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ABSTRACT: In this letter we investigate finite size scaling using rcnormal

izatiori group arguments. By employing an L dependent subtraction scheme,

we obtain an alternative formulation of finite-size scaling, wherein the scaling

variable is , being the correlation length in the finite system. This new

formulation reduces to the standard one when the only infrared fixed point is

the bulk one and/or in the limit — 00

Since all “experirnentaP’systems consist of a finite iittmhcr of atoms; where by

“experimental”we mean both laboratory experiments and computer simulations of

lattice systems, all thermodynamic quantities are analytic, however, in the limit of an

infinite number of lattice points these quantities can become singular and do so at a

critical point. It is of fundamental importance to understand how such singularities

arise in this limit. Finite size scaling (l-2j has become an important. tool in tIme

investigation of this limit, however a full understanding of finite size scaling is slill

lacking, in addition agreement with experiment 131 has been less than adequate.

Our current understanding of the singularities arising in the bulk theory relics on

the retiormalization group (ItO) and the existence of fixed points of the ensuing trans

formations. Finite size scaling (FSS) was investigated using RG techniques by Suzuki

f4J and later from a field theoretic point of view by Brézin 1j• Brézin’s treatment

deals with two types of geometry: A) a finite system characterized by seine length

scale L in all directions, and B) a system infinite in one dimension and of finite cross

section in the others. Both these geometries for finite L forbid the possibility of sin

gular thermodynamic functions. Suzuki treats these two geometries and a third, C)

where one has two infinite and one finite direction. Both concluded that time relevant

scaling variable is where is the bulk correlation length. This is in accord with

Fisher’s original ansatz 111. One might well wonder though why it is and not

the correlation length in the finite system, that sets the scale.

In this letter we develop an alternative formulation of finite size scaling based on

the solutions of an L dependent ItO equation. This new formulation seems different to

the standard one in the following respects: firstly the relevant scaling variable is not

in addition to the variable j- there is an apparent dependence on the coupling

constant u in the crossover region, i.e. where k 1; lastly for a tlIermno(IyflaIIIiC

observable P the ratio is not obviously expressible in scaling form. The advantages
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of the new formulation from an RG point of view are, that it is capable of treating

systems with a fixed point in the finite system and that thermodynamic observables

can be computed perturbatively throughout the crossover.

We give a uniform treatment for d < 4, 4 being the upper critical dimension,

valid, not only in the previously treated cases, but also when there is a transition

in the finite size setting, i.e. for finite L. This will be our main area of concern.

Our treatment accommodates the crossover of the critical exponents from those of

the bulk critical point to the reduced critical point. We find scaling to be valid when

—. oo (L —, oo) with the scaling variable Lt’ where t = T — T(L) and v is the

bulk correlation exponent, and when —. 0 with the scaling variable L’ where ii is

the lower dimensional exponent, i.e. the critical exponent of the theory defined by the

lowest mode of the theory in finite L. The former corresponds to the standard theory

FSS.

The RO equation arises as an expression of the fact that the bare theory is indepen

dent of the reriormna.lization point at which we have chosen to represent tIme physical

amplitudes of the theory. If is the wave function renormalization constant, the

renormalized and bare N point functions are related by F =Z2F. For a renor

malizable theory we will typically have in addition to wave function renormalization,

mass renormalization and coupling constant renormalization. The ltG equation we

get then depends on how we choose our counterterms. In standard minimal subtrac

tion, used in conjunction with dimensional regularization and an c expansion, the

counterterms take on a particularly simple form, in that they are independent of the

mass. We know that the ultraviolet divergences of the theory in a box with periodic

boundary conditions are the same as the bulk theory, since these arise from the short

distance fluctuations of the theory, consequently one can use the same set of coun

terterms for the finite ey8tem as for the bulk system. This is the basis of Dreiin’s

proof (5j of finite size scaling for geometries A) and [1) in the 1ue of mum infrared

fixed point, as L —. oo and below the upper critical (limnenslon. Elegant as Brézin’s

proof is however, it gives no insight into the case where there is a critical point in

the finite size setting. The difference there being that time correlation length Can now

diverge for fixed L, something which is prohibited in the ge.mietries lie discusses. In

this latter case one would expect that the N point functions Woul(i go over to those

of the lower dimensional system as —. 0. Now, although one can eliminate all the

ultraviolet divergences using the bulk counterterms, one is not restricted to minimal

subtraction, or choosing ones counterterms to be just those of the bulk system. One

can in fact absorb any amount one wishes of the finite contributions to the diagrams

into the counterterms. This will change the ItO equation one obtains, and a judicious

choice may allow one to extract more information from the theory.

In fact as shown in 16! it is essential to use an L dependent subtraction scheme if

one wishes to recover perturbatively the dimensionally reduced system, which arises

iii the limit —. 0, without encountering new divergences. One way of imuplemnentimig

such a scheme is to choose a non minimal subtraction that includes all terms that

diverge as —‘ 0 or —. oo, the two limits we wish to consider. This gives us

counterterms that are L dependent but still mass independent, thereby preserving

most of the advantages of the minimal prescription. Ira this case we get fl-functions

and anomalou8 scaling dimensions that are L dependent.

The Lagrangian we will consider, to make our conventions explicit is,

L = Z.f(V)2 + r4ç2j+ -icZçs + (1)

The Lagrangian is Fourier expanded in the finite directions and treated as aim infi

nite sum of interacting fields, associated with the Fourier modes. The upper critical

dimension, about which one performs an e expansion, occurs when there are four non-
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compact dimensions. The counterterms in our non-minimal prescription are chosen analysis one can extract the dependence on as the overall dunensionful (ITlntity

to have explicit dependence on L by requiring that all quantities divergent as —‘ 0 and re-express equation (3) as

are included as well as the usual pole e — 0. The mass counterterm 6m2 is chosen
FN(kj,L,u,t,,c)=(,p)d_NZ-l IN ,l dx

x )
sotbat m2 =m+6m2is zew,i.e. weexpand about theiticai point at finite L,

I exPJ —(‘)

(4)

when such exists. The subtractions arc dependent now on u and iL, in contrast to
We now eliminate p by choosing it such that

the usual situation where they only depend on u. This means that the HG equation

takes the form.

t(p)
1 (5)

? =

+ (u,L)+7.1(u,L)4 —7.(uiL)) F(N)(k,L,u,i,) = 0 (2)
This gives us an expression for p = p(,L). pN now depends on pL, the running

where = —KlnZ., . = slnZ and (u, icL) = icu The Wilson functions coupling constant and if we choose not to set the external momenta to zero.

are such that as —, oo they become the relevant functions of the bulk theory,
The most convenient object to work with is a HG invariant. We observe that FN

whereas when L 0 they become those of the lower dimensional theory, (see 161
deviates from an HG invariant by the power of p and the exponential. If we can find

for more details). Note, we will only get scaling as —‘oo if the L = oo theory is
mine way of eliminating this prefactor then we will have an invariant. This can be

renormalizable. If this is not the case we will recover Brézin’s result that finite size
(lone by forming the ratio

N

r2 T
scalingisnotvalidasL—.ooford>dc.

Equation (2) can be solved in the standard manner by the method of character-

Since RN is an HG invariant,

istics. Defining t(s) = t, = p and solving the characteristic equation for t(a), we

obtain

dx

t()
—--, u(p))

p?( pa

t(p) = t cxp (j v.(u(xxaOL)xa0L)__)

Again if we choose p such that equation (5) is satisfied we find that RN is a function of

We note that = T — T(L) rather than T — Tc(co), this choice is essential if one
the combination paL. Note that using equation (5) we can substitute t(p) for p2a2 thus

is to get a sensible dimensionally reduced limit. Similarly solving the beta function
the variable paL = t(p)IL, but as defined t(p) = 7j, where L is the correlation

equation gives us u(p). For simplicity we suppress the L dependence of -y, and
length of the system of size L. The relevant 8caling variable is therefore f, rather

u, and drop the subscript on ice. Using the solution to equation (2)

1N dx)
F”(k,L,u(p),t(p),pa)

than as it is in the standard formulation. Note that only as /- —. co will these

FN(k,L,u,t,,c) = exp 7(’) coincide. We see that equation (5) is equivalent to choosing PL = 1, rather than

where u(1) = u, and p is arbitrary, i.e. the right hand side of equation (3) is in- paL = 1 which was the choice of Brézin. Our choice has the advantage of allowing us

dependent of p, this is simply the content of the HG equation. Using dimensional to probe the situation of divergent correlation length for finite L. The most general
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statement that we can make about the ftC invaziant RN therefore is that

RN fN(kCLk,u(i_))
EL ‘EL

This is the general form of the scaling function. Now in the neighbourhood of a critical

point, at which C —.
oo, u —‘ u, fiN becomes

RN = fN(kE )
EL

or when the momenta are set to ZerO) = fN() Although there seems to be an

apparent dependence on u in the scaling function f explicit 0(c) calculations 16] show

that for L > a, C > a, u is a function of j- throughout the crossover regime and so

the u dependence is illusory.

That one gets as the relevant scaling variable can be understood from another

point of view in the case of periodic boundary conditions, since the dependence on L

enters through the fact that the momenta in the periodic direction now takes discrete

values quantized as = (f!). The dependence of UN on the momenta is of the form

kEL which gives as the expected dependence on L.

Substituting p = obtaiiied from equation (5) back into equation (4) we obtain

the useful expression,

= (CLY’?)”exp (J’ 7.(x))
rN(kL,u(L)) (6)

This is the general form of the N point function from an ftC argument. The novel

feature, compared to solving the bulk problem, is that we have found EL to arise rather

than Coo.

Let us examine the neighbourhood of a critical point. If, for the problem under

discussion there are two potential fixed points, it is of importance to specify which

one is in question, this of course depends on the ratio of L to CL. For fixed L there is

only one true fixed point, the reduced one, however, for —. oo with CL — oo, the

bulk fixed point emerges. For the moment we will not specify which fixed point is in

question but treat the neighbourhood of an arbitrary one. In this case - and u

approach their fixed point values, which we denote by affixing the superscript . It

is therefore convenient to expand around these values using what are termed “metric

factors “to accommodate the fact that one is not exactly at time critical point. These

metric factors are slowly varying away from the fixed point, unicss one approaches

another whereupon they diverge. They express the deviations from exact scaling and

play the crucial role of taking us from one fixed point to another.

We CXi)C35

where

L(p)
=

P • dx\
C,7 (] (r(x)

—

Z1(p) =

P •dx\
C,=ex(j (.(x)--,)_)

and C are slowly varying metric factors near the fixed point u = u’. Equation

(4) therefore becomes

F’(k, L,t,u,ic) = (p)d_N()p_t F(-,pKL, 1, u(p), 1) (7)

Where p is determined by equation (5) and now depends on the one ruietric factor.

We note that when N = 0 we are working with the free energy and the metric factor

C’ does not enter. There is dependence only on one metric factor, C7, in agreement

with Prjvinan and Fisher (8]. One subtlety is that in the neiglalasuurhood of time lower

where

Similarly
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dinaensiou.al fixed point the dimensions of the fields and the free energy density are

different than at the bulk, this implies that = (pN)1(d )+(d—d’)iN where the

prime is used t,o denote the lower dimensional quantity. With this identification we see

that d will correctly become d the dimension of the reduced system when we consider

the reduced fixed point. To obtain the dependence of p on t and L we need to examine

equation (5) in more detail. In the neighbourhood of the fixed point we find it is of

the form.

—2+
P •C=I

Now by definition = 2
— ir, where a’ is the correlation exponent associated with

the fixed point under consideration, therefore

I
p=(-) C2

here C2 is a new metric factor (obtained from (C.)”) containing dependence on L,

which caters for the crossover. It is only near a fixed point that we get a scaling

variable of the form Lt”, more generally it is j. A useful way of parameterizing the

crossover is via an effective critical exponent 11efJ
We can then write

= Lefrn”’
CL

In the limits —‘ co or —s 0 is I independent and becomes a’ or v, the bulk

or reduced exponent respectively. Substituting back into equation (6), noting -

we obtain

FN(k, L, I, it, tc) Lt” C2, 1, u(t” C2), 1) (8)

for the N point function in the limit as one of the fixed points is approached, where v

and q are the associated exponents. It is important to realize that the metric factors

can be calculated within the formalism presented.

Sufilcently near the bulk fixed point, for the metric factors to be regarded as equal

to one, equation (8) can be rewritten as

=

where P 1i’(d (d.2+9)) which is the usual form of the scaling relation. If instead

we are suflicently near the reduced fixed point we find

pN
= Ff’(kr”, Li”)

where F 1e’(J(u1’2+u1’)) is the critical N-point function for the reduced theory,

and f is a finite size scaling function as seen from this perspective.

The main differences between the formulation given here and the standard for

mulation are: the dependence on j- rather than /‘—, the apparent dependence on u

in the crossover region, and the lack of RG invariance of fr-. The formulations are

equivalent when there is no fixed point for finite L. In this case there is only one fixed

point for the coupling to be attracted to. We have no proof that the formulations are

inequivalent but it seems difficult to believe they are totally equivalent. If the formu

lations are indeed inequivalent experiment hopefully should be able to determine the

correct one.
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