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ml roducti On

The aim of this letter is to show how the method of stochastic variational

quanti zati on proposed for nonrelativistic quantum mechanics in our paper { 1],

may be extended to the case of a free, relitivistic, and spinless particle.

We use the concept of relativistic Wiener process in augmented space [2,3],

and apply it to the stochastic optimal control method [4,5] We avoid

mathematical and “psychological” diffi culties with complex valued trajec-

tories, and complex valued action in more general cases, if we interpret

our method by “definition by analytic continuation” i.e. in the same way

that Feyiiman’s formula is understood in [6], We omit discussion of

boundary problems for partial differential equations which are obtained

in the paper.

Stochastic opti maJ control and Klein—Gordon_equation.

Let us augment Mi kowski ‘s space—time [2,3] of points

(x15x2,x3,x4) x1=ct (1)

—4

with the metric tensor (2)
—4

4

to become the 5—dimensional space of points

(x1,x2,x3,x4, c) r being proper time (3)

where

- dy - dy dx +
2 Z

Thus we may treat a trajectory x() =(x1(),x2(),x3(),x4()) of a

particle as a, function of a parameter t, and the condition (4) gives us

a 3—dimensional hyperholoid

(5)

to which the trajectory’s velocity x()= always belongs.

The Lagrange function for a relativistiè particle is [2,31

1’
L -•.c ( .)L -
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where is a metric tensor; so, for a free particle we have
= flilc’ i.e.,

L=
-

(7)

Thus the problem of deterministic optimal control for such a particle may be

formulated as follows: Find such a function u() in a set U of admissible

control functions with a feed--hack property hich determines the dynamical

ecjuati on

x(O)=x, (8’)

and minimizes the criterion (8)

J(u,x)= (8”) J
Let us notice here that such an optimal control problem has two interesting

- 4/

features, We see from (5) that ( x — ) is equal to 1. Therefore

this optimal control problem is equivalent, to the search for such an evolution

of a particle for which the proper time is maximized. Thus we .have, from the

physical point of view, a very attractive criterion. Let us stress also that

it is an autonomous control problem, in the form given above.

Applying the method of dynamical programming to the autonomous case [4]

we obtain for the action

5 () f (-. tL) &)
LLU 0

o qua tion

• L ÷

From (10) we have

4 (-).
(Z

, ()

and

‘/ (. (2.

) (12)



where ‘() is an optimal control function.

Substituting (ii) and (12) in (10) we get

3(- (tuZ2L
(z -c’Q (1.3)

which clearly implies

/5\2 2 2 -Q (14)

rf1e last equation may be regarded as a Hamilton—Jacobi equation for a free,

relativistic particle [2]

Now following the idea given S n [1] , we shall obtain a quantum analogue

of equation (14) for a free, relativistic particle. We thus extend the

deterministic optimal control problem (8) to its simplest stochastic

generalization [i] . This means that we should replace the deterministic

dynamical equation (8’) with

T) act) (- ). x(o)Y (is’)

and a criterion (8”) with (is)

J() E { - J
(15”)

where is a vector valued white noise, () is a feed—back control policy

for a stochastic system and E, denotes the relevant averaging [4,5]. We

shall look now for such a policy (c) in a set U of admissible policies

[4,5], which minimizes the criterion given in (15”).

The method of dynamical programming for stochastic optimal control

gives us the equation [4,5], -

__

[r

2 c- C 2 2 r, c € 3 > C. 3

‘I

L- j] Q (16)

for the function

S E OLI, .
(17)
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This function ‘‘(x) may be regarded as tile actiçn for the system given in (15).

The equation (16) is equivalent (in the same way that (10) is equivalent

to (13)) to the following:

___ ___ ___ ___ __ __

LnQL CA )t 2..n%C jn4 Jx? misC cJ \Jt L4

+--L.
(J’)1 (c.t*Z fn,*t54s ÷ 0

• 3x• i84. 4.

where 1t*(rt) is an optimal control function for a stochastic system.

The equation (18) is thus the exact evolution equation (quantum Hamilton—

Jacobi equation) for a free particle, obtained from the stochastic optimal

method of quantization. If we imposed on the set of admissible control policies
2. 3e’t

the condition a Z, u 4 then from the equation (18) (which is valid

also in this case) we would obtain for the function (x,t)=exp(S(x,t) the

exact Klein—Gordon equation. Let us consider, however, a case for which we

do not assume this condition on control functions.

We shall not try to solve explicitly equation 08), that is, to find an

explicit form of the stochastic optimal control
jj*(<)

or an explicit expression

for the action “g(x), but rather to obtain quasiclassical approximations for ti*(t)

and ‘S(x) which would be sufficient for a physical interpretation. It is known

from the theory of stochastic optimal control [4,5,7,8,9] that, for small

a good approximate solution to the stochastic problem (15) is obtained from

the optimal control policy u*&r) for the relevant, deterministic control

problem (8).. Then the action’’(x) of the stochastic system (15) can be

approximated by [4,5,9] as

(_t).3(%)
4 oc-j)

)
(19)

where S(x) is the non—quantum relativistic action, defined in (9), which

fulfils the equation (14),and —j’$ S1(x)is a first order

correction ( e .o(E)_-,Q). S1(x) satisfies the equation [4]

C. j.4 3x • c 3t jt4
Dxft



This last equation may be obtained easily by applying Theorem 9.3, ch. IV

of, F].emi ng & Rishel [4]

The substitution of (ii) and (12) into (20) gives us a more convenient

form of (20), namely

(354 PS

__ __

‘rnc 3)

To obtain (21) we should notice, of course, that

(2 Lt2)4

Let us consider, now, a Klein—Gordon equation

—2.

E -
± 7

L (3 4Dx
- J

But this set of equations is exactly the same as the set (14), (21). This

means that the WKJ3 approximation of the Klein—Gordon equation is obtained

4

3x1D
iDz3

x

0

(21)

(22)

(23)

for a function -‘(x)=exp ((x)) where ‘(x) is the action for thà system

given in (15). Thanks to the deterministic policy approximation, j(x) may

be written as

(x) ep(3(x)) 34(x)+ O(C)))

-) 0

where ‘.0ft) —C4
, C4 being constant value.

Equating coefficients of and to zero we find that the function (x)

given in (23) fulfils (22) up to 0(i) if classical action S(x) and “correction”

S1(x) fulfil the set of equations

(3
I— ) x I

4
CZ L3tJ

(D54()S-.( ‘1’

mni0 C

a
—cy.C -

(24)

923_ DZS
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here as a resu’t of the first order deterministic optimal policy approximation



for a problem of stochastic optlmal control for ‘a relativistic, Sp2fllCSS

particle, in thi s sense we may regard the Klein--Gordon equation (at least

ln its K13 approximation) as a consequence of the stochastic variational

method of quanti zati on.

Discussi on

Let us notice that the set of equations (14), (21), which determines

anproximately the quantum action (x) and quantum state

is identical to Maslov’s set of canonical equations for a Klein—Gordon

equation [12]. It is enough to identify Maslov1s phase function with

classical action, and Maslov s amplitude Cx, ) with exp 5 (x))

Thus, the procedure of stochastic variational quantization, combined

with a method of approximati on through classical (determini stic) optimal

control policy, gives us the interpretation of Maslovs supposition about

the foini of solution for the Klein—Cordon equation [12] . it explains why

the the first of Maslov’s canonical equations is the Hamilton—Jacobi equation,

and gives the meaning of the second canonical equation [12].

Our considerations suggest that the method of stochastic variational

quantization need not he restricted to a free particle in relativistic physics.

Especially,, it seems that the same idea, without any new basic assumptions,

may be useful for the quantization of a relativistic particle in a given

gravitational field, For instance, if we consider a Wiener process on a

fixed Riemannian manifold [10, ii], with a Lagrange function (6) given on it,

we may obtain, in quite similar way, the quantum Hamilton—Jacobi equation for

the action defined for a particle in this manifold.
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