Title
Creators
Date

Citation

URL
DOI

DAIR

DIAS Access w
Institutional Repository Instititid Ard-Léinn

DIAS

Dublin Institute for
Bhaile Atha Cliath | Advanced Studies

Stochastic Optimal Control Quantization of a Free Relativistic Particle
Papiem, Lech
1981

Papiem, Lech (1981) Stochastic Optimal Control Quantization of a Free Relativistic
Particle. (Preprint)

https://dair.dias.ie/id/eprint/892/
DIAS-STP-81-32



STOCHASTIC OPTIMAL CONTROL QUANTIZATION
OF A TREE RELATIVISTIC PARTICLE

BY

Ste
pad

Lech Papiez

Dublin Institute for Advanced Studics

Dublin 4, Ireland

Abstract. The stochastic variational method of quantization
is applied to the case of a free relativistic particle. The
WKB approximation of the Klein-Cordon equation is obtained and

interpreted 3in the frame of this method.
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Introduction

The aim of this letter is to show how the method of stochastic variational
quantication proposed for nonrelativistic quantum mechanics in our papef {1]J
may be extended to the casc of a free, relativistic, and spinless particle.
We use the concept of relativistic Wiencer process in augmentcd space [2,3],
and apply it to the stochastic optimal control method [4,5]. We avoid
mathematical and "psychelogical® difficulties with complex valued trajec-

- terics, ‘and compleﬁ valued action in more general cascs, if we interpret

our method by "definition by analytic continuation" i.e. in the same way
that Feynman's formula is understood in [6]. We omit discussion of
boundary problems for partial differential equations which are obtained

»

in the paper.

Stochastic optimal control dnd Klein-Gordon equation.

Let us augment Minkowski's space~time [2,3] of points

(xl,xz,x3,x4), X =ct (1)

with the métric tensor n= (2)

- : -
to become the 5-dimensional space of points
: © boi .
(xl,xz,x3,x4,(f)) T being proper time | (3)

where

2 2 .
de? = ~olx, - dx) - x4+ ctelt”, (4)
Thus we may treat a trajectory x{(<) = (x1(C),xz(i),xg(f),x4(f)> of a
particle as a. function of a parameter T, and the condition (4) gives us

a 3-dimensicnal hyperboloid

‘ 1
{Caa vam) o x= (xfaxdax+ )% | (5)

to which the trajectory's velocity x(gq)= ) always belongs.
T

The Lagrange function for a relativistic particle is [2,3]

| . ; %
L: My ( (jLK -x‘:(’f>- XK(T’)>L} | , (6}
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where gy s a metric tensor; so, for a frec particle we have g;), = Niks i.e.,

| EXNN
L= “amnC ( x{f’ (T) - Z XL"(T)) % . (7)
\ P24 ‘" '

Thus the problem of deterministic optimal control for such a particle may be
formulated as follows: TFind such a function u(<) in a set U of admissible
control functions with a feed-back property which determines the dynamical

equation

x(T)=u(7), x(0)=x, - : (8")
~
and minimizes the criterion r -(8)
T 3 4 : _
Y 2 < 2
J(u,x)= ‘fma‘C"/ (uq - > )/ﬁ 47 (8")
o v=q J
Let us notice herc that such an optimal control problem has two interesting
. 3 . 1
features. We see from (5) that ( :(f -z XLZ )% is equal to 1. Therefore
1

this optimal control problem is equivalent to the search for such an evolution
of a particle for which the proper time is maximized. Thus we .have, from the
physical point of view,’a very attractive criterion. Let us stress also that
it is an autonomous control problem, in the form given above.

Applying the method of dynamical programming to the autonomous case (4]
we obtain for the action

. T .
SC) = tnf (-mmwc [ (wf- 5 )% ae ) 9
4 en

uel
cquation
, . .
4 05 25 PN
main [ C ‘5";'()_1, + Z 5% U, — amg c- (bLL{-Z L‘L) ] :.O ] (10)
weuy ‘ i=4 ¢ Teq .

¥rom (10) we have

3 4 A
¥ 4 25 . x2 *1N7% ' (11)
Ly, h:mmo'c?‘ (“j)“g *) Uy ~ Z U, ) ; ;
and
¥ 1 (35 ) ’ 1!-2 i *2 {/.2 .4 2 . (12)
b‘L(. E My C \\ :) XL / . ( LL[‘ Y LLL ) ) R



-3

where u () is an optimal control function.

Substituting (11) and (32) in (10) we get

3 . ) -

4 . 2 3 Y 3 ,

S ot v 4 D5 < L2 = *Z>L ( %2 Caxa\e R

- - Rur I . , —amgclw, 2w ) = (13)

53) (w2 - 5 (3) (w zeit) Tre(w e ) -0
L= : ;

which clearly jmpliecs

a
2

G\ 2 . ;
"é[‘z (%’i—) ‘ - 2’ g‘f ) - fl')’?oz. Cz = O . (j4)

;:.

The last equation may be regarded as avHamilton—JaCObi equation for a free,
relativistic particle [2].

Now, following the idea given in [1], we shall obtain a guantum analogue
of equation (14) for a freé, relativistic particle. We thus extend the
deterministic optimal control problem (8) to its simplest stochastic
generalization [1]. This means that we should replace thc deterministic

dynamical equation (8') with

N~ RS A . ’ ' (15%)
)((L) = w(T) + ( —(:;—E, . h ) X(O) X ) 5 |
and a criterion (8") with ' I (157
o~ - i w (v? 1/2
J(LL;K) - t:x {_ Mot C (t’(—zl - .=4 L' ) O&f } (15”) ]

wliere § is a vector valued whlte noise, u(7) is a feed-back control policy
for a stochastic system and Ey denotes the relevant averaging [4,5]. We
shall look now for such a policy U(<) in a set U of admissible policies
[4,5), which minimizes the criterion given in (15").

The method of dynamical programming for stochastic optimal control

gives us the equation [4,5},

. ')Zr-v . 5 32(\' 1 Dg
.,__5;’45 LA > + ch ,.__.:S_’, + min — EI: +
Lomgyc CF 52 Lmgc Jx* SeU ¢ Ot 4
“' 3
5 o~ N i
cmmee (g~ 20 4]50) | (16)

A =4

for the function

— T ~ 2 ’ :é. -2 4/
5 (’\)3 L”F tx {~nﬂdc- f( L, - Z"%)l cl’c} . (17)
SeU R £=1 ‘
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This function S(x) may be regarded as the action for the system given in (15).
The equation (10) is equivalent (in the same way that (10) is equivalent

to (13)) to the following:

3 .
" . 2 ~ PECY IR ~ 2NV,
i.% ) A 325 4 L-h . Z 325 4 __:(_Z (D‘)> . LL: - Z LL:L>//" -+
2 ang C C"L J t?" 2_,‘{)»70'0 =4 J XLL nMy < \) t Pt
kS 2 Y ‘ ) k3
o ~ 2 ~ L\ 2 — — NKZ,
b s (2N (R 2T e (W2 2 0
e b =R z Ca8)

where T () is an optimal control function for a stochastic system.

The equation (18) is thus the exact evolution cquation (quantum Hamilton-
Jacobi equation) for a free particle, obtained from the stochastic optimal
method of quantization. If we imposed on the set of admissible control policies
the condition Elz~'2§ WX =4 then from the equation (18) (which is valid

“ =4 L

albo in this case) we would obtain for the function W (x,t)= e\p(*-S(A,V) the
exact Klein-Gordon equation. Let us consider, however, a case for which we
do not assume this condition on control functions.

We shall not try to solve explicitly cquatlon (18), that is, to find an
explicit form of the stochastic optimal control T “(<) or an explicit e\pr05510n
for the action S(x), but rather to obtain quasiclassical approximations for T T (<)
and S(x) which would be sufficient for a physical interpretation. It is known
from the theory of stochastic optimal control [4,5,7,8,9] that, for small G‘ﬁ?ﬁ%l
a- good approximate solution to the stochastic problem (15) is obtained from
the optimal control policy u*(T) for the relevant, deterministic control
problem (8). Then the action S(x) of the stochastic system (15) can be
approximated by [4,5,9] as

(19)

SG) =800+ 4 (EE) 5,¢) +

)

where S(x) is the non-quantum relativistic action, defined in (9), which

4 i"ﬁ S

fulfils the ecquation (14), and -5 me 1(x) is a first order

correcction ( g““CD(E)—f::7 0O ). S;(x) satisfies the cquation [4]

3
-+ < :D/r' ¢ 5 3 z
A. 25, oLty Z ~7—J‘ . LL; + —-'—{-—.9 »‘) — E %5 = O : (20
C 0t T 9x ct ot L ox*F v
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| ., 3 3
G ) 255 20

b

This Jast cquation may be obtained easily by applying Theorem 9.3, ch. IV
of Fleming & Rishel [4].

The substitution of (11) and (12) into (20) gives us a more convenient

form of (20), namely

i 4 954)' D5\ 4 Z(%) 0% 4‘1(325) -zv(jzé)~ ‘(21)
My C C»Z l.) t :)'f, n,no.(, '-4 Jx Cz' Jtz - Dx: - O
[ L4
To obtain (21) we should notice, of gburse, that
3 .
5, «2\Y
(w®= > ur?)? =4
Let us consider, now, a Klein-Gordon equation
% ;% 2 2 '
._ ’V'Cv‘c / - O . ~
[ g e ]H‘ | (22)

for a function ¥ (x)=cxp ( 5(\)) where S(x) is the action for thé system
given in (15). Thanks to the deterministic policy approximation, ¥ (x) may

be written as

Y(x)= exp (% 500)= exp (% S0+

5 (<) + O( pyerd ) (23)

£20
where E10() —=cy, L, being constant value.

hpa s -2 -4 . .
Equating cocefficients of 4 T and 4 to zero we find that the function ¥ (x)

given in (23) fulfils (22) up to (7@) if classical action S(x) and "correction”

S¢(x) fulfil the sct of equations ‘ B
2 2 9) 2>
4 [D5\ _ <f( 5 ) _ 2 2
L(3%) - 265 - =0

C(24)

But this set of cquations is exactly the same as the set (14), (21). This

- means that the WKB approximation of the Klein-Gordon equation is obtained

here as a result of the first order deterministic optimal policy approximation
pti p y
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for a problcm'of stochéstic optimal control for a rclativistic, spinless
partidlc. In this sense we may rcgard the Klein-Gordon equation (at least
in its WEB approximation) as a conscquence of the stochastic variational
method of quantization.

Discussion

Let us notice that the set of equations (i4), (21), which determines
approximately the quantum action S(x) and quantunm State‘f(x):CXPQig(x)),
is identical to Maslov's set of canonical cquations for a Klein-Gordon
equation [127. It is enough to identify Maslov's phase function with
classical action, and Maslov's amplitude %g(x,%) with €xf>éji%;7?~\§4(X)>-
Thus, the procedure of stochastic variational quantization, combined

with a method of approximation through claésical (deterministic) optimal
control policy, gives us the interpretation of Maslov's supposition about
the form of solution for the Klein-Gordon equation [12]. It explains why
the the first of Maslov's canonical equations is the Hamilton-Jacobi cquation,
and gives the meaning of the second canonical equation [12].

Our considerations suggest that the method of stochastic variational
quantization nced not be restricted to a free particlce in relativistic physics.
Especially, it scems that the same idea, without any ncw basic assumptions,
may be uscful for the quantization of a rela@ivistic particle in a given
gravitational field. For instance, if we consider a Wiener process on a
fixed Riemannian manifold [10, 11], with a Lagrange function (6) given on 1it,
we may obtain, in quite similar way, the quantum Hamilton-Jacobi equation for

the action defined for a particle in this manifold.
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