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ABSTRACT: In this letter we investigate finite size scaling using renormal-
ization group arguments. By employing an L dependent subtraction scheme,
we obtain an alternative formulation of finite-size scaling, wherein the scaling
variable is z’i, €. being the correlation length in the finite system. This new
formulation reduces to the standard one when the only infrared fixed point is

the bulk one and/or in the limit zli — 00.

Since all “experimental”systems consist of a finite number of atoms; where by
“experimental”we mean both laboratory experiments and computer simulations of
lattice systems, all thermodynamic quantities are analytic, however, in the limit of an
infinite number of lattice points these quantitics can become singular and do so at a
critical point. It is of fundamental importance to understand how such singularitics
arise in this limit. Finite size scaling [1-2] has become an important tool in the
investigation of this limit, however a full understanding of finite size scaling is still

lacking, in addition agreement with experiment [3] has been less than adequate.

Our current understanding of the singularities arising in the bulk theory relies on
the renormalization group (RG) and the existence of fixed points of the ensuing trans-
formations. Finite size scaling (F55) was investigated using RG techniques by Suzuki
{4] and later from a field theoretic point of view by Drézin [5]. Brézin’s treatment
deals with two types of geometry: A) a finite system characterized by some length
scale L in all directions, and B) a system infinite in one dimension and of finite cross
section in the others. Both these geometries for finite L forbid the possibility of sin-
gular thermodynamic functions. Suzuki trests these two geometries and a third, C)
wlhiere one has two infinite and one finite direction. Both concluded that the relevant
scaling variable ia Z{: where €00 is the bulk correlation length. This is in accord with
Fisher's original ansatz [1]. One might well wonder though why it is oo and not £y,

the correlation length in the finite system, that sets the scale.

In this letter we develop an alternative formulation of finite size scaling based on
the solutions of an L dependent RG equation. This new formulation scems different to
the standard one in the following respects: firstly the relevant scaling variable is EIT not
é:; in addition to the variable Z’;— there is an apparent dependence on the coupling
constant u in the crossover region, i.e. where zli ~ 1; lastly for a thenmodynamic

observable P the ratio gh is not obviously expressible iu scaling form. The advantages



of the new formulation from an RG point of view are, that it is capable of treating
systems with a fixed point in the Bnite system and that thermodynamic observables

can be computed perturbatively throughout the crossover.

We give a uniform treatment for d < d., d. being the upper critical dimenr)sion,
valid, not only in the previously treated cases, but also when there is a transition
in the finite size setting, i.e. for finite L. This will be our main area of concern.
Our treatment accommodates the crossover of the critical exponents from those of
the bulk critical point to the reduced critical point. We find scaling to be valid when
& —+ 00 (£, — 00) with the scaling variable Lt” where t = T — T.(L) and v 18 the
bulk correlation exponent, and when (l‘; —» 0 with the scaling variable Lt¥ " where V' is
the lower dimensional exponent, i.e. the critical exponent of the theory defined by the
lowest mode of the theory in finite L. The former corresponds to the standard theory
of FSS.

The RG cﬁuntion arises as an expression of the fact that the bare theory is indcpen-
dent of the renormalization point at which we have chosen to represent the physical
amplitudes of the theory. If Z, is the wave function renormalization constant, the
renormalized and bare N point functions are related by ¥ = Zr/ 2F g For a renor-
malizable theory we will typically have in addition to wave function renormalization,
mass renormalization and coupling constant renormalization. The RG equation we
get then depends on how we choose our counterterma. In standard minimal subtrac-
tion, used in conjunction with dimensional regularization and an ¢ expansion, the
counterterms take on a particularly simple form, in that they are independent of the
mass. We know that the ultraviolet divergences of the theory in a box with periodic
boundary conditions are the same as the bulk theory, since these arise from the short

distance fluctuations of the theory, consequently one can use the same set of coun-

terterms for the finite system as for the bulk system. This is the basis of Breiin's

proof {5] of finite size scaling for geometries A) and B) in the presence of an infrared
fixed point, as L — oo and below the upper critical dimension. Elcgant as Brézin's
proof is however, it gives no insight into the case where there is a critical point in
the finite size sctting. The difference there being that the correlation length can now
diverge for fixed L, somcthing which is prohibited in the geometries he discusses. In
this latter case one would expect that the N point functions would go over to those
of the lower dimensional system as (';: — 0. Now, although onc can eliminate all the
ultraviolet divergences using the bulk counterterms, one is not restricted to minimal
subtraction, or choosing ones counterterms to be just those of the bulk system. One
can in fact absorb any amount one wishes of the finite contributions to the diagrams
into the counterterms. This will change the RG equation one oblains, and a judicions

choice may allow one to extract more information from the theory.

In fact as shown in [6] it is essential to use an L dependent subtraction scheme if
one wishes lo recover perturbatively the dimensionally reduced system, which ariscs
in the limit z’: —+ 0, without encountering new divergences. One way of implementing
such a scheme is to choose a non minimal subtraction that includes all terms that
diverge as kL — 0 or xL — o0, the two limits we wish to consider. This gives us
counterterms that are L dependent but still mass independent, thereby preserving
most of the advantages of the minimal prescription. In this case we get f-functions

and anomalous scaling dimensions that are L dependent.

The Lagrangian we will consider, to make our conventions explicit is,
1 2 upg 1
L= 5z¢((v¢)2 +mye?+ Tﬂ—x‘zg.,s‘ + iz,,zd,f;{" (1)

The Lagrangian is Fourier expanded in the finite directions and treated as an infi-
nite sum of interacting fields, associated with the Fourier modes. The upper critical

dimension, ahout which one performs an ¢ expansion, occurs when there are four non-



compact dimensions. The counterterms in our non-minimal prescription are chosen
to have explicit dependence on L by requiring that all quantities divergent as EI-‘L— -0
are included as well as the usual pole ¢ — 0. The mass counterterm sm? is chosen
so that m? = m}; + 6m? is zero, i.e. we expand about the critical point st finite L,

when such exists. The subtractions are dependent now on u and «L, in contrast to

the usual situstion where they only depend on u. This means that the RG equation

takes the form.

(‘% + ﬂ(u,xL)g; + —,,,(-.,,‘1,):7;‘il - %»,,(.;,a)) '™k, Lu,t,c) =0 (2)
where 74 = —-sg;lnz':, = uao;—‘luz‘ and f(u,xL) = KB@;u The Wilson functions
are such that as xL — oo they become the relevant functions of the bulk theory,
whereas when xL — 0 they become those of the lower dimensional theory, (see [6]
for more details). Note, we will only get scaling as ELZ —+ oo if the L = oo theory is
renormalizable. If this is not the case we will recover Brézin's reault that finite size
scaling is not valid as L — oo for d > d..

Equation (2) can be solved in the standard manner by the method of character-
istics. Defining t(xg) =1, f; = p and solving the characteristic equation for #(«), we
obtain

t(p) =t exp (/lp 'ua(u(x,xKoL),zqu)‘-if)
We note that t = T — Te(L) rather than T — T¢(co), this choice is essential if one
is to get  sensible dimensionally reduced limit. Similarly solving the beta function
equation gives us u(p). For simplicity we suppress the L dependence of vy, 742 and

u, and drop the subscript on xg. Using the solution to equation (2)

N ! dr
(ks Lt = exp (3 [ 0% ) MK L) ©)
4
where u(1) = u, and p is arbitrary, i.e. the right hand side of equation (3) is in-
dependent of p, this is simply the content of the RG equation. Using dimensional

E

analysis one can extract the dependence on px s the overall dimensionful quantity

and re-express equation (3) as

Ntz (N ldz tp)
¥ (ki L) = s Flexp (5 [ Zagta)) PV eL g, u(o1)
()
We now eliminate p by choosing it such that
i(p)

This gives us an expression for p = p(—‘;,nL). N now depends on pxL, the running

coupling constant and ;: if we choose not to set the external momenta to zero.

The most convenient object to work with is a RG invariant. We observe that rN
deviates from an RG invariant by the power of p and the exponential. If we can find
some way of eliminating this prefactor then we will have an invariant. This can be

done by forming the ratio
r? T

—(—)/(——)

Since RV is an RG invariant,

k;
RV (% st —,u)~n" (L L, ‘2’”,,:1( )

Again if we choose p such that equation (5) is satisficd we find that RY is a function of
the combination px L. Note that using equation (5) we can substitute t(p) for p2x? thus
the variable pxL = l(p);L, but as defined {{p) = (Zz {7}, where € is the correlation
length of the system of size L. The relevant scaling variable is therefore Z!t' rather
than E’;’; as it is in the standard formulation. Note that only as {L; —+ oo will these
coincide. We see that equation (5) is equivalent to choosing prf; = 1, rather than
pxL = 1 which was the choice of Brézin. Qur choice has the advantage of allowing us

to probe the situation of divergent correlation length for finite L. The most general



statement that we can make sbout the RG invariant Ry therefore is that

L 1
RY = fN(kitp, — u(—
It
This is the general form of the scaling function. Now in the neighbourhood of a critical

point, at which £ — 00, u — u*, RV becomes
L
RY = fN(ki€L, )
{L
or when the momenta are set to zero, RN =gV ( (LZ) Although there seems to be an
apparent dependence on u in the scaling function f explicit O(¢) calculationa (6] show

that for L » a, £ > a, u is a function of ZLZ throughout the crossover regime and so

the u dependence is illusory.

That one gets fli as the relevant scaling variable can be understood from another
- point of view in the case of periodic boundary conditions, since the dependence on L
enters through the fact that the momenta in the periodic direction now takes discrete
values quantized as ky = (Ziﬂ) The dependence of 'V on the momenta is of the form

k£ which gives é"— as the expected dependence on L.

Substituting p = ;}Z%obtnined from equation (5) back into equation (4) we obtain

the useful expression,

+ €L

This is the general form of the N point function from an RG argument. The novel

— 1 ¥4
P¥ (ki L, tu,x) = (€N exp (%f / L u(z){—) Pt i) ()

fealure, compared to solving the bulk problem, is that we have found £, to arise rather
than {co-

Let us examine the neighbourhood of a critical point. If, for the problem under
discussion there are two potential fixed points, it is of importance to specify which

one is in question, this of course depends on the ratio of L to {,. For fixed L there is

only one true fixed point, the reduced one, however, for zli — 0o with £, — oo, the
bulk fixed point emerges. For the moment we will not specify which fixed point is in
question but treat the neighbourhood of an arbitrary one. In this case y4, 741 and u
approach their fixed point values, which we denote by aftixing the superscript *. It
is therefore convenient to expand around these values using what are termed “inctric
factors "to accommodate the fact that one is not exactly at the critical point. These
metric factors are slowly varying away from the fixed point, unless one approaches
another whereupon they diverge. They express the deviations from exact scaling and

play the crucial role of taking us from one fixed point to another.

We express

tp) = 19" Cya

where
cp = ([ Gpta) -1T7)
Similarly
Zy(p) = Z4p™Cy
where

Co=exr ([0t -1 )

Cy42 and Cy are slowly varying metric factors near the fixed point u = u*. Equation

(4) therefore becomes
_N(8z2) N, & k;
DY (ki L tyu,m) = (xp) N TINC TN L pr Lu(p) ) ()

Where p is determined by equation (5) and now depends on the one mctric factor.
We note that when N = 0 we are working with the free energy and the metric factor
C4 doces not enter. There is dependence only on one metric factor, Cyz, in agreement

with Privman and Fisher [8]. One subtlety is that in the neighbourhood of the lower



dimensioaal fixed point the dimensions of the fields and the free energy density are

differcnt than at the bulk, this implies that TV = (px)~ ¥ (@-9)HE-OI'N yhere the

prime is used to denote the lower dimensional quantity. With this identification we see
that d will correctly become d' the dimension of the reduced system when we consider
the reduced fixed point. To obtain the dependence of pon t and L we need to examine
equation (5) in more detail. In the neighbourhood of the fixed point we find it is of
the form. ' ‘

t 247
-;fp "Cp =1

Now by definition 'y;, =2 .7l:, where v° is the correlation exponent associated with

the fixed point under consideration, therefore
t > c
p=(=3) C2

here C3 is & new metric factor (obtained from (C*:)V.) containing dependence on L,
which caters for the crossover. It is only near a fixed point that we get & scaling
variable of the form Lt*", more generally it is ELE A useful way of parameterizing the
crossover is via an effective critical exponent vepy = —%. We can then write

L _ it
L

In the limits ZL[ — 00 or El—’i — 0 vy is t independent and becomes v or ¢/, the bulk
or reduced exponent respectively. Substituting back into equation (6), noting 7; =n°*,

we obtain
Yk, L tu,x)= :"'("""%(‘"’*"'”C;'}r" (kit™"Cy ' Lt Cp, 1,u(t" Cy), 1) (8)

for the N point function in the limit as one of the fixed points is approached, where v*
end 5° are the associated exponents. It is important to realize that the metric factors

can be calculated within the formalism presented.

Sufficently near the bulk fixed point, for the metric factors to be regarded as equal

to one, equation (8) can be rewritten as
¥ =l f(kiev, LtY)

where I‘!,Vo ~ t"(d"t!i(d_?)"’)), which is the usual form of the scaling relation. I instcad

we are sufficently necar the reduced fixed point we find
¥ = k™ L)

N 4 ’ .
where [‘gg ~ V(@ =T (@ =247)) i he critical N-point function for the reduced theory,

and f' is a finite size scaling function as seen from this perspective.

The main differences between the formulation given here and the standard for-
mulation are: the dependence on ELZ rather than Zf-.,’ the apparcent dependence on u
in the crossover region, and the lack of RG invariance of tr% The formulations are
equivalent when there is no fixed point for finite L. In this case there is only onc fixed
point for the coupling to be attracted to. We have no proof that the formulations are
incquivalent but it seems difficult to believe they are totally equivalent. If the formu-
lations are indeed inequivalent experiment hopefully should be able to determine the

correct one.
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