios, he Strong ati(l 11w Flectroweak. Here the following twin problemarises: ‘11w 1 lilly inst lilt’ ins I hal I lie YM il system in ‘I (Iinlt’nSioils supports ai’’the well known 1/PSI’ solutions7 ol the YM field equations, with the lliggs fieldequal to its c unstaii I vacuum value (V1V) everywhere, the I irst problem is thatthe trivial lliggs field cotiliguratiuin excludes the possibility of Finding nontrivial iiislanlon solnlions in 11w l’lectrosveak model. ‘the second problem is117.71 tInt’ to the scale invat’iatice (II 11w YM tuodel in 4 dinietisions, the I/PSI’instantons hive an .tt’bitrarv sc,tk’ which means that 11w physically desirabledescription of a dilute inslatitoti gis is not jttstihed. ‘I his problem is also therebei’a (ts(’ of I lie t bseiice of a Iii ggs field, whic Ii ii in Id have pnu ivided an tbsol u Icsi ale. 11w Vl”v’, with respect to whn’li a dilute gas approximation (‘(101(1 havebeen implemented. ‘[bus we see that these twin pt’ 114(711,5 eaii be I a(’kl(’d i 1 wet’otiltl cotistrttu’t sonic extension of 11w ‘IM II svstetii which supports iiistanloiisolutions iti —I dimensions, l’lhs is the tn.ti 1 aim of the work reviewed bel( )W.

1 .2 ,S/ir’nte signta iiiorlel

‘I lie task we hive set ourselves is sitnilar to, but more comnplit’te(l than, theresolution of 7 similar problem. namely the cotlstrti(’tion ol linite actiontopolof’ieIllv stable solutions in a sigma model in . dimensions. ‘l’his is lwt tenkm wn as the Skvrme model which is usually described by I lie field (I 5(/(2 1[xpressing ([in terms of an iN 4) valued field ‘as (I evii( I ± y, I y,,i,, /2 where
(j5”(” I ‘Ibis ( )( ‘4) signit model is given b

I,(7Qt?)
*(“))‘ (I)

where K’ is a consta ill wit Ii the dimensiotis of inverse lengt h..ltitegra I ing theI lace of the sI ness t(’ns( n’ over I lie d dimensional volume of tonI iguraton spacewe I hid the test tic lion

(11 — 2 )kA1 + (d —4
= o

From svbicb we see that in tI 3, it is essetitial ho retain the (quit 117 1 Sks rttie
terni. ti essence, a quart ic tern) has been added to the usual (qti.tdr.t lit ) sigmt

m’ del I agr.ingiali, to render the (onst ruet iou of Ii nit e etit’rgv si1 itt ions in 3
dimensions possible. ‘[his is the ess(’iice of the I 01 (‘(lore des ribed lwloss,
where I lie usual YM system is to lie extended by Skvt nt’ It ke terms to o’nder

I lit.’ coilsI ructioti of itist,ttit((ti solut ii ins iti 4 dinieuisiOiis pi issihile,
‘11w test niction iorrespuiiiding to (2) for the utstt.uh YM II ss stem

1. = Ir/-I. + - 1(l) + 5”(i71) (1

in d dimensiotiS is t lie identity

(d —4 + (d —2 )jII)(I) + Cl - I) )t ‘ 0,

(3)

(4)

Frotii which it is clear that only in ci,’ 4 ciii there lie ‘instanton’ solutions with
li((ti trivial lhiggs Fields and in tI ‘1, inslantoli solutions exist onls For trivial
ci infigitrat i(utiS i iF lie I higgs field. In a sense. t lie II iggs dependent terms in (4)
(‘1 inCh be regarded is Skvrnie like tennis in 1 1,

I 3. .ckrme JIij7’,c’1W)(l(’I.S

‘l’o find a prescription For (‘(171st ruct ing suitable Skyrnw lentils For I he ‘I’M
svtetli in d ‘4, let us First consider the generic YM II ss stem (3) in i! 4 as a
suhsystetii of I lie Sf1) 2) YM system in 4 diniensiolis. It h,ts bee ii verified in
Refi I fiat I lie St /) 2) YM systems un R 1xSi and l( ,xS respe t ivelv. il ten being
subjeeted to dimensional refucl ion’7, reduce to the St/I 2) YM It system ss’i I hi
(I) C su( 2), and to I he f/il) (MaxlS’ell) Abelian tn idel wu lii ,i cotiiplex valued
hliggs field p. It is well known thitt hiiitli these ,iiitl 2 thiuiiensiOli.il models
suppuirl Fitiile action topologit ally slahile sohlIliolis, li,iliH’l\ lii’ moIioIi()he ,tui(l
vortex s(ililtiouis of thii’ n’sp(’i’Ilv(’ 111(1(1715,

Wi’ see tIitt Ion the two uiiodt’ls (‘\(‘lll1ihitul’tl 1w I /) in and 2 diniensiotis,
the u’eqtiired Skvrnie tennis (ru’ 1o’iu’r,ted his sithitectllig 11w 4 rltnietisional YM
model Iii ditnenssioti;ih reduction, hi eniphos thus riptioti for the task at
li.uiitl. ui,(mely to cuutisti’tIct instatilons in V,unt((ns lliggsntodels in fiuiiensiolis

I, we muSt Firsl Fitif .t suitable higher ditiiensuoli.ul geiier.tlisat ion of the
usiuah YM model ,tuih subject it to ditiiensional redut I ion.

‘the procedtt re j (1st proposed however hits ((lie furl her si t.iI eht’men I
ss’hi ich we now describe. ‘[lie cotistruc I ion (IF topol ugic.tlly slabh(’ instantoti
sol ut ions in t lie above men tinned two cxi iii ples re lit’s (Hi there hem ti g
t POka1 hoss’er bouiicls on the respe(’ live ac I iouis. [ hese take the form 1)1
inequalities thit are tlescended f’noni 4 dinwnsioils, where I lie lower boutid is
(lie integral of residual density descending from I lie set ond (bern Pont rvagin
(C P) (lensi ty of” A F after dimensional reduct ion. I hiese are neshiect ivehv I lie
l’atiiihiar monopole and I lie vortex u’hiarge denstties

1 ii’1),i1, = )i’,, 1t”b17

1, (4 I,/( + i() q’tI) q1) = (,,I’(,/( (a, + ((p 1)11 (p

(5u)

(51i)

where i’, and f, ire 1 lie St/( 2) and Abel il ii lie Id si reng this respect ivelv. Bol Ii

(Sa,b) are told divergetices hike the set otid C-P (I(’nsihy I hey are descenthed
fm’otiu. [his last property is crncial in guaranteeing IhitI a solutioui satisFs ing
ihie ;ip1iropniuh(’ bottndary l’ondilions shionld result in a Iopohogicahly non-

(2)



tris’ial bound. Note t hat lie set_ond term in (5 h) does not con Lii bute to the onedimensional (surface) integral because ol unite-action asynIptotic conditions,leaving just the usual vortex number density.
The total divergence expressions in ( Sa,h) have their analogues in thecase ol the sigma model (I) which supports the well known Skyrmionsolution, which is also topOlogicall)’ stable. In that case the topological densityis the winding number density

PU,,l,,, (6)

whose first vai-iation vanishes as expected.
We conclude t herd ore that the procedure to be followed below shou hiincorporate first, the generalisation of the YM system to higher dimensions,which we present in Section 2, and second , the dimensional reduction ol boththe higher dimensional action and the corresponding C-P charge.

2. Generalised YM(GYM) systems

2.1. 1)eliniiion

The higher dimensional YM hierarchy we will present here can be bestintroduced by generalisitig the basic topological inequality of the usual YMmodel in 4 dimensions

Jii1’(2) Jlr(F(2)AF(2)) (7)
Al, Al,

because we requite that the hierarchy of GYM systems be endowed withsimilar topological inequalities giving rise to finite action topologically stable
solutions. In (7) we have used the notation F(2)

=
for the curvature 2-form

field strength. We Proceed first by generalising this notation to define the 2p-
form field strength I’(2p), as the p-fold totally antisymmetrised product of the2-form curvature i( 2). ‘Ihus the 4-form field strength 1(4) consists of 6 terms
involving the 2—bId product of the curvature 2—form, the 6 form st rengt liconsists of 71) such terms etc. 1(4) in patricular has a very compact expressionwhich we give here since it will occur frequently in the lollowing by way of
examples. This is

1(4) =
=1,1’3,1) (K)

where the brakets 1 1 denote anticomniutation and 1... cyclic symmetrisation.
It is clear from (7) that the generalisation of the YM system given here

by the integrand on the lelt hand side pertains only to even dimensions since
the C-P densities generalising the right hand side are defined only in even
dimensions. ‘Ihe most natural way of proceeding here is to note that (7) follows
directly from the inequality

KrJ E(2)_*F(2)i 0 (s))

where 142) 1 AJ( 2) ((2) is the llodge dual of the curvature 2-form in 4
diniensii ins, which in this case is also a 2 form. (Note that the saturation of t he
meg ii,d i ty (I)) iesul ts iii i he usual sell duality equations.) Using this notation
mntroduceof, the geiic’ralisati ot of ( i) to 2 ( p-i q) dimensions is very natuial mol
straigh tloiwaid

11/ s” “1’(2p) — (*i’(2q))(2p)JA 0
(10)

The dimensions of the constant here aie those of an inverse length, wi Ut
q- p. 1:xpanding (10) now, we have the generahisation (f (8) in which the lofthand side cle1iiio’ the new generalisation of the YM, and the right hand side is
the (pi q)— th C—P o:harge:

J Lm 2k” “

JIrFA FAAF, (p+q)
— thne (I lo)

LilAl = (if °1F( 21))2
+ (2ij)!( 21))! l’(2q) 1 (1 hb)

Fhe hierarchy of generaliseof YM(GYM) systems iii 2 (pi cj) dimensions is
clef med78 [)y (11 b). hr the special cases where p-q, the GYM system (11 b) iii
4p dimensions is scale invariant. Ihis interesting subset of the GYM hierarchywill be further ofmscusseol in the follwing subsection devoted to) a review ofknown solutions.

Ihie scale-breaking Lagrangian (ilL)) with p q bears a very closeresemblance to the Skyrnie sigma Lagrangian (I). In both these lagrangiamis,the cfmntensio)iial constaiit K plays the same role. lhe second terms in both (I)and (11 b) can be regarded as Skyrme terms. Recall howevei that from thescaling viewpoint, we have identified the lhiggs dependent terms in the YMlIlagrangian (3) also as Skyrme-like terms, which incidentally ahso feature aofimemisional constant, I), in the guise of a VEV. ‘Ihus in gauge theories, wehave two ofistinct types of Skyrme terms that we can employ, and we willdiscuss and exploit both of these in the following.We complete the dehnttion of GYM systems by discussing the qtiestion ofthe associated I)irac equatmo)il. ‘lhe usual dirac equation in terms of the l)0acsymbol F, 1) , in terms of the gamma matrices in 7n dimensions, would be thesimplest generalmsation of the the 4 diinensiot-ial case. For ii:. 2 however thisparticular generalisation does not capture one of the most attractive leaturesof the Dirac equation in the background of self-dual YM fields ii 4 olmniensions,namely that for the zero modes, this equation yields the Klein-Gordon equationwhen it is acted on once more by the symbol. With this in mind, we havesuggested a generalised l)irac symbol in 4p dimensions, in the backgi-ouitd ofthe (generaliseol ( self dual field which saturates the inequality (11 a) for p—ti.(These generalised self duality equations just introduced will be discussed indetail below, 1:01. 1 6, in the con text of their solutions.) Ihe new symmibol isde filled so, that vhe n the zero mode equation is acted on by F 1) it will yieldan elliptic eoluation generalising the Klein-Gordon equation. ‘Ibis symbol

®i;,
(12)

was introduced in hlef.9, and the Particular Yukawa cotipliitgs it gives iiSo Li)under dimensional reduction were given in Ref. 10. l, and f’, are the ganimitamatrices and tile chirality matrix in 2 n—4p diineiisions.Before proceeding to discuss tile sohutions these systeiiis Sdil)pom t, webriefly allude to and dispose of anothei hierarchy of Ii igher cli iiiemI’iomlalmi dels lilA which genemahmses t lie YM no clel iii 4 diniemmsiomis. ‘Iliese ito dels irealso defined in even, say 2 ii dimiieiisioiis by

1.,, = h(1;,

Al
Al,,,,,,

(II)



\h(’Uf’ ( I /S)( F. )/I F, 1 lie the s(’(211) matrices, and where tIletia((’ is tlk(’ii (f\(’i loth tll(’ spinor iii(tt(eS ,itiii th(’ gauge group indices. Withthe exception of the case with mm 3, loT ill ii 3. the SVStCT11S (12) (ontain1 I theYM system (I I h) in the priate dimensions. In 6 (Ii mflenSionS (1 2) does notov(rI;lp with i ( .YI’l system .omd is given hv

1.1 = t-l;;=F0F,11,.
( 4)

I 11)11Th (flit t Ill t If ir gauge group Sc’), ( 2n ), the 1uler- lagrange eq ua if )nSpertaining to (I 4) hive spherically svmnwtric (see below) solutions.the m.d n dill (relief’ bet ween the ( ,YM systems (1 1 Ii) and the alternativehier;in liv (I I) is that the lam ter are not endowed with topological inequalitiesaitalog(fLmS to (I Ia). Ihis means that any solutions 01(13) that may be found arenot guaranteed to he topologica.lly stable, and if so, we dispose of thealternative hierarchy (1 3). We have indeed verifieW explicitly that thesee ond va nt U (ii operator in the background of the analytically knownspherical lv svmmet nc solution of (1 4) has negative eigenvalues and hencethat ili is solo non is unstable. We shall henceforth restrict ourselves to the;YM Ii ierarchv
Yet am ft her reason for choosing the GYM Ii ierarchv is that the latterinvolves cmlv t lie second power ((1 any demivat ive of the fields 1w virt tie of theho It in ant isvmmet rv. Ibis is ailot her pi-opcrtv shared vit h t lie Skvtme modeltvhi( Ii the alternative hierarchy (13) does not have.

2.2. Solutions

The known finite action topologicallv stable ‘instanton’ solutions to theFuler lagrange equations ff1 the GYM systems (11 h) are either sphericallyradial lv) sym met nc or at the least axially svniniet tic. The most itli portanaml >ng these are the sd [ dual solu t ions which in some cases can be expressedanalvt icallv. These occur br the scale invariant cases with ill q . Ihere are alsonon -sd f-d ual i nstami ton solu t ions for those systems with p q . We shallreview these two cla.ses of solutions and their properties iii Subsections 2.2Aand I) respec ii velv below.

2.2A Se!Tdmsal ,solmxlion.s

\Vhen p-q the (Y’i svsteni (1111)

trF(2p)
(15)

4i’ luclidean dimensions, there are r possible axial svmnietries as discussed inthe Appendix to Ref. 1 8. if 1w axial symmetry we understand that imposit ion ofsymmetries which results in a two dimensional residual system with 11( I)gauge group. [he (irs ( ne is the usual ( 4p-- I ) dimensional spherical svnimet ri iii posed in the ( 4 p- I ) dimensional su bspace. The (((her ( I ) axial axialsymmetries pertain to the nest of all tile 0(1(1 partitions of 4i’. In our search°1for scale invariant in i’ dimensions, and the Euler-lagrange equations of thisSystem are solved b t he selFd uali tv eqimat ions

F(2p) = F(2j;)
(16)

which in this case minimiSe the action iibsolutefy, since (1 6) saturates theineqtmah it v (II a) or (101. In the special case of p- I , (1 S ) is the usual YM systemwhich 5 the first member ((f the GYM hierarchy and (16) is the usual self

duality equatiOml. For this reason, we shall often refer (f (16) us the gendn.fliS”(self dtmalitv equation. Equations (1(i) in eight (htnlu’Tlsi(fns. Whii( Ii is t lit’ caS(’ phere, were i ndependen thy discovered f , but not in the context ff1 (lie C Y tdvnammcs as given by (1 4).
Relore discussing specific solutions of (1(i), we remark that this is

system of eqtmations involving tile algebra valued conmief ton field in 3dimensions and taking into accou mit the gauge freedom. this field has (4 p- 1,
independent components. Counting on the (ft her hand the number (ii
eqtmations (16), we find(3p)!/2(211)1., whose values are miot even restricted t(
the algebra of the gauge group. Clearly we have a pomemitially ovendeternline(.system here, since the numiiber of equations (16) is greater than the n0miibei
(4p- I I of independent fields.The exception is the p-l case where these nimber
are equal as expected for the usual YM systemli iii 3 dimensions, where we knoss
hat t )ie self dtmali t equations are not overdetertiii iied.

It is therefore not surpnisimig that for P. 1 . equat ions (1 6) have non trivial
solutions (inlv when the fields tre subjected to some st rimigcmit ss mmiiet nies. We
have muade a detailed st tidy f of eqtmat ions I I 6) on R.11, . imposing spherical
symiiietnv, axial symm(’try which inv(flves the imliposi t iOfl (ff spherical
svmiimnetry in a (413-1) dimnensirinal subspace 1)1 R11,, as well as the less stringent
synimiletries involving the imposition of spherical svmnnietry in simbspaces of
dimemisions lower than (4p I ). Our conclusion was that the system of
equations arising from (16) was greater than the ntimiiber (11 imidependentfunctions parametnising the c(fnnecti(fn field subjected to the appropriate
symniet rv. (‘.\cept in the case of axial symmetry. includung spherical
symmetry. This investigation5 was carried out for gauge--group SO (i’)which is the gauge-grOup (11 the knowmi solutions to be discussed below.

Spherica liv si ‘mmd nc solutions8

These solutions are given8t in analvt ic form ((Ti all 4j1 dimensional8 flat
Fuclidean spact for gauge-group SO, (4p). In the special case p- I . this is
chiral 50(4), which coiticides with the gatmge grfffip 511(2) (if the Bl’STinstamitotis. Using the same notation as in lqs.l 2.13, these crflttti(fiis ill take thesame Iorni lor all p. nanit’hv

I, , +
(17)

and hence we shall refer to them as the RI’S I’ hierarchy ff1 solutions.
Ihat the analytic form cuf the solutions (1 7) is independent of p is not Citall surprising, and is a direct consequence of the scale imwaniance of the GYM

systems (1 5). We have studiedt ‘ the conformnal invariance of tile BPS’lhierarchy of imistantons in t lie case of arbitrary p. as had been doiie 5 for tile
p-— I, Ylvi case ill 4 dimensions. As a consequence of this scale invariamice, it can
be shown that the action corresponding to the demisity (1 S ) on R1,, an be
expressed on SO’. We shall return to this point below whemi we discuss cftherself dual solutions, on compact coset spaces.

Axialls- ,cinimetric solutionS’ 89

For an SO, (4i) gauge field in ‘ip Fuchidean dimensions. there are p
possible axial symmetries as discussed in tile Appendix to Ref. 18, if by axialsymmetry we understand that imposition (if symmetries which results in a twodimensional residual s’steni with 11( 1) gauge group. [he Pest omie is the usual
(411-1) dirnemisional spherical symmetry imposed in the ($p-- 1) dimilenSionalstmbspace. ‘[lie (filler (p-I) axial symmetries pertain to the rest of ill tile odd



partitions ol 4j,. In our search for axially symnwtric soltitions to the

generalised sell duality equations (1 6), we found that only solutions with axial

symnietry of the lust type just described exist. ‘Ibis is a result of Ike

overdetermined nature oh l:(IS. 16.

Unlike the spherically s mmetric subset of these solutions discussed

above, the axially symmetric solutions cannot be found analytically, except in

the well known p- 1 case20. ‘I’he generalised sell duality equations (16) reduce to

one complex valued equation for one complex valued function, and one real

valued equation for one real valued function. Clearly therefore, imposition of

this axial symmetry does not result in Fq. 1 6 being overdetermined. As in the

p— 1 case given in Ref. 20, the complex valued equation reduces to the Catichy

Riemanit equations and hence is immediately integrated, and the real valued

equation then results in the following partial differential equation

)—l ‘( )—l)e
ly

Ay=—(l--c
— 2

(Viji)2
r (1—c )

where r here is (x -F x ÷.-Ft, 54, is t, and V = (l/c)i-, cI/th). For p—l, the 2

dimensional partial differential equation (1 8) can be reduced to the 1,iouville

equation which has well known analytic solutions. For all other p> I however,

we hive been unable to integrate (18) explicitly. Nevertheless we have been

able to show that some non trivial, and not spherically symmetric, solutions of

(1 7) exist’ . ‘lo do this, we have first changed variables according to

r + ii iwili
- (p ÷ it), and then converted the partial differential equation (1 ())

to an ordinary differential equation in p by suppressing the r dependence oh

the function i. We have then integrated the ensuing ordinary differential

equation numerically, subject to the requisite asymptotic conditions. ‘[he

resulting solutions depend both on r and on I through their dependence on p.

We have also verified that these solutions have arbitrary C-P charge, so that

they are not restricted to the spherically symmetric case only. We do roil

expect that we have captured all axially symmetric solutions in this way, since

in the p—I case, where the analytic solutions are known10, the axially

symmetric solutions that we have lound are only a subset of the complete

instanton chain10,situated on the [4 tXi5 only at special2’ intervals.

.SoIu lions vu (/ll

In addition to t lie solo tioiis on S’4’ alluded to in the disc ussion of t hi,’

spherically symmetric solutions above, the generalised sell duality equations

can be solved also on other symmetric coset spaces, C/IL

‘l’he self dual solutions on 4p dimensional spheres, i.e. on the symmetric

coset spaces 3’()(4pf 1 )/SO( ‘4p) , which satisfy the sell duality equations (I 6)

pertaining to the scale invariant GYM systems (1 5), are not all the self dual

fields on the spheres. ‘l’hese are the S0j4p) fields for which the action

corresponding to the stale invariant lagrangian (1 5) On S4’ equals the acti m

of this lagrai,gian oil R4, vii a stereographic projecnon. ‘l’hese solut,ioi,s,

which we ic mentioned above, are not howevei’ all the self dual sol u t tons it

the sphicics. It is a general featuie of gauge fields on symmetric coset spact’s

that they satisfy the ito ne general sell duality equations

5’” “1(2/)) (F(21))(2p)

(18)

contrasts with sell-dual fiehths on k,, with n-— Li i p, iii tvhiichi case the
genet alised sell duality equation (I ) has non trivial instaitton solutions only
when v— tj. In this last case, which we shall consider inthetail below in
Subsection II, the presence of the dimensionil constant ic in (I 8) prevents any
soi tit ions which have so i table’ decay Properties at Li rge distances, ih is
problem does not aiise whteit (1 ‘3) is considered on a ntipu’t toset sl,tte,
l’echnicalhy, what happens in thus case is that the cui’vat tire I ielth st iength on
Gill is given tip to a factor with the di inensi( nis of an iverse sthuare of a length,
and ideiitif’ing this ‘s ith the square of w , Fq. 1(1 becomes diiiicnsioiiless.

(;/iI_ ,S’O(2n I ) SV(2uu)

In Ref .22, we have verified that the SO, (2t) I ield strength, which at the

north pole of the sphere .S’’ is given by , satisfies the geneialised sell, and
respectively ant i—sell, duality equation ( I ‘3) for arbitraiy /) and q, with n--p-i q.
In other words, the SO(2 n) field streiigtii which splits up as .51) (2,,) (0.50 ( 2,,),
stisf ies (1 ‘3) simply.

Another in teiesti iig result I roin the work of Ref. 22 is, that the spin
connection iden ii hitat 6 [01( of the .S’O, ( 4p) gauge c ,nnec i ion

= -!
(20)

in terms of tile l:instein—Cartan spin connection w,” with in and ui the frame

indices, wit cii tlieady satisfies tile geiieralised self—ti utli ty c mdi tioii (16),
implies the following double—sell-duality for the 2p-form Riemanit curvature

R(2p)= *R(2p)l (21)

in which one of the hiodge duals is taken over the coordinate indices ii, i’,, , and
the other one is taken over the frame indices nun,.. . For p-— 1, the i mdi tioii (2 1
which is equivalent to condition (1 6), was discussed before in Ref. 2 . l/( 2 p) in
(21) is the totally antisyntmetiised p-fold product of the 2—form Rieintnii
cuivat uie. It is interesting to note that the double self duality t, iithi tion ( 20)
actually solves the l:uler-Iagrange equations ol the generahised Fiiisten
I hilbert system

=
M

°‘:
R., k,”

“ (22)

Note that lot’ p-. 1, the dynamics of (22) is not horsion lice and lien,t we should
more properly denote is as a generalised Finstein-Cartan system.

G/ll--,S’(I(n-f I )/,S’IJ( n)(f( 1)

In Ref .24, we have ve,il icd that the .S’iI) it )sl 1(1) ga tige I k’kls ott (‘P’
satisfy the generahised sell duality equati( ins (I ‘3) ho aibi trary i’ .iiid q, s it hi
n—pi-q. lit terms of the specific subset ,if tile .S’Il( n 1) (jell Mti,ii iiiitri,cs .3,

labelled by p = ui,,., (n + 2n — I) , thus curvature 2 form is expi-r’.t’ ,h- ‘at a lixt’d

point in the a)pr tpiitte pat(hi siiitply as / A,, A I. iii terms ‘ if t lie 51 / ii) and

11(1) valued coin lmcii ts oh t lit’ c urvat uic 2 p -forms on (‘1”, ii,,’ general iseth
self duality eq uat ion (03) reads

(I’))

s hi, It s,iitiate the iiietjtiahity (Il)) and hence their solutions must satisfy the

Inlet lagtaiige qtatk,it of the st:tle-bieakiiig (1Yttl ligi’angian (lIb). ‘I hits



(F(2q)\ )(2p) - (-)“ I(r- l).’(q-fl!fl(2ji),, (2a)

(!(2q),. l(2ji) ()r(,)!/(l!)T(2,)), (23b)

In the particular case of p I hqs.23 were obtained before in Ref.26, but not inhe r’oii text d t lie (;YM dvna mes of the lagrangian (II a). Similar self duality
equations for gauge fields on 111’’ again only for p- I , were verified in Ref.26.

itt I lie background (ii the above partial results stating that the li-algebravalued I ield 2p-lorni field st rengt Ii is self dual in the sense of (1 9) on the 2ndimensional (oSet space G/Il with n—p4-q and for arbitrary q, for the caseswhere (/f(— So) 20 1 1/50(2 n) and .S’lI( n+ I )/Sl1( n)xII( 1), we speculate that thisstatement remains valid for any symmetric coset space.
We finish this Subsection with a final remark. It is a general feature ofthe above instanton solutions, that the C-P charge of the dierect sum fields, e.g.SO, (2,:) ET)SO (2,:) and S(f(n)0 11(l), vanishes since this is the sum of the C-P

charges of the sell and the anti-self dual field strengths.

2 .2B. Mm sell duil solutions

Ins(an(on.s lit .?ii diill(’fl.SiOIiS

It was stated in the previous Subsection that the generalised self duality
equation (1 9) does not support instanton solutions in R,, , except when n— 2 r.This does not mean however that there are no instanton solutions at all. Thereis in fact no reason to doubt the existence of such solutions, since theinequality (I I a) supplies the action with a non trivial topological lower houndwhether or not this inequality is saturated. The only technical disadvantage ofnot being able to saturate (10) or (11 a) is, that instead of solving first orderself-duality equations it is necessary to solve the second order Euler-lagrange
equations. This is precisely the case that obtains also for the Skyrme sigmamodel (1), where the Skyrmion is evaluated numerically.

tlnfortunatelv, these second order Euler lagrange equations cannot heintegrated to give analvt ic solutions in closed form but have to be integrated
numerically. ‘Ibis is so even in the special case of the spherically symmetric
fields when these second order equations are ordinary differential equations.
In Ref.27, we have shown using numerical methods that there is a spherically
symmetric SO (2’:) gauge field in R,, which satisfies the requisite asymptotic
conditions that result in finite action and topological stability. These solutions
have unit C-P charge as expected.

?‘lerons in 2n climen,sion,c

Since the existence of the meron2’ solution to the Euler-lagrange
equations of the YM model in 4 dimensions is a consequence of conformal
invariance, we would expect that the conformal invariant GYM systems (1 5) in
4 p dimensions should also support meron solutions. Indeed, even the
alternative models (1 3) in 2n dimensions which we have discarded ott grounds
that they cannot support topologicallv stable solutions, should also support
meron solutions since the’ are manifestly conformal invariant in 2n
dimensions. In fact, that the Euler—Lagrange equations of (1 3) cannot supporttopologicallv stable solutions is irrelevant in this context, since nierons do not
exhibit any such stability. In Ref.28, we have verified that for spherically
symmetric SO, (2,,) gauge fields, the Euler-lagrange equations of the systems
(1 3) and of course also (I 5), as well as any linear combinations of these,
su rr rt meron solutions.

3. Descent to Hlggs Models

llaving given a natural GYM hierarchy of models in all even dimensions,
we are now itt a position to generate various Abelian and non-Abelian lliggsmodels by dimensional reduction. Given a gauge cotinection on a product space

R,, x K2,,
d’ where K2,, is compact and most typically a symmetric coset

space, it is well known that the components of this connection on the subspace
,

give rise to a l-Iiggs field on !, after dimensional reduction. ‘[he gauge
group of the residual model on R, as well as the lliggs multiplet, depend on
both the gauge group in the 2n dimensional theory and the structure of the
compact suhspace. The calculus of dimensional reduction used here is our
adaptation ‘°‘° of the formalism of Ref.4, which is specific to descents by 2 and
three dimensions, to the case of descents by arbitrary dimensions. We shall
take the results of Refs.4,30,3 1 as given and will use them in the following, to
implement the programnie described under Subsection 1.3.

‘l’echnically the most important items in Subsection 1.3 were the
topological charge densities (Sa,h) descended from the second C-P density. Both
of these, the monopole and vortex charges, can he evaluated as surface, resp.
line, integrals by virtue of the fact that both densities ( 5a,h) are total
divergences. This property is crucial in enabling the construction of
topologically stable solutions, since the surface integrals can he controlled by
requiring suitable asymptotic properties from the solutions. While in these
two lantiliar cases this property was well known, it remains to be verified that
he situation holds also for other lliggs models arrived at by the dinierisional

descent of GYM systems.
In Refs.30,3 I ,3 2, we have verified that tinder dimensional redOction front

M2 = x K, to R,1, the n-tb C-P charge reduces to a surface integral in d
diniensions:

f trF... AF = I’’•’ (24)

where , , is the (cl-I) dimensional surface in 1?,. for arbitrar K7 , =

In Ref.25, we have verified the sante result forK, = “. Having obtained
(lie result (24) both for spheres and for complex projective spaces, we would
expect that it remains true for the case of arbitrary syntmetric coset spaces. In
the following however, we sltll employ exclusively spheres since these are
the simplest and we are interested only in the qualitative aspects of the models
thus derived.

l’lw procedure for deriving the lliggs models below starts front theinequality (1 Ia), with the integrations taken instead over the product space
M2,, R1 x K,

,.
Ilere of course we have in ntind that n’> 2, otherwise the

ensuing models will simply be the usual Abelian Iliggs and the YMII models on
cl>’2 and 3 respectively, which we discussed previously in Subsection 1.3. Indeed,
without sacrificing any generality’, we can restrict to the cases where p>-q.After the proper imposition of symmetries, in our cases those of the spheres
employed in the dintensional reduction, the coordinates on these spheres areintegrated out to yield a residual inequality

.1 1 ,,[A,,T’J fc[A,,1

where we have used the result (24). Provided that the asyntptotic conditions ofthe fields solving the Euler-lagrange equations of the residual lagrangian



+ J(r))Fv

Or ‘h(r)IFPvM

in the notation of Eqs. 12,1 3. ‘I’he required instanton asymptotic behavioui are

—l

‘A — —Ft , ‘A = 0; p = id
r ( + v /r)

‘

in the l)irac string gauge. The field strength components corresponding to(28) were conipu ted in Ref .34

‘I,;, -;/c + I

=

which agree with the familiar d 2 and cL-3 results. The asymptotic fieldstrengths (20) in this constant-lliggs gauge are very helpful in certain of thecomputations involved in constructing a dilute gas of instantons.
To illustrile the procedure of constructing lliggs models given in thisSection, we give the residual lagrangians and the corresponding topologicalcharge densi Lies feat urilig in the inequality ( 25) for three examples. One ofthese is the SO) 7) I liggs model descended from the scale invariant GYM systemonR., x .S which is interesting in its own right, and the others are physically

relevanL cases, namely the generalised Abelian lliggs mnodeI-5 on R, descended

(;eie1—a1ised monopole on

‘Ihis is the simplest possible example of a non trivial generalised I liggsmodel, and was lit-st discussed in Ref.36. ‘Ihe lagrangian and topologicaldensities in 7 dimensions are given by

L1 = rr(11+fb,D1(bJ)
(30o)

p7 a L ,jrl!7 i’i’
(30b)

and the corresponding self duality equations are

fi.,, L(l))
(31)

It was shown in Rels.37, that the spherically symmetric fields ( 26), solve thesell duality eq tia t ion (3 1). The solution however has not been given in closedform as was in the case of the lIPS mnonopole-° in 3 dimensions.It is interesting to note that in this case sell dual solutions exist in spiteof the fact that the sell duality equations (I (>) from which (31) are descendedare is often overdetermimledtS. ‘lIds is because this ‘nionopole in 7 dimensionsbears a similar relation to the axially symmetric instantons in S dimensions,which we have shown exist’s- as the 3 dimensional BPS monopole-° bears tothe axially symmetric instamiton chain in 4 dimensions70.

c;eiieraliscd vortices on R,

Expressing the Abelian gauge field as and the 0(2) lliggs field as acomplex valued quantity as in (Sb), the residual Lmgraiigiin and topologicaldensities hir this model are

12/) l1
- II )J j1

+ ( ‘1
— I )‘I + ( j-

—

) (32u)

p dr’/ qa0 — 3i( I)
— + )D,ip* I. (32b)

‘l’he dimensionless coupling parameter A can Like dii)’ positive value withoutinvalidating0 the topological inequality (25).
It is interesting to note that only the first term in ($2b), namely the fit-stCherwSimons density in 2 dimensions, cait Omltril)tite in the line integr.tl onthe large circle since all the other terms decay laster accoidimig to finiteaction conditions. ‘Ihis situation obtains also for the usual v le\ numberdensity (S b), as pointed out there. When the dimensionless coupling strengthparameter A is equal to one, we have the following sell duilil r(ltl.II ionscorresponding to (32)

/( ‘i -I1)J -‘1 1,,,’P I 3c,(’i --II )

I) ‘p ii’, (33b)

permit the surface integral on the right hand side of (24) not to vanish, thisinequality acts is a tl)polgical lower bound and we can expect non trivialinstanton solutions. ‘Ihese boundary conditions at-c qtialitatively the same asthose for the well known monopole5 and vortex0 solutions.‘l’here is a particular family of models satisfying the inequality (25)which is canonical in the sense that the d2 and c1=3 members of thathierarchy generalise the usual Abelian lliggs and the YMII models in a verymiatural way which we discuss presently.
‘l’he mode of descent3’from 2n down to d dimensions is so organised inthis case that the spherically symmetric fields of the residual models iiiquestion have gauge groups SO(LI), and the corresponding l-higgs fields taketheir values in the vector representations. ‘l’hese spherically symmetric gaugeamid lliggs field configurations are

from the same GYM system on R,’x S1 , and, the S1J(2)xSIJ(2 )xiJ( 1) Iliggs model ‘-‘
descended from R4 x

(20i)

(26b)

(27u)

(27b)

I lere we note a very interesting common feature of all these fields (26) inthe infinite asymptotic region, which is familiar in 3 dimensional case imidnatiiely that in the [)irac string gauge the lliggs field is a constant and the50(3) gauge field breaks down to an Sf)) 2) (Abelian) field with a linesingularity along the z-.ois. using a suitable3-’ 50(d) gauge transformation togauge the lliggs field ( 26b) at infinity away to a contant, the 50(d) gauge field2 6i) in this region breaks down to an SO( ri-i ) singular I - form

(2g)

(29a)

(29b)

I



I Iii (I(S((Ilt 711(1 Ii.illlSIfl ill tiit r<siilts iii {32.i) vith the p.irticol.ir value 1 I.
It till Ii’. 1)111 IWI(’ IS Ill tlir’ (.IS(’ ot lie usii,tl AlieIii,i tliggs “itices”, that the
self .Itiil liv eqill iii ins ( .1 1) clii not lie SOlVV(1 in closed form even though
solti (Ii inS exist. We have yen fled in Ref .3 S using ntinierical met hods, t hat
radiall symmetric solutions of arbitrary winding number to (33) exist.

ihe moSt prominent feat ure of these generalised self dual vortices is their
qitant i tative cli I lerence from the usual vortices: for the same value of the
dimensional ptrtmeter ij, the profile of the generalised Vortex is sharper
than tli.it (if the usual vortex. This feature is demonstrated graphically in our
numerical studies in Ref.3S.

These generalised self dual Ahehian lliggs vortices were also exploited
recent lv in constructing a generalisation of the self dual Chern-Simons
Vort ii es in 2 I dimensions ilit roduced in Refs.40. ‘I’he general ised Abel ian
lliggs vortices thus played in Ref.30, the same role that the usual Abelian
lliggs played in the work of Ref.40. As in the case of the latter work40, the self
dual vortex solutions of Ref.3 are not expressed analytically but are found
using numerical methods. I lere too there are fairly striking differences in the
quantitative aspects of the two types of vortices, illustrated graphically in
Ref.37).

It is interesting to note again, that Eqs.33 have non trivial solutions in
Spite of the fact that they are descended from (I () which are in general
overdeterm ine(l This is for the same reason as in the above example, and
namely because this generalised Ahelian lliggs model hears the same
relationship to the axially symmetric0119 subsystem of the GYM model (15) in 8
dimensions, as the usual Ahehian I liggs model bears to the axiall symmetric20
su bsvsem of the usual YM m kId.

l,ocalisccl ins(ari (i)ns (in R

This is a prototype model for the Electroweak and Srtong interactions. Its
main feat ure is that the instanton solutions it supports exhibit a non trivial
lliggs field configuration. As a consequence the instanton fields are localised
to an absolute scale, namely the VFV of the lliggs field 17, with respect to
which the localisation is not a power hut an exponential.

llere we shall restrict ourselves to the minimal, or simplest and most
symmetric, model given in Ref.33. The gauge group is S(J(2) x S(J(2) x (1(l), and
the lliggs multiplet is the following 4 x 4 field

where S —( 7 + (P2 ), and /3 y, and note that (3 Sa) is .i positive definite
quantity taking account of the Fact that the gauge and lliggs fields here are
taken to he antihermitian. The dimensionless coupling strengths A.,.... /14 can

take any positive values ivi t hout invalidating the topological inequality (25),
wit bout which topological stability would be lost. The descent niechanism in
fact results in (35a) with A, = A, = A, = I. As was the case for the vortex
number density (32h), only the first term in (35h), namely the second Chern
Sirnons density in 4 dimensions, contributes to the surface integral of the
topological charge. it is likewise a consequence of the finite action conditions.

to contrast to the previous two examples, the self duality equations here,
corresponding to the ease A, =... = A4 = I, are overdeterniined and have no non
trivial solutions. For this reason we do not list them here. We are therefore
restricted to seek only non self dual solutions, to the second order Euler-
lagrange equations of (35a). As expected, we have not found a result that can
be expressed analytically, hut it is possible to find the asymptotic solutions of
these in both regions r>> I and r<< 1. Work is at present in progress to integrate
the second order Euler-lagrange equations numerically7.

Since we regard the model defined by (35a) as a prototype for one
describing the fundamental interactions, it is reasonable to seek sphaleron42
solutions in the static limit. It is clear that the static limit of ( 35a) remains
formally the same except that the first term now on R, vanishes due to the
antisvmmetry, and the R4 indices p. s’.., must now be replaced by i,j,..—l,2,3. The
following Ansatz made in Ref.4.3, which unlike the usual spaleron Ansatz is
genuinely spherically symmetric hence suppressing the (I( 1) field rigorously,

A = ——-f(r)[P’’, d(lY’ 1. (Ti = h(r)(P” (36a, b)

where r is the radial variable in 3 dimensions, the matrix (fr’ iy,,q,,, and

q,, = (slop rio Ocos, slop cm Oslo .sinpcos O.cosp) in terms of the polar and

asymuthal angles (0. q)), and the parameter p. 1) Sj, ir. The sphaleron
solution is the field configuration corresponding to I lie value of this
parameter p = ff/2. . It is shown in Ref.43 that I lie energy integral
corresponding to the fields (36a,b) takes its maximum value for the sphaleron
solutions withp = /2, and is unstable’° agaist fluctuations in this parameter.
The sphaleron solution itself can he found numerically, and this part of the
work is now in progress1.

For completeness, since we regard this model as a prototype for
fundamental interactions, we should seek the vortex like Cosmic String
solutions that it might support. This remains for the future, hut the
construction (If a Semilocal String47 promises to he a straightforward task.

Finally we mention that this 4 dimensional model can be extended as

L L,.M + (37)

by adding the usual YM system without invalidating the inequalities (25). The
system (37), as also the GYM system (11 b), bears an obvious resemblance to the
Skyrme model (1). It promises to supply a non trivial dynamics for a cliltitc gas
of instantons45 in 4 dimensions, which would he the single iiiost significant
outcome of the present programme.

I

Oq
(J) = (34)

-(31’ ()

where qi is a 2 2,1 2 complex valued field. Ilie lagrangian and topological

charge densities Ire, respectively,

= rf + 41/ i,=, fl, ,PJ — I 8A,(f(S. ! ,t +

541,/S. DP/2 -t-5414S’ 1 (35)

i’ ,,,,tr/31—ijtA( !, — A,,A(, ) + — rJ’(Pf F

(35b)
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