DIAS Access to
Institutional Repository

Title	A (2+1)-dimensional model with instanton and sphaleron solutions
Creators	Tchrakian, D. H. and Müller-Kirsten, H. J. W.
Date	1991
Citation	Tchrakian, D. H. and Müller-Kirsten, H. J. W. (1991) A (2+1)-dimensional model with instanton and sphaleron solutions. (Preprint)
URL	https://dair.dias.ie/id/eprint/888/ DOI
	DIAS-STP-91-27

A (2+1)-dimensional model with instanton and sphaleron solutions

D.H. Tchrakian ${ }^{1) 2}$ 2 and H.J.W. Maller-Kiraten ${ }^{3}$)

1) Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland
2) School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
3) Department of Physics, University of Kaiserslautern, Postfach 3049, D-6750 Kaiserslautern, Germany

Abstract: We present a $(2+1)$-dimensional Skyrme-like model with a symmetry-breaking poteatial, which in \boldsymbol{r}_{3} has charge -n instanton solutions, and in the static limit in m_{2} a aphaleron aolution.

While the quantum tunnelling between topologically distinct vacua of the WeinbergSalam (gauge-lliggs) field theory is known to be negligible ${ }^{\prime \prime}$, it is ponsible that at affi ciently high temperatures transitions may occur essentially classically via phaleron field configurations, leading to an appreciable violation of baryon-number conservation. This mechanism was first suggested by Manton ${ }^{2)}$ and was further developed in ref. [3].

Using the sphaleron field configuration of the Weinberg-Salam model, which was previously known as the DHN solution ${ }^{4}$, the estimation ${ }^{\text {8 }}$, of the bargon-mumber violation of electroweak theory can be a task of considerable complexity in the quantum theory. For this reason, much attention has been devoted to carrying out this programme employing simplified toy models in lower (than physical) dimensiongel ${ }^{\circ}$ (I). Notable among these models are those in $1+1$ dimensions, where the sphaleron in question is constant atatic solution on S^{\prime}, of the ϕ^{4}-model and the sine-Gordon model respectively ${ }^{\prime \prime}$ a). In the latier example ${ }^{\text {s }}$, an extended version of the $O(3)$ sigme model in 2 dimensions has been proposed as the corresponding dynamical system in $1+1$ dimensions. In both these models, $i n$ on as also in the original DHN solution on ${ }_{3}$, the aphaleron is an unstable field configuration with finite energy. The energy it the d-dimensional integral of the atatic field configuration, namely $d=3$ for the DHN case, and $d=1$ for the toy modele of reff. [7] and [8]. The sphaleron field's energy is then regarded at the energy-barrier between the topologically distinct vacua of the non-atatic theory. In all these models, the topological charge characterizing the distinct vacua are defined by the usual topological invariant. In the Weinberg-Salam theory, this is taken to be the integral of the Chern-Pontryagia density on 4_{4}, while in the $O(3)$ model of ref. [8], the topological charge is the winding number of the order-parameter field defined on l_{2}. In both cases, the dynamical models on $d+1$ dimensions, supporting stable instanton field configurations, differ from the dymamical models on d-dimensions, which supports unstable sphaleron field configurations.

The purpose of the present note is to propose a new model in $2+1$ dimensions, which upports atable instanton field configurations on ${ }_{3}$, and in the atatic limit supports

$d=2$, between the DHN case ${ }^{41}$ with $d=3$ and the soliton cases ${ }^{7 \prime \prime}$) with $d=1$. This toymodel aspect though is not the main reason for proposing it. Ite most important property in, that unlike the $d=1$ and $d=3$ example discussed above, the instanton and sphaleron fied configurations are supported as solutions by one and the same model.

To help us arrive at our model, we shall firat note common feature of both the DHN and the extended-O(3)-model sphalerons. In each case, respectively in $d=3$ and $d=1$, the scaling propertiea of the modeld are consiatent with there being finite energy solutions. Such solutions could be topologically stable if there were topological inequalities oupplying lower bounds to the energy integrals. In turn, such topological inequalities can be found only for specific field-multiplets defining the dynamical coordinates. Specifically, for the SU(2) Yang-Mill-Higge model on R $_{3}$, auch a topological charge (the monopole charge) can be defined if the Higgs field is in the adjoint representation of $\operatorname{SU}(2)$, and, for the moliton model in one dimension, such a topological charge (the kink-number) can be defined if the field variable consists of one real scalar quantity. The (unstable) sphaleron colutions om the other hend do not occur in the two modele just described. Instead in the DHN case ${ }^{41}$, the Higge field is an isospinor and consiste of four real components as opposed to the three of an adjoint representation Higgs, and in the extended-O(3) model case ${ }^{\prime \prime}$, the order-parameter ham two real components apposed to the single component of the calar field of the soliton model. In each case ($d=3$ and 1), the additional component of the dynamical field variable serves to parametrize the noncontractible orbit through the instability point.

In the light of these observations, we proceed to consider the model of ref [9] on \boldsymbol{R}_{2}, $1, j=1,2$,

$$
\begin{equation*}
\dot{L}_{0}=\frac{1}{2}\left(i \delta_{[i} \varphi \partial_{j} \varphi^{*}\right)^{2}+f\left(\eta^{2}-|\varphi|^{2},\left|\delta_{i} \varphi\right|^{2}\right)+V\left(\eta^{2}-|\varphi|^{2}\right) \tag{1}
\end{equation*}
$$

where φ is a complex scalar field and η^{2} is the (absolute) scale. V is a symmetry breaking
potential, and J is a symbolic function representing the quadratic tinetic term $\left|\mathrm{g}_{\mathrm{p}} \mathrm{p}\right|^{2} \cdot \hat{i}$ is regarded as the static limit of a Lagrangian \mathcal{C} in $2+1$ dimensions.

> It was shown in ref. [9] that subject to the asymptotic condition

$$
\begin{equation*}
|\varphi|^{2} \xrightarrow[|\vec{x}| \longrightarrow \infty]{ } \eta^{2} \tag{2}
\end{equation*}
$$

the volume integral of (1) is minimized by topologically stable field configurationa, by virtue of the topological inequality

$$
\begin{equation*}
\int \hat{L}_{0} d^{2} x \geq 2 i \epsilon_{i j} \int \sqrt{V} \delta_{i} \varphi \delta_{j} \varphi d^{2} x \tag{3}
\end{equation*}
$$

Following our above descriptions of the $d=3$ and $d=1$ sphalerons, we modify the modal (1) by augmenting the dynamical coordinate φ with an additional compomeat \$. Then, im place of $\varphi=\phi_{1}+i \phi_{2}$, our new field variable is $=\vec{\sigma} \cdot \vec{\sigma}$ in terme of the Panil sple matrice $\vec{\sigma}$. This yielde

$$
\begin{equation*}
\mathcal{C}_{0}=-\frac{1}{2} \operatorname{tr} \Phi_{i j}^{2}+f\left(\eta^{2}-\Phi^{2}, \Phi_{i}^{2}\right)+V\left(\eta^{2}-\Phi^{2}\right) \tag{4}
\end{equation*}
$$

where we use the notation $\psi_{i}:=0_{i}$ and $\psi_{i j}:=\left[\phi_{i},{ }_{j}\right]$. Again is a oymbolic function representing the, now non Abelian, quadratic tinetic term f_{1}^{2}. One almould mote that the scaling properties of the integral of (4) over ${ }_{2}{ }_{2}$, are atill conditeat with the exdsteace of finite energy solutions, but mow we have loat the topological imequality (3). This is 00 because, the corresponding lopological charge deasity iij ir \sqrt{V} g $\$ \delta_{j}$ can bean to be a total divergence, in contrant with the density on the right hand adde of (3) dofimed it terms of the complex field φ. As a consequence, we would expect any fiaite emergy coluthom to the equations of motion that may be found, to be unstable. Bat this is precisely what would be expected of a sphateron fied, expecially if we remember that the vource of thie new instability is the additional component of the multiplet over and above the emmber of degrees of freedom of the old field φ in (1). We adopt (4) therefore as the atatic version
of a candidate for a ($2+1$)-dimensional model with instanton and sphaleron solutions, and proceed to verify these properties. For technical reasons, we consider the instanton properties first.

Intantond: It is useful to specialize the Lagrangian (4), considered on \boldsymbol{m}_{3}, to analyze the stability of the instanton solutions. This problem was considered in some detail, and analyzed in ref. [10]. To avoid the ubiquity of models afforded by the symbolic functions] and V in (4), we specialize to some specific choices of these functions.

To start with, according to the virial theorem or scaling argument, it is necessary to keep only the first and second, or, the firnt and third terms in

$$
\begin{equation*}
C=-\frac{1}{2} \operatorname{tr} \Phi_{\mu \nu}^{2}+f\left(\eta^{2}-\Phi^{2}, \Phi_{\mu}^{2}\right)+V\left(\eta^{2}-\Phi^{2}\right) \tag{5}
\end{equation*}
$$

to enable finite action colutions on \boldsymbol{x}_{3}. Here $\mu=1,2,3$, labels the coordinate x_{μ} of \boldsymbol{R}_{3}. However, as explained in detail in refs. [10,11], in the absence of the second term $\mathbb{1}$, topological atability would dictate the inclusion of an additional sextic kinetic term $\boldsymbol{\Phi}_{\boldsymbol{\mu} \boldsymbol{\mu}}^{2}$ which we wish to avoid here. We therefore must retain the second term f in (5). Topological stability does not demand the presence of third term V. Nevertheless, we shall retain \mathbf{V}, in anticipation of a similar scaling argument, for the static Lagrangian \mathcal{L}_{0} of (4), in \boldsymbol{R}_{2}.

Retaining both / and V in (5), we opt to specialize (5) to the simplest sub-model arising from the direct descent from the 8 -dimensional conformally invariant generalized YangMills system 'II. The distinguishing feature of this model, other than its relative simplicity, is that it involves no dimensional constants apart from the constant η setting the scale of the field $\$$. Our choice is

$$
\begin{equation*}
\mathcal{C}=-\frac{1}{2} \operatorname{tr} \phi_{\mu \nu}^{2}+\frac{1}{2} \operatorname{tr}\left\{S, \Phi_{\mu}\right\}^{2}+\operatorname{tr} S^{4} \tag{6}
\end{equation*}
$$

where $S:=\eta^{2}-\Phi^{2}$ and $\{$,$\} means anticommutation. We stress that our choices for f and V$ in (6) are not unique.

The topological stability of the instanton is then a consequence of the inequality

$$
\begin{equation*}
\operatorname{tr}\left[i \Phi_{\mu \nu}-\frac{1}{\sqrt{2}} \epsilon_{\mu \nu \rho}\left\{S, \Phi_{\rho}\right\}\right]^{2} \geq 0 \tag{7}
\end{equation*}
$$

Adding the positive-definite term 2 tr S^{4} to the left-hand-side of (7) without diaturbing the ilequality, and expanding (7), we have

$$
\begin{equation*}
\mathcal{L} \geq 2 \sqrt{2} i \epsilon_{\mu \nu \rho} \text { ir }\left\{S, \Phi_{\mu}\right\} \Phi_{\nu} \Phi_{\rho^{\prime}} \tag{8}
\end{equation*}
$$

the right-hand-aide of which can be shown to be a total divergence ${ }^{10}$) 11 , whoee integral, subject to the asymptotic condition

$$
\begin{equation*}
\operatorname{tr} \Phi^{2} \stackrel{\vec{x} \mid \longrightarrow \infty}{ } \eta^{2} \tag{9}
\end{equation*}
$$

guarantees a non-zero lower bound for the action which is proportional to winding number n. Thus the model (6) is endowed with atable instanton field configuration in $\mathbf{a}_{\mathbf{3}}$.

Since the instanton field configurations of thia (and other) models(a) on ${ }_{3}$ were discussed in some detail in ref. [10], we suffice here by recalling that these instantons correspond to topologically distinct vacua characterised by a winding number n, which in this case is the topological charge given (up to normalisation) by the integral of the right-hand-side of (8). The n-dependence of these field configurations is given ${ }^{(1)}$ by

$$
\begin{align*}
& \phi_{1}=\$(R) \sin \theta \cos n \varphi \\
& \phi_{2}=\phi(R) \sin \theta \sin n \varphi \\
& \phi_{3}=\phi(R) \cos \theta, \tag{10}
\end{align*}
$$

where $R=\sqrt{x_{\mu} \mu_{\mu}}$, and φ are the polar and azymuthal angles in 3 dimensions, and ϕ_{μ} defines $\phi=\phi_{\mu} \sigma_{\mu}, \theta$ and φ parametrixe both the field and the apace $S^{2} \mathrm{C} \mathrm{R}_{3}$

Sphalerong: The atatic version of (6), defined on \mathbf{R}_{2},
$\kappa_{0}=-\frac{1}{2} \operatorname{tr} \phi_{\mathrm{ij}}^{2}+\frac{1}{2} \operatorname{tr}\left\{\mathrm{~S}, \phi_{\mathrm{i}}\right\}^{2}+\operatorname{tr} \mathrm{S}^{4}$
will now be shown to have a sphaleron solution. First we recall that according to the scaling argument, the equations of motion for (11) can have finite energy solutions irrespective of the absence/presence of the second term quadratic in Φ_{i}. We also note that now, we have no topological inequality analogous to (8), so that the finite energy configurations are rintopological.

We consider the following Ansatz for the (unatable) sphaleron field configurations

$$
\begin{equation*}
\phi=\sigma_{1} \eta(r) \sin \mu \cos \theta+\sigma_{2} \eta f(r) \sin \mu \sin \theta+\sigma_{3} \eta g(r) \cos \mu, \tag{12}
\end{equation*}
$$

where $r^{2}=x_{i} x_{i}(i=1,2)$, and θ is the azymuthal angle, while μ is a constant which we expect will parametrize the noncontractible path between topologically distinct vacua, and so the instability of the energy functional. Before proceeding to demonstrate this instabillty, we must check the consistency of this Ansatz. This involves the verification that the Euler-Lagrange equation of the system (11) on \boldsymbol{R}_{2}

$$
\begin{equation*}
\theta_{i}\left[\Phi_{j}, \Phi_{i j}\right]+\frac{1}{2} \theta_{\mathrm{i}}\left\{\left\{\mathrm{~S}, \Phi_{\mathrm{i}}\right\}, \mathrm{S}\right\}=2\left\{\Phi, \mathrm{~S}^{3}\right\}-\left\{\Phi_{,}\left\{\Phi_{\mathrm{i}}\left\{\Phi_{\mathrm{i}}, \mathrm{~S}\right\}\right\}\right\} \tag{13}
\end{equation*}
$$

for the field configuration (12), are solved by the Euler-Lagrange equations for the onedimensional subsystem with Lagrangian $L[f, g]$, defined by $S=\int \mathcal{L} d r d \theta \equiv 2 \pi / L d r$, or

$$
\mathrm{L}\left[f(\mathrm{r}), \mathrm{f}^{\prime}(\mathrm{r}) ; \mathrm{g}^{\left.(r), g^{\prime}(\mathrm{r})\right] \equiv 2 \mathrm{xr} \mathcal{L}\left[\left(, \mathrm{r}^{\prime} ; \mathrm{g}, \mathrm{~g}^{\prime}\right], .\right.}\right.
$$

in terms of the coordinates f, g and their "velocities" f ' $\equiv d / d r$ and g^{\prime}. This is a very straightforward if tedious tast, and we limit ourselves to atating that indeed the EulerLagrange equations arising from the variations of $f(r)$ and $g(r)$, respectively, for (14), solve the equations (13) for the field configuration (12). These equations are rather leagthy expressions, and are not recorded here, but we make a pertinent commeat: that if we met $f(r)=g(r)$ in the Ansats (12), the consistency of this Anasts is lost. We shall reture to the detailed discussion of this inconsistency elsewhere.

The existence ${ }^{131}$ of the aphaleron field configuration (12) then followe from the positive definiteness of the energy integral

$$
\begin{align*}
& E[f, g, \mu]=4 \pi \int_{0}^{\infty}\left\{4 \eta^{4} \sin ^{2} \mu \frac{f(}{T}\left(g^{2} \cos ^{2} \mu+f^{2} \sin ^{2} \mu\right)\right. \\
& +2 \eta^{6} \mathrm{r}\left[1-\left(\mathrm{g}^{2} \cos ^{2} \mu+\mathrm{r}^{2} \mathrm{sin}^{2} \mu\right)\right]^{2}\left[\left(\mathrm{~g}^{\prime 2} \cos ^{2} \mu+\mathrm{f}^{2} \mathrm{gin}^{2} \mu\right)+\mathrm{f}^{\mathrm{I}} \mathrm{idn}^{2} \mu\right] \\
& \left.+\eta^{8} r\left[1-\left(g^{2} \cos ^{2} \mu+r^{2} \sin ^{2} \mu\right)\right]^{4}\right) d r \text {. } \tag{15}
\end{align*}
$$

The all-important property of instability is manifest, parametrised by thep-dependence of the integrand in (15). The actual aphaleron is the (uastable) fied configuration at the top of the barrier separating the two distinct vacua, for which the value of (15) it a maximum. This occurs for $\mu=\frac{\pi}{2}$, and by varying μ between 0 and s, in the two directiona away from the sphaleron value of $\frac{\pi}{2}$, the value of E can be lowered.

Topological charget: We have shown above that the ($2+1$)-dimensional moded given
 version (10) with a sphaleron solution in \boldsymbol{r}_{2}. As the latter is expected to be the energy barrier given by the static fields, between the topologically distinct vacta of the aame model in \mathbf{R}_{3}, it remains for us to demonstrate this property by verifying that the (topological) charge integral
(cf. eq. (8)) for a (2+1)-dimensional field configuration including the aphaleron field (12), can be evaluated as a surface integral whose value is controlled by the topological properties of the field $\boldsymbol{\phi}$, in \boldsymbol{R}_{2}. To this end, we follow the procedure first suggeated in refs. $[2,3]$, and employed in ref. [13]. This involves adopting a field configuration $\Phi(\vec{x}, t)$ given by (12), where the functions f and g depend on the radial variable r of \mathbb{R}_{2}, but where the coordinate μ is taken to be a function of $t, \mu=\mu(t)$. Writing $d \mu / d t \equiv \dot{\mu}$, the integral (16)

$$
\begin{equation*}
q \approx \int d t d^{2} x \rho \approx \frac{1}{\sqrt{2}} i \epsilon_{i j} t r \iint d t d^{2} x S\left(\Phi_{i} \Phi_{i} \Phi_{j}+\Phi_{i} \Phi_{i} \Phi_{j}+\Phi_{i} \Phi_{j} \Phi_{i}\right), \tag{17}
\end{equation*}
$$

can then be expressed as

$$
\begin{align*}
& q=q_{0}+q_{1} \tag{18}\\
& q_{0} \propto 2 \pi \int \mathrm{rdr} \int \mathrm{dt} \dot{\mu} \sin \mu \frac{\mathrm{f}}{\mathrm{r}}\left[\mathrm{~g} \mathrm{f}^{\prime}+\left(\mathrm{fg}-\mathrm{g}^{\prime}\right) \cos ^{2} \mu\right] \tag{18a}\\
& \mathrm{q}_{1}=2 \pi \int \mathrm{rdr} \int \mathrm{dt} \dot{\sin } \mu \frac{\mathrm{f}}{\mathrm{r}}\left[\left(\mathrm{~g}^{2}-\mathrm{r}^{2}\right) \cos ^{2} \mu+\eta\left[\left(\mathrm{fg}^{\prime}-\mathrm{gf}\right) \cos ^{2} \mu+\mathrm{g} \mathrm{~g}^{\prime}\right]\right. \tag{18b}
\end{align*}
$$

Now allowing $\mu(t)$ to vary between 0 and π as t varies from $-\infty$ to $+\infty$, we can perform the integrals ($\mathbf{1 8 2}, \mathrm{b}$) as integrals with respect to $\cos \mu$, between the limits $\cos \mu(t= \pm \infty)=$ ± 1. The result is

$$
\begin{align*}
& q_{0}=4 \pi \int_{0}^{\infty} h_{0}(r) d r \tag{19a}\\
& q_{1}=4 \pi \int_{0}^{\infty} h_{1}(r) d r \tag{10b}
\end{align*}
$$

where both integrala can be evaluated aimply by using the topologically meaningful boundary values of f and g, by virtue of the fact that the functions h_{0} and h_{1} are given as the derivatives

$$
\begin{align*}
& h_{0}=\frac{1}{3} \frac{d}{d r}\left(g r^{2}\right) \tag{20e}\\
& h_{1}=\frac{1}{I 5} \frac{d}{d r}\left[g f^{2}\left(g^{2}+2 r^{2}\right)\right] \tag{20b}
\end{align*}
$$

The integrals ($19 \mathrm{a}, \mathrm{b}$) are then immediately evaluated using the asymptotic conditions

$$
\begin{equation*}
g(\infty)=f(\infty)=1 \tag{21}
\end{equation*}
$$

which is consistent with the finite-energy condition

$$
\begin{equation*}
\operatorname{tr} \phi^{2} \xrightarrow[r \longrightarrow \infty]{ } \eta^{2} \tag{22}
\end{equation*}
$$

for the field (12), analogous to the finite-action condition (9), for the field (10). The boundary condition at the origin of r is

$$
\begin{equation*}
f(0)=0 \tag{23}
\end{equation*}
$$

which is also the necessary condition for the singlevaluedness of the field (12). This definea, up to normaliestion, the topological charge of the ($2+1$)-dimensional model (0), which hat charge -n instanton solutions (10) in m_{3}, and in the atatic limit a sphateron octution (12) in \mathbf{R}_{2}. Thus one can associate a finite value of the instanton (topological) charge with the (nontopological) sphaleron.

This work was supported in part by GKSS (Geesthacht/Germany) and EOLAS (Dublin/ Ireland).

References

1) G. t'Hooft, Phyd. Rev. Letl. 37, 8 (1976).
2) N.S. Manton, Phys. Rev. D28, 2019 (1083).
3) F. Klinkhamer and N.S. Manton, Phyg. Rev. D3Q, 2212 (1084).
4) P. Arnold and L. McLerran, Phya. Rev. D30, 581 (1987).
5) D.Yu. Grigoriev, V.A. Rubakov and M.E. Shaposhrikov, Phys. Lett. B21Q, 172 (1989)
6) N.S. Manton and T.M. Samols, Phys. Lett. B207, 179 (1988).
7) E. Mottola and A. Wipf, Phys. Rev. D39, 588 (1989).
8) IIJ.W. Moller-Kirsten and D.H. Tchrakian,
J. Phys. A, 23 (1990) L363; Phys. Rev. D, July (1991).
9) D.H. Tchrahian, Phys. Lett. 2418 (1990) 458.
10) D.H. Tchrakian, J. Phys. A 24 (1001) 1950, and references therein.
11) J. Burzlaff, Nucl. Phys. B233, 262 (1984).
12) K. Funakubo, S. Otsuki and F. Toyoda, Progr. Theor. Phys. 83, 118 (1090).
