DAIR DIAS

Institutional Repository Institiid Ard-Léinn | Dublin Institute for
Bhaile Atha Cliath | Advanced Studies

Title Skyrme-Like Models in Gauge Theory

Creators Tchrakian, D. H.

Date 1993

Citation Tchrakian, D. H. (1993) Skyrme-Like Models in Gauge Theory. (Preprint)
URL https://dair.dias.ie/id/eprint/887/

DOI DIAS-STP-93-27



1=

SKYRME-LIKE MODELS IN GAUGE THEORY

DAL TCHRARIAN
Department of \athematical Physics, St Piatrich's College, Mavnooth,
and
School of Theoretieal Physics, Dublin Institute for Advanced Studijes,
10 Burlingron Koad, Dublin 4. Ireland

Ireland,

ABSTRACT
Therarchios of systems in higher dimensions neneralising the Yang-Mills
model are reviewed, These involve higher powers of the totally antisymmetrised
derivitives of the ficlds, in common with the Skyrme model. Their solutions as
wellas their descent to lower dimensions is discussed, and as examptles of our
procedure iggs models in 2.4 and 7 dimensions are presented in some detail.

1. Introduction

[T Motivation

An important role in the study of non perturbative effe
ficld theory s played by the finite action field configur
the action. These are the topologically stable instanton solutions of the
dynamical equations of the model in question. It is important therefore to find
the appropriate instanton solutions of the two models of fundamental
interactios, (he Strong and the Electroweak. Tlere the following twin problem
arises: The only instantons that the YM-11 systemin 4 dimensions supports are
the well known RPST solutions! of the YM ficld cquations, with the Higgs field
cqual to its constant vacuum value (VIV) ceverywhere. The first problem is that
the (rivial Higgs ficld conliguration excludes the possibility of finding non
trivial instanton solutions in the Flectroweak model. The second problem is
that due to the scale invariance of the YM model in 4 dimensions, the BPST
instantons have an arbitrary scale which means that the physically desirable
deseription of o dilne nstanton gas is not justificd. This problem is also there
because of the absence of o Iigres ficld, which could have provided an absolute
scale, the VIV, with respect to which a dilute gas approximation could have
been implemented. Thus we see that these twin problems can be tackled if we
could construct some extension of the YN ] system which supports instanton
solutions in 4 dimensions, This is the main aim of the work reviewed below,

Cts in guantum
ations which minimise

1.2 Skyrme sigma miode!

The task we have set ourselves is similar to, but more complicted than, the
resofution of a4 similar problem, namely (he construction of finite action
topologically stable solutions in a sigma model in 3 dimensions. This is better
known as the Skvrme model? which is usually describe| by the ficld 1/ e St7(2).
Ixpressing [7in terms of an O(4) vatued field ¢"as {7 =evpifly )y ¢ 72, where
@'0" = 1. This O4) sigma model is given by

I = l\“‘(r?“(ﬁ“), +(r)lﬂ¢"()\ IQ’)/')" (1)

where k' is a constant with the dimensions of inverse length..Integr
trace of the stress tensor over the d-dimensional volume
we find the restriction
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inst ‘s ions with
from which it is clear that onlv in d,-4 can there !w. mxhln!fvm 3(])14uH::!1:rivil“
non-trivial Higgs ficlds and in d-4, instanton solutions (\\13; only ,]q o (:”
(nnfi;vnr'llirms‘(;!' the Iiggs field. In i sense, the Higgs dependent terms
(‘(mldwho regarded as Skvrme-like terms in -+,
1.3. Skyvrme iggs-models
i itable Skyrme-terms for the YM
To find a prescription for constructing suitable Skyrme-te r%m.? f(/r( e
sytem in d =z 4, let us first consider the generic YA S/\'Sl’(.’n‘] l(\ )‘ 'mv:\riwﬁc((l‘i;
;‘llhﬁ\"il(‘l’n of the SU(2) YM svstem in 4 (llm(‘nsnm,& It lms_ 1('( n verit einn
1 0 ) ' S -G (< et 7 . A a & 4
Ref] i] that the SU(2) YM systems on RxS! and R,xS |(,s?; (\:]1\\;”}, fer beins
j imensional reduction?, reduce to the SU( S)
subjected to dimensional rec ! (2) YN fom with
Db rl\‘u(Z) and o the U (Maxwell) Abelian mode!l with a complex v lll'I |
" 1 ; imension: wdels
Iiggs fickd ¢. 1t is well known that both these 3 and 2 dimensional ;ni ,
‘ V ‘ i Iy ' e ang
support finite action topologically stable salutions, namely the manopolc
e S ions of the respective models, _
ortex sohrtions of the respective N , . ) dimensions.
o We scee that for the two models exemplilicd 173 ('{) in 3 .lml_L d”_‘.‘“::;“{,‘r\‘
the required Skyrme ters are generated by subjecting the 4 dIAll](H'\I()I‘ ;q]\ N
: on i i - the task ¢
maodel to dimenssional reduction. To employ !ln\lrr( Mllp!l;nl] l](l): (I“1m(‘ngmn§
i in various Hi cls s .
: : “uc stantons in various Higgs-moc
hand, namely o construct inst. ) ‘ : ets n d o
o 24, we must first {ind a suitable higher dllll(‘[l..’wl“ll.l] generalisation of :
tmﬂml‘Yl\l modcel and subject it to dimensional reduction, rther vital element
The procedure just proposed however has nnc’hnl l('l’ | |~‘ im[,’,lm,”n
which we now describe. The construction of lnpn‘lugu;}llf\ sta wt;mrc. Lhcing
solutions in the ahove mentioned two (?Xill]l[?'(‘,S -'~(|‘“(.S |(»”1:(\ here bheing
topological lower bounds on the respective actions. ! ‘_( .'s(l :ll )Wcr.h”u“d !
ih(‘t]tl'llilim that are descended from 4 (llmcnsmn?. wherc ll 1((1 (m bt lgh,]
sin I of rosi ity ¢ i T > sccond Chern- Vi
R sidus ity descending from the ¢ )
the integral of residual density 5 ot ¢ second Che ot yasin
(C-1) dr‘;;Nilv rF A I after dimensional reduction. These are respectively th
familiar nu)l{opolv and the vortex charge densities
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where Foand £ are the SU(2) and Abcelian field strengths respectively. Both
(Sa,h) 'n"}c lnl.';I,divcrgcn('vs like the second C-I' density they are descended
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from. This last property is crucial in guarantecing that a .snlulmq x.;lu.sf)ln:,
the appropriate boundary conditions should result in a topologica V. not



trivial bound. Note that the second term in (5b) does not contribute 10 the one
dimensional (surlace) integral because of linite-action asymptotic conditions,
leaving just the usual vortex number density. ' '

The ol divergence expressions in (54,b) have their unaluggcs ln‘th"
case of the sigma model (1) which supports the well knuwn_bk)‘l'nugw
solution, which is also topologically stable. In that case the topological density
is the winding number density

Prmting = €, €710, 070, 0"d, ¢ ¢ (6)

whose [irst variation vanishes as expected.

We conclude therelore that the procedure o be followed bclf)w sh»uuld
incorporate first, the generalisation of the YM system 1o higher d'uncny()ns,
which we present in Section 2, and second | lhtldllnj.‘nSl()nal reduction ol both
the higher dimensional action and the corresponding C-P charge.

2. Generalised YM(GYM) systems
2.1. Definition

The higher dimensional YM hicrarchy we will present here can be best
introduced by generalising the basic topological inequality ol the usual YM
model in 4 dimensions

juﬂzr‘ > j:r(m)A F(2)) (7)

M, M,

because we require that the hierarchy of GYM systems be cm?iowuj with
similar topological inequalities giving rise to finite ac‘liun wpulogmully’s('ublc
solutions. In (7) we have used the notation F(2) = F,, for the curvature 2-form
field strength. We proceed lirst by generalising lh?s noluliqn Lo dcl'incﬂ the 2p-
form ficld strength F(2p), as the p-fold totally antisymmetrised product of the

2-form curvature 12). Thus the 4-form field strength F(4) consists of 6 terms.

involving the 2-fold product ol the curvature 2-form, the 6-form slrcnglh
consists of 70 such terms ete. F4) in patricular has a very compact expression
which we give here since it will occur frequently in the following by way ol
examples. This is

FA)=F e = 1E, by} (8)

where the brakets {1 denote anticommutation and [...‘I cyclic symmetrisation. ]

It is clear from (7) that the generalisation ol the YM system g_xvcn 'l~1c|‘L:
by the integrand on the left hand side pertains 911])/ to even duncnslloxp S,mEL
the C-P densities generalising the right huqd side are defined iny n; lglvu?
dimensions. The most natural way of proceeding here is to note that (7) follows
directly from the inequality

| F(2)=*F(2)1° 20 (9)

where “F(2) =(*F(2))(2) is the Hodge dual of the curvature 2~1’g)nﬂ iln 4
dimensions, which in this case is also a 2-forn. (NuluA(hal lhc‘saluru‘lwn Q[ 'lhc
inequality (9) results in the usual self duality cquations.) !Jsmg this n(.)humn
introduced, the generalisation of (Y) 1o 2(p+q) dimensions is very natural and
straightforward

WK B p) = (F2q)2p) ) 2 0 (10)

The dimensions of (he constant x here are those of an-inverse length, with
q-p. Expanding (10) now, we have the generalisation ol (8) in which he left
hand side defines (he new generalisation of (he YM, and the right hand side is
the (peg)-th C-p charge:

J-Luw > 2t j/rF/\ FAa. AF, (p+qg)—times (Ha)
My Moy
Liyw = 1r[ KM g2 )2 2P E24) ] (1)

The hicrarchy of generalised YM(GYM) systems i 2(p+g) dimensions is
delined? by (11b). l'or the special cases where poq, the GYM system (11h) in
4p dimensions is scale invariang, This interesting subset of the GYM hicrarchy

will be further discussed in the lollwing subsection devoted 10 g review ol
known solutions.

The scale-breaking Lagrangian (11b) with P#* ¢ bears a very close
resemblance 1o the SKyrme sigma Lagrangian (1). In both these Lagrangians,
the dimensional constant & plays the same role. The second terms in both (1)
and (11b) can be regarded as Skyrme terms, Recull however tha Irom the
scaling viewpoint, we have identified the Higgs dependent terms in the YM-|]
Lagrangian (3) also as Skyrme-like terms, which incidentally also feature il
dimensional constant, n, in the guise of a VEV. Thus in gauge theories, we
have wwo distinct types ol Skyrme terms that we can employ, and we will
discuss and exploit both of these in the lollowing.

We complete the definition of GYM systems by discussing the question of
the associated Dirac equation. The usual dirac cquation in terms of (he Dirac
symbol F”l)y. in terms ol the gamma malrices in 2n dimensions, would be the
simplest generalisation of the the 4 dimensional case. For n>2 however this
particular generalisation does not capture one of the most auractive features
of the Dirac equation in the background of self-dual YM ficlds in + dimensions,
namely that for the zero modes, this equation yields the Klein-Gordon equation
when it is acted on once more by the symbol. With this in mind, we have
suggested a generalised Dirac symbol in 4p dimensions, in the background of
the (generalised) self dual lield which saturates the inequality (11a) lor P=q.
(These generalised self duality cquations just introduced will be discussed in
detail below, Lq.16, in the context of their solutions.) The new symbol is
defined so, that when the zero mode equation is acted on by l“ul)u, it will yield
an elliptic equation gencralising the Klein-Gordon equation. This symbol

I -
-;(lirﬂnl)rm Hops ®'Lug ;:3,,‘1),., (ll)

was introduced in Rell9, and the particular Yukawa couplings it gives rise (o
under dimensional reduction were given in Ref. 10, Foand 1, are the gamnua
matrices and the chirality matrix in 2n-4p dimensions.

Before proceeding 1o discuss the solutions these systems SUpport, we
briefly allude 1o and dispose ol another hierarchy or higher dimensional
models! 12 which generalises the YM model in 4 diménsions, These models are
also defined in even, say 2n dimensions by

L =1r(h, @Y ) (13)



sre VL E . B H ;
where Lo T 1/8) () 4 r,,",)/l‘,4l‘,/ are the so, (2n) nmatrices, and where the
trace is l.’ll.\(‘ll over both the spinor indices and the gauge group indices. With
the exception of (he case with n 3, for all n+3, the systems (12) contain!! (he

GYM Sstem (11h) in the aenropriate dimensions, In 6 dimensions (12) does not
overlap with o GyM system and is given by

Lo=tF F,F,. (14)

vl

It turns out that for gauge group S0O,(2n), the Luler-Lagrange equations
pertiining 1o (13) have spherically symmetric (see below) solutions.
l!u- main difference hetween the GYM systems (I1h) and the alternative
hicrarchy (13) is that (he latter are not endowed with topological incqualities
analogous to (11a). This means that any solutions of (13) that may be found ;lrl‘
not guaranteed (o he topologically stable, and if SO, we dispose of the
alternative hicrarchy (13). we have indeed verified! s explicitly that the
SC(‘()H.d variation operator in (he background of the analytically known
spherically symmetric solution of (14) has negative cigenvalues and hence
l!]-ll this solution is unstable. We shall henceforth restrict ourselves to the
GYM hicrarchy | ‘ ‘ ‘
] Yet another reason for choosing the GYM hicrarchy is that the latter
||1\rn|\rcs only the second power of any derivative of (he ficlds hy virtue of the
hm.ll moantisvmmetry. This is another property shared with the Skyrme model
which the alternative hicrarchy (13) does not have. '

2.2. Solutions

‘ The known finite action topologically stable 'instanton’ solutions to the
l‘ulc_r—l;lgmng(‘ cquations of the GYM systems (11h) are cither sphvrirully
(radially) symmetric or at the least axially symmetric. The most important
among these are the self dual sotutions which in some cases can be expressed
ill];ll’\'!l‘("{l”y‘ These occur for the scale invariant cases with P=q . There are L'ilm
non-sclf-dual instanton solutions for those systems with /:iq! We S‘h;‘l”

review (hesc.lwn classes of solutions and their properties in Subsections 2.2A
and B respectively helow.

2.2A Self dual sohitions

When p-q the GYM svstem (11h)
Lo = trF(2p) (15)

4p Cuclidean dimensions, there are p possible axial symmetries as discussed in
the Appendix to Ref, 18, if by axial symmetry we understand that imposition of
symmetries which results in a (wo dimensional residual system with [/(1)
gauge group. The first one is (he usual (4p-1) dimensional Spl‘l(‘ri(‘;ll symmetry
mmposed in the (4p-1) dimensional subspace. The other {p-1) axial axial
symmetries pertiin to the rest of all the odd partitions of 4p. In our search!#.1o
for scale invariant in 4p dimensions, and the Euler-Lagrange equations of this
system are solved by the self-duality equations ‘

F(Z/?):*F(Zp) (16)
which in this case minimise the action ;ihsnlulely, since (16) saturates the

in(r.qu;ll.it_v (1 kl) or (10). In the special case of p=1, (15) is the usual YM system
which is the first member of the GYM hierarchy and (10) is the usual self

duality equation. For this reason. we shall often refer to (16) as the pgeneralisec
scl duality equation. Fquations (16) in cight dimensions, which is the case N2
here, were independently discovered™, but not in the context of the GYN
dynamics as given by (14).

Before discussing specific solutions of (16), we remark that this is :
system of equations involving the algebra valued connection field in g
dimensions and taking into account the gauge freedom, this field has (4p-1]
independent components. Counting on the other hand the number ol
equations (16), we find (4p)1/2(2p)! , whose values are not cven restricted te
the algebra of the gauge group. Clearly we have a potentially overdetermined
system here, since the number of ecquations (16) is greater than the number
(4p-1) of independent fields. The exception is the p-=1 case where these nimbers
arc equal as expected for the usual YM system in 4 dimensions, where we know
that the sell duality equations are not overdetermined.

It is therefore not surprising that for p-1, equations {16) have non trivial
solutions only when the fields are subjected to some stringent symmetries. We
have made a detailed study!s of cquations (16) on Ry, , imposing spherical
symmetry, axial symmetry which involves the imposition of spherical
symmetry in a (4p-1) dimensional subspace of Rip, as well as the less stringent
symmetries involving the imposition of spherical symmetry in subspaces of
dimensions lower than (4p-1). Our conclusion!s was that the system of
cquations arising from (16) was greater than the number of independent
functions parametrising the connection field subjected to the appropriate
symmeltry, cxcept in the case of axial symmetry, includung spherical
symmetry. This investigation!'s was carried out for gauge-group SO, (4p),
which is the gauge-group of the known solutions to be discussed below.

Spherically symmetric solutions®

These solutions are given® !4 in analvtic form on all 4p dimensional® flat
Fuclidean spaces for gauge-group SO (4p). In the special case p-1, this is
chiral SO(4), which coincides with the gauge-group SU(2) of the BPST
instantons. Using the same notation as in Fgs 12,13, these solutions all take the
same form for all p, namely

A =T (17

and hence we shall refer to them as the BPST hierarchy of solutions.

That the analytic form of the solutions (17) is independent of p is not at
all surprising, and is a direct consequence of the scale invariance of the GYM
systems (15). We have studied!® the conformal invariance of the BPST
hierarchy of instantons in the case of arbitrary p, as had been done!s for the
p=1, YM case in 4 dimensions. As a consequence of this scale invariance, it can
be shown that the action corresponding to the density (15) on Ryp can be
expressed on S*P. We shall return to this point below when we discuss other
sclf dual solutions, on compact cosel spaces.

Axially symmetric solutions! 8.1

For an SO,(4p) gauge ficld in 4p Fuclidean dimensions, there are p
possible axial symmetries as discussed in the Appendix to Ref.18, if by axial
symmetry we understand that imposition of symmetries which results in atwo
dimensional residual system with [(1) gauge group. The first one is the usual
(4p-1) dimensional spherical symmetry imposed in the (4p-1) dimensional
subspace. fhe other (p-1) axial symmetries pertain to the rest of all the odd



partitions of <4p. In our scarch!®! for axially symmetric solutions o the
generalised self duality equations (16), we found that only solutions with axial
symmetry of the first  type just described exist. This is a result of the
overdeterminedts nawure of kgs. 16.

Unlike the spherically symmetric subset of these solutions discussed
above, the axially symmeltric solutions cannot be found analytically, except in
the well known p=1 case?V. The generalised self duality equations (10) reduce o
one complex valued equation for one complex valued function, and one real
valued equation for one real valued function. Clearly therefore, imposition of
this axial symmetry does not result in q. 16 being overdetermined. As in the
p=1 case given in Rel. 20, the complex valued equation reduces to the Cauchy-
Riemann equations and hence is immediately integrated, and the real valued
equation then results in the lolowing partial differential equation

2p -1 vy
Ay =——(l—¢ - ;
v r (1=e™") (l=¢°Y)

2Ap-le o

(Vy) (18)

where r here is (.\'f + .xj+...+.rj“,,)'“, xy, s ¢ and V =(d/dr,d/d1). For p=1, the 2
dimensional partial differential equation (18) can be reduced to the Liouville
cquation which has well known analytic solutions. For all other p=1 however,
we have been unable o integrate (18) explicitly. Nevertheless we have been
able 1o show that some non trivial, and not spherically symmetric, solutions of
(17) exist!?. To do this, we have lirst changed variables according (o
r+it=tanh$(p+it), and then converted the partial differential equation (19)
to an ordinary differential equation in p by suppressing the T dependence of
the function w. We have then integrated the ensuing ordinary dilferential
equation numerically, subject to the requisite asymptotic conditions. The
resulting solutions depend both on rand on tthrough their dependence on p.
We have also verilied that these solutions have arbitrary C-P charge, so that
they are not restricted to the spherically symmetric case only. We do not
expect that we have captured all axially symmetric solutions in this way, since
in the p=1 case, where the analytic solutions are known?Y, the axially
symmetric solutions that we have found are only a subset of the complete
instanton chain4, situated on the  x, uxis only at special?t intervals.

Solutions on G/11

In addition o the solutions on 8 alluded 1o in the discussion ol the
spherically symmetric solutions above, the generalised sell duality equations
can be solved also on other symmetric coset spaces, G/ H.

The self dual solutions on 4p dimensional spheres, i.e. on the symmetric
coset spuaces SO(Hp+ 1)/50(4p), which satisty the sell” duality cquations (16)
pertaining o the scale invariant GYM systems (15), are not all the sell dual
ficlds on the spheres. These are the SO (4p) fields lor which the action
corresponding to the scale invariant Lagrangian (15) on $* cquals the action
ol this Lagrangian on K, via u stercographic projection. These solutions,
which were mentioned above, are not however all the self dual solutions on
the spheres. 1Uis a general feature of gauge ficlds on symmeltric cosel spaces
that they satisty the more general self duality equations

NP2 p) = (RN 2 p) (%)

which saturate the inequality (10) and hence their solutions must satisly the
Luler-Lagrange cquations ol the scale-breaking GYM Lagrangian (11b). This

contrasts with sell~-dual fields on R, ,with n-qg+p, in which case the
generalised sell duality equation (19) has non trivial instanton solutions only
when p=¢. In this last case, which we shall consider indetail below in
Subscction B, the presence ol the dimensional constant & in (18) prevents any
solutions which have suitable” decay properties at large distances. This
problem does not arise when (19) is considered on a compact  coset .sp‘u'c:
Technically, what happens in this case is that the curvaiure licld 5lrcnglh' (ll;
G/7H is given up o a factor with the dimensions of an iverse square of a length
and identifying this with the square ol &, Eq. 10 becomes dimensionloss. '

G/H=850(2n+1)/50(2n)

In Ref.22, we have verilied that the S0O,(2n) ficld strength, which at the

'n

north pole ol the sphere §°

v

is given by Z‘“,, satislies the generalised self, and
respectively anti-self, duality equadion (19) for arbitrary p and d, with nn=p+q.
In other words, the SO(2n) field suwrergth which splits up as SO (2n)® S0 (2n),
stislies (19) simply.

Another interesting result from the work ol Ref.22 is, that the spin
connection identification?* ol the SO, (4p) gauge connection

_ i
A==z, (20)

F4

in terms ol the Einstein-Cartan spin connection w," with m and n the frame
:mdiccs, wlnjch already satisfies the generalised sell-duality condition (16),
imiplies the following double-sel-duality for the 2p-Torm Riemann curvature

R(2p)=*R(2p)* 21

in which one ol the Hodge duals is taken over the coordinate indices MoV, and
the other one is taken over the frame indices nun,.. . For p=1, the condition (21)
which is cquivalent o condition (16), was discussed before in Rel.2 3. R(2p) in
(21) is the totally antisymmetrised p-lold product of the 2-lorm Riemann
curvature. It is interesting 1o note that the double sell duality condition (20)
actually solves the Euler-Lagrange equations of the generalised Finsten-
HHilbert system

Gy Hy vy Y ",

ey ere R R (22)

vy S gy g, Hop bts,

Loo=¢
Note that for p=1, the dynamics ol (22) is not Torsion free and hence we should
more properly denote is as a generalised Finstein-Cartan systen.
G/H=SU(n+1)/SU(n)xU(1)
In Rel.24, we have veritied that the SUn)xU(T) gauge ficlds on CP*

satisly the generalised sell” duality equations (19) for arbitrary p and g, with
n=p+q. In erms of the specific subset ol the SU(ny 1) Gell Mann matrices A
H?

labelled by p = ::,.H,(u2 +2n—1) , this curvature 2-lorm is expressed-T,aa lixed
point in the appropriate patch simply as //1“,/1‘,/. In werms of the SUGn) and

(1) valued components ol the curvature 2p-forms on CP", the goeneralised
sell duality equation (19) reads



CHCqdg N2p)=(=)""1(p= 1y~ DHF(2p),, (23a)

CFCqh, H2p)=(=)"(p!/gVF(2p b (23h)

In the particular case of p-1, 1igs.23 were obtained hefore in Ref.26, but not in
the context of the GYM chvnamics of the Lagrangian (11a). Similar self duality
cquations for gauge ficlds on  /7p”, again only for p=1, were verified in Ref.26.

In the background of the above partial results stating that the H-algebra
valued field 2p-lorm ficld strength is self dual in the sense of (19) on the 2n
dimensional coset space /11 with n=p+q and for arbitrary q, for the cases
where G/ SO(2n+1)/850(2 ) and SU(n+1)/5U(mxU(1), we speculate that this
statement remains valid for any symmetric coset space.

We finish this Subsection with a final remark. It is a general feature of
the above instanton solutions, that the C-I charge of the dierect sum fields, c.g.
SO (2n)® SO (2n) and SU(n)@® U(1), vanishes since this is the sum of the C-P
charges of the self and the anti-self dual field strengths.

2.2B. Non self dual solutions
Instantons in 2n dimensions

It was stated in the previous Subsection that the generalised self duality
equation (19) does not support instanton sohitions in R,,, except when n-2p.

This does not mean however that there are no instanton solutions at all. There
is in fact no reason to doubt the existence of such solutions, since the
inequality (I 1a) supplies the action with a non trivial topological lower bound
whether or not this inequality is saturated. The only technical disadvantage of
not being able to saturate (10) or (1ta) is, that instead ofl solving first order
sell-duality cquations it is necessary to solve the second order Euler-Lagrange
equations. This is precisely the case that obtains also for the Skyrme sigma
model (1), where the Skyrmion is evaluated numerically.

Unfortunately, these second order EFuler lagrange equations cannot he
integrated to give analytic solutions in closed form but have to be integrated
numerically. This is so even in the special case of the spherically symmetric
fields when these second order cequations are ordinary differential cquations.
In Ref.27, we have shown using numerical methods that there is a spherically
symmetric SO, (2n) gauge ficld in R,, which satisfies the requisite asymplotic
conditions that result in finite action and topological stability. These solutions
have unit C-P charge as expected.

Merons in 2n dimensions

Since the existence of the meron?? solution to the FEuler-lLagrange
cquations of the YM model in 4 dimensions is a consequence of conformal
invariance, we would expect that the conformal invariant GYM systems (15) in
4 p dimensions should also support meron solutions. Indeed, even the
alternative models (13) in 2n dimensions which we have discarded on grounds
that they cannot support topologically stable solutions, should also support
meron solutions since they are manifestly conformal invariant in 2n
dimensions. In fact, that the uler-Lagrange equations of (13) cannot support
topologically stable solutions is irrelevant in this context, since merons do not
exhibit any such stability. In Ref.28, we have verified that for spherically
symmetric §O,(2n) gauge ficlds, the Luler-Lagrange cquations of the systems
(13) and of course also (15), as well as any lincar combinations of these,
support meron solutions. ’

-

3. Descent to Higgs Models

Having given a natural GYM hierarchy of models in all even dimensions,
we are now in a position to generate various Abclian and non-Abelian Higgs
models by dimensional reduction. Given a gauge connection on a product space
M, =R,xK,, , where K, + Is compact and most typically a symmetric coset

space, it is well known that the components of this connection on the subspace
K,, . give rise 1o a Higgs field on R, after dimensional reduction. The gauge
group of the residual model on R, as well as the Higgs multiplet, depend on
hoth the gauge group in the 2n dimensional theory and the structure of the
compact subspace. The calculus of dimensional reduction used here is our
adaptation?®3t of the formalism of Ref.4, which is specific to descents by 2 and
three dimensions, to the case of descents by arbitrary dimensions. We shall
take the results of Refs.4,30,31 as given and will use them in the following, to
implement the programme described under Subsection 1.3,

Technically the most important items in Subsection 1.3 were the
topological charge densities (5a,b) descended from the second C-P density. Both
of these, the monopole and vortex charges, can be evaluated as surface, resp.
line, integrals by virtue of the fact that hoth densities {(5a,b) are total
divergences. This property is crucial in enabling the construction of
topologically stable solutions, since the surface integrals can be controlled by
requiring suitable asymptotic properties from the solutions. While in these
two [amiliar cases this property was well known, it remains to be verified that
the situation holds also for other Iliggs models arrived at by the dimensional
descent of GYM systems.

In Refs.30,31,32, we have verified that under dimensional reduction from
M, =R,xK, ,to R, the n-th C-P charge reduces to a surface integral in d

dimensions:

| rFAAF = [va= [a (24)
M, R,

z:l 1

where Z, , is the (d-1) dimensional surface in R,, for arbitrary K, ,=8§"".

In Rel.25, we have verified the same result fork,, ,=CP . Having obtained

the result (24) both for spheres and for complex projective spaces, we would
expect that it remains true for the case of arbitrary symmetric coset spaces. In
the following however, we shall employ exclusively sphercs since these are
the simplest and we are interested only in the qualitative aspects of the models
thus derived.

The procedure for deriving the Higgs models below starts from the
inequality (11a), with the integrations taken instead over the product space
M, =R, xK,, ,. llere of course we have in mind that n>2, otherwise the

ensuing models will simply be the usual Abelian Higgs and the YMI models on
d=2 and 3 respectively, which we discussed previously in Subsectionl.3. Indeed,
without sacrificing any generality, we can restrict to the cases where p-q.
After the proper imposition of symmetries, in our cases those of the spheres
employed in the dimensional reduction, the coordinates on these spheres are
integrated out to yield a residual inequality

J il A @12 [OrA, @) (25)
Z«I

Ry '

where we have used the result (24). Provided that the asymptotic conditions of
the ficlds solving the Fuler-Lagrange equations of the residual Lagrangian



permit the surface integral on the right hand side of (24) not 10 vanish, this
inequality acts as a lopolgical lower bound and we Can expect non trivial
instanton solutions. These boundary conditions are qualitatively the same as
those for the well known monopole’  and vortex® solutions,

There is a particular family of models salislying the inequality (25)
which is canonical in the sense that the d=2 and d-3 members of that
hierarchy generalise the usual Abelian Higgs and the YMI models in a very
natural way which we discuss presently.

The mode of descentss from 25 down o d dimensions is so organised in
this case that the spherically symmetric fields of the residual models in
question have gauge groups SO(d), and the corresponding Higgs ficlds ake
their values in the vector representations. These spherically symmetric gauge
and Higgs field configurations are

I :

Ay =<1+ f(r))T, x, (26a)
r

© = 0 h(r)il, x, (26h)

in the notation of Egs.12,13. The required instanton asymptotic behaviours are

e ) ———0 (27a)
VM) ——1. (27b)

llere we note a very interesting common feature of all these fields (26) in
the infinite asympiotic region, which is familiar in 3 dimensional cuse and
namely that in the Dirac string gauge the liggs field is a constant and the
SO(3) gauge lield breaks down (o an 50(2) (Abelian) field with a line
singularity along the z-axis. Using a suitable3’ SO(d) gauge transformation (o
gauge the lliggs field (26b) at infinity away 10 a contant, the SO(d) gauge field
(204a) in this region breaks down 10 an SO(d-1) singular 1-form

|

‘A, :—,“—F.x,
ri(l+x,/r) 7

Ay =0 w=id (28)

in the Dirac string gauge. The field swrength components corresponding o
(28) were computed in Ref.34

|
Fo=—-— | t [y 29
v r'/ TP (L, sy (29)
|
hy=—=T, (295)
B

which agree with the familiar d=2 and d=3 results. The asymptotic lield
strengths (29) in this constant-lliggs gauge are very helpful in certain of the
computations involved in constructing a dilute gas of instantons.

To illustrate the procedure of constructing Higgs models given in this
Section, we give the residual Lagrangians and the corresponding topological
charge densities featuring in the incquality (25) for three examples. One of
these is the SO(7) Higgs model descended from the scale invariant GYM system
ongk, x 8" which is interesting in its own right, and the others are physically
relevant cases, namely the generalised Abelian lliggs model3s on R, descended

[rom the same GYM system on R,x S°, and, the SU)xSU2)xU(1) Higgs model+s
descended from R, x 5*.

Generalised monopole on R,
This is the simplest possible example ol a non trivial generalised Higgs

model, and was [lirst discussed in Rel.36. The Lagrangian and topological
densities in 7 dimensions are given by

Ly =ur(F + (K, D®)) (30u)
P1 = 0.8, r1OF F,F, (300)

and the corresponding self duality equations are

{E,.Dwd} (31)

f kit = '3‘/ E okt

It was shown in Refs.37, that the spherically symmetric fields (20), solve the
sell’ duality equation (31). The solution however has not been given in closed
lorm as was in the case of the BPS monopole in 3 dimensions,

It is interesting o note that in this case self dual solutions exist, in spite
of the fact that the self duality equations (16) ITom which (31) are descended
are is often overdetermined!s. This is because this ‘monopole' in 7 dimensions
bears a similar relation o the axially symmetric instantons in 8 dimensijons,
which we have shown exist'819, as the 3 dimensional BpPS monopole38 bears to
the axially symmetric instanton chain in 4 dimensions?V,

Generalised vortices on K,

Expressing the Abelian gauge field as j(’lﬁ, and the O(2) Higgs field as a
complex valued quantity ¢ as in (5b), the residual Lagrangian and Lopological
densities for this model are

Ly = 12000 =@l ),y =D, D, 0 1+ (1 =lol' P|D,0f + ¢! ~lol 7 (32a)
iy . 2 2 ]
Pr= Ayl 0y =3in" — gl + Slol oD, o0 1 (320)

The dimensionless coupling parameter A can tuke any positive value without
invalidating® the topological inequality (25).

ILis interesting 10 note that only the first tern in (32Db), namely the lirst
Chern-Simons density in 2 dimensions, cun contribute o the line integral on
the large circle since all the other terms decay faster according 1o finite
action conditions. This situation obtains also Tor the usual vorrex number
density (5b), as pointed out there. When the dimensionless coupling strength
puarameter 4 is equal 10 one, we have the lollowing self duality equations
corresponding 1o (32)

Lo =ol 1, ~ i Dy ] =3¢ o ~ | ) (33a)
D, g =ic,, Dy (33b)



The descent mechanism in fact results in (32a) with the particular value A = 1.
It turns out here as in the case ol the usual Ahelian Higgs vortices®, that the
sell duality equations (33) cannot be solved in closed form even though
solutions exist. We have verified in Rel.35 using numerical methods, that
ridiadly symmetric solutions of arbitrary winding number to (33) exist.

The most prominent feature of these generalised self dual vortices is their
quantitative difference from the usual vortices: For the same value of the
dimensional parameter 17, the profile of the generalised vortex is sharper
than that of the usual vortex. This feature is demonstrated graphically in our
numerical studices in Ref.3S.

These generatised self dual Abelian Iliggs vortices were also exploited
recently in constructing a generalisation®” of the self dua! Chern-Simons
vortices in 2+1 dimensions introduced in Refs.40. The generalised Abelian
Higgs vortices thus playved in Ref.39, the same role that the usual Abelian
IHiggs playved in the work of Refl.40. As in the case of the latter work*?, the self
dual vortex solutions of Rel.39 are not expressed analytically but are found
using numerical methods. Here too there are fairly striking differences in the
quantitative aspects of the two types of vortices, illustrated graphically in
Ref.39.

It is interesting to note again, that Egs.33 have non trivial solutions in
spite ol the fact that they are descended from (16) which are in general
overdetermined!S. This is for the same reason as in the above example, and
namely because this generalised Abelian Iiggs model bears the same
relationship to the axially symmetric!®1" subsystem of the GYM model (15) in 8
dimensions, as the usual Abelian Higgs model® bears (o the axially symmetric20
subsysem of the usual YM model.

Localised instantons on R,

This is a prototype madel for the Electroweak and Srtong interactions. Its
main feature is that the instanton solutions it supports exhibit a non trivial
Higgs field configuration. As a consequence the instanton ficlds are localised
to an absolute scale, namely the VEV of the Higgs field 1, with respect to
which the localisation is not a power but an exponential.

Ilere we shall restrict ourselves to the minimal, or simplest and most
symmetric, model given in Rel.33. The gauge group is SU(2)x SU(2)x U(1), and

the Higgs multiplet is the following 4 x4 ficld

0 g
o= ’ (34)
-p' 0

where ¢ is a 2x2 complex valued field. The Lagrangian and topological
charge densities are, respectively,

Ly =t + 40, B D, F = 18A,(((S. T, ]+ D, D, b ~
~S44,/S. DD +541,5* ] (35a)

N 2 I,
Pi = Ol TBI-1"A(F,, ~;A,,/\r,)+g nelr.,.n,e0+

nSpepa

" (id)(/s. E, )+ D, ®D, d)D,d] (35h)
0

',m

where S=—(n'+®"), and f =y, and note that (35a) is a positive definite
quantity taking account of the fact that the gauge and liggs ficlds here are
taken to be antihermitian. The dimensionless coupling strengths A Ay can
take any positive values without invalidating the topological inequality (25),
without which topological stability would be lost. The descent mechanism in
fact results in (35a) with 1, =4, =1, =1, = 1. As was the case for the vortex
number density (32b), only the first term in (35b), namely the second Chern-
Simons density in 4 dimensions, contributes to the surface integral of the
topological charge. It is likewise a consequence of the finite action conditions.

In contrast to the previous two examples, the self duality equations here,
corresponding to the case 4, =..= A, =1, are overdetermined and have no non
trivial solutions. For this reason we do not list them here. We are therefore
restricted to seek only non self dual solutions, to the second order Fuler-
Lagrange equations of (35a). As expected, we have not found a result that can
be expressed analytically, but it is possible to find the asymptotic solutions of
these in both regions r>>1 and r<<1. Work is at present in progress o integrate
the second order Euler-Lagrange equations numerically*!,

Since we regard the model defined by (35a) as a prototype for onc
describing the fundamental interactions, it is reasonable to seek sphaleron?
solutions in the static limit. It is clear that the static limit of (35a) remains
formally the same except that the first term now on R, vanishes due to the

antisymmetry, and the R, indices y, v,.., must now be replaced by ij..=1,2,3. The
following Ansatz made in Ref.43, which unlike the usual spaleront? Ansatz is
genuinely spherically symmetric hence suppressing the U(1) field rigorously,

A= ‘%./(r)[d’”". AD”] & =hir)d” (36a,b)

where r is the radial variable in 3 dimensions, the matrix &~ =iy,q,, and
4, = (sinft sin@cos ¢, sin jt sin @ sind.sinft cos 6.cospt) in terms of the polar and

asymuthal angles (6.¢), and the parameter . 0O<u<m The sphaleron
solution is the field configuration corresponding to the value of this
parameter g =m/2. It is shown in Ref43 that the cnergy integral
corresponding to the fields (36a,b) takes its maximum value for the sphaleron
solutions withy = /2, and is unstable?? agaist fluctuations in this parameter.
The sphaleron solution itself can be found numerically, and this part of the
work is now in progresst!.

For completeness, since we regard this model as a prototype for
fundamental interactions, we should seek the vortex like Cosmic String
solutions that it might support. This remains for the future, but the
construction of a Semilocal String** promises to be a straightforward task.

Finally we mention that this 4 dimensional model can be extended as

L=rK'Ly, +1, (37)

by adding the usual YM system without invalidating the inequalities (25). The
system (37), as also the GYM system (11b), bears an obvious resemblance to the
Skyrme model (1). It promises to supply a non trivial dynamics for a dilute gas
of instantons*S in 4 dimensions, which would be the single most significant
outcome of the present programme.

4. References



—

AA. Belavin, AM. Polyakov, A.S. Schwarls and Yu.S. Tyupkin, Phys.leuB59

(1975)85.

T.ILR. Skyrmc,I’roc.l{uy.Suc.AZ60( 1961)127; Nucl.Phys.31(1962)550.

J. Burzlaft and D.11. Tchrakian, Lett. Nuovo Cimento40(1984) 129,

see AS. Schwarts and Yu.S. Tyupkin, Nucl. Phys.B187( 1977)209.

G."tooft, Nucl.Phys.B79(1 97-4)276; AM. Polyukov, JITP Lett.20(1974) 194,

see A. Jaffe and C.H. Taubes, Monopoles und vortices, Birkhauser

Basel(1980)

D.H. Tchrakian, J.Math.Phys.21(1980)166.

D.IL Tehrakian, Phys.lett.B150(1985) 360.

9. 0. Lechtenfeld, W. Nahm and D.I1. Tchrakian, Phys.Lett.B162(1985) 143,

10. G.M. O'Brien and D.11. ‘Tchrakian, In Nuovo CimentoA97(1987)673.

1L C.Saclioglu, Nucl.Phys.B277( 19806)487.

12. K. Fujii, Lett.Math.Phys. 12(1986)363.

13. Zh-Q). Ma and D.11. Tchrakian, Lett.Math.Phys.19(1990)237.

14, B. Grossman, T.W. Kephurt and J.D. Stashet, Commun.Math.Phys.96( 1984)
341;100(1985)311.

IS. DL “Tehrakian and A. Chakrabarti, J-Math.Phys.32(1991)2532.

16. D. O'Se' and DU Tchrakian, Lett.Math.Phys.13(1987)211.

17, R. Juckiw and C. Kebbi, Phys.Rev.D14( 1976)517.

18. A. Chakrabarti, T.N. Sherry and DU, Tchrakian, Phys.Lett.B162(1985) 3-40).

19. J. Burzlaff, A. Chakrabarti und D11, ‘Tehrakian, J. Math.Phys.34¢ 1993)16065.

20. E. Witten, Phys.Rev.lett.38(1977)121.

21. A. Chakrabarti, Forts.d.Phys.35(1987)1.

22. G.M. O'Brien and DL Tehrakian, J.Math.Phys.29(1988)1212.

23. see .M. Charap and M.J. Dull, Phys.Lett.B69(1977)-445.

24, ZIh-Q. Ma and DL ‘T'ehrakian, J.Math.Phys.31(1990)1500.

25.7h-Q). Ma and D.I1. ‘Tchrakian, Phys.Rev.D38(1988)3827.

26. AL Bais and 1. Batenburg, Nucl.Phys.B269(1986)363.

27. J. Burzlall and DL Tchrakian, J.Phys.A(to appear)

28. V. de Alfaro, S. Fubini and ¢. Furlan, Phys.Lett.B65(1976)163.

29. G.M. O'Brien and D.IL T'chrakian, Phys.leti.B194(1987)411.

30. T.N. Sherry and D.L Tchrakian, Phys.Lett.B147(1984)129.

31.D.O'Se!, T.N. Sherry and D.I1. ‘T'chrakian, J.-Math.Phys.27(1986)325.

32.Zh-Q. Ma, G.M. O'Brien and D.H. Tchrakian, Phys.Rev.D33(1986)1177.

33. G.M. O'Brien and D.11. ‘I'chrakian, Mod.Phys.Leti.A4(1989)1 389.

34 Zh-Q. Ma and DU ‘Tehrakian, Lett.Math.Phys.26(1992)179.

35. J. Burzlalf, A. Chakraburti and D.L. Tchrukian, Generalised Abclian lliggs
models with sell dual vortices, Submitted 10 J.Phys.A.

36. J. Burzlalf, D. O'Se’ and DL Tchrakian, Lett.Math.Phys.13(1987)121.

37. Y. Yang, Let,Math.Phys.19(1990)257;20(1990)285.

38. M.K. Prasad aud C. Sommerliceld, Phys.Rev.lett.35(1975)760;
L.B. Bogomol'nyi, Sov.J.Nuch.Phys.24(19706)4-49.

39. A. Chakrubard, J. Burzlall and D.IL Tchrakian, Phys.Lett.B293(1992)127.

40. R. Jackiw and E. Weinberg64(1990)22 34; J. llong, Y. Kim and P.Y. Puc. ibid,
64(1990)22 30,

41, J. Burzladl, G.M. O'Brien and DLIL Tehrakian( work in progress.)

42, N.S. Manton, Phys Rev.D28(1983)2019; I.R. Klinkhamer and N.S. Manton,
Phys.Rev.D30(1984)202.

3. G.ML O'Brien and DL Tehrakian, Phys.Lett.B282(1992)111.

44, see . Vachaspati, Nucl.Phys.B397(1993)648.

45. see AM. Polyakov, Nucl.Phys.B120(1977)429.

oYU

e~



