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with boundary conditions

Abs tract

Let () be an SO(3) Yang—Mills—Higgs system which is a real—

analytic, sttic,finite—energy solution of the Bogomolny field equations
—) —)—

We show that the zero—set of the current is of

4imension at most one. Using this property of i we obtain the curious result

that if the system is axially symmetric, in the weak sense that all local

scalar gauge—invariants are axially symmetric, the topological charges ‘mist

b located on the axis of symmetry and must be of equal magnitude an.1 alternate

sign, in particular, if the charges are of uniform sign they must be concentrated

at a single point. The fact Chat the charges of spherically symmetric nonopoles

are bounded by unity is obtained as a corollary. It is also shown that a

master—potential for the invariant fields that was found earlier to exist for

systems with additional symmetry, exists as a direct consequence of weak axia3.-

symmetry alone.

0 as x1 (1.2)

Here and , denote outer—product in space and isospace respectively, c

is a constant , and we suppose that are real analytic. The real

(2)
analyticity is not a strong assumption because it haq been shown to hold(in at

least one gauge) for solutions of (l.l)(l.2) which satisfy 4uite mild conditions

concerning the Sbolov norms of the fields.

In some previous papers we have shown3 ,that if the system ( I, ct2) is

axially symmetric inEhe strong or convcntional4 sense that there exists a local

(scalar) isovector ((x such that for any local(scalar) isovector we have

\? \(x:) 13() \(x.) where

then the topo1gical charge distribution must be as stated in the abstract. it

has also been shown that if the strong axially synnietric system is mirror—

symmetric (symmetric with respect to reflexions in planes through the axis of

symmetry) then it admits a (scalar—isoscalar) masterpotential Wx) from which

invariant fields such as and can be obtained by

differentiation. (Bracket denotes inner product in isospace).

The r’ther surprising nature of the result concerning the charge—distribution

raises the question as to whether (1.1) is really the most general definition of

axial symmetry and whether the results would still hold under a weaker definition.

Accordingly, the purpose of this note is to reconsider the situation under what

DIAS—STP—80—32 1. Introduction

Let ( ‘) be a static (..o) purely magnetic (A0so) finite energy

(1)SO(3) Yang—Mills—Higge system satisfying the first—order Bogomolriy field

equation in Euclidean 3—space E(3),

.;, _‘)—) —)—
where

.4 — ....) —
, (1.1)
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(1.3)
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would seem to be the weakest reasonable definition of axial symmetry, namely,

that local gauge—invariants such as the inner—products

,
(1.4)

be independent of the azimuthal angle . (Here the space indices are expressed

in cylindrical coordinates to avoid a spurious ‘-P —dependence).

It turns out that, for real analytic fields satisfying (1.1) and (1.2),

weak axial symmetry actually implies strong axial symmetry so that the previou.;

results still hold. Furthermore, it turns Out that the result for the charge—

distribution can be obtained more or less directly from weak axial symmetry, and

that the masterpotential W exists even without the hypothesis of mirror—synzuetry.

The role played by W also becomes much clearer.

In order to establish these results it is first necessary to establish

that the zero—set of the current

(1.5)

is located on a manifold which is at most 1—dimensional i.e. consists of at most

isolated points and analytic curves. This particular result is indeper.dent of

axial symmetry, and in the axially symmetric case it implies that can lie

on at most the axis of symmetry and symmetrical rings around the axis.

Finally for completeness we derive as a simple corollary the known result

that a spherically symmetric monopole must have unit charge and derive also the

single equation for the naster potential which is sufficient to close the system

of field equations in mirror—symmetric case. In the latter derivation we use

mirror symmetry only in the weak form

(1.6)

2. Zero Sets of the Riggs Field and the Current.

We commence with the result that the zero—set Xt) the current J is at

• most 1—dimensional, and it will be convenient to consider also the zero—set of

the Riggs field , although from the definition of J the zero—set of

is contained in t.(3’) . Since and Y are real analytic their zero—sets

are analytic submanifolds of (‘) , and hence what we have to do is eliminate

itself and 2—dimensional submanifolds. As mentioned before, the results

are quite general(independent of axial symmetry) and in the(weak)axially symmetric

‘case they reduce the possibilities for to the axis of syn1etry and isolate4

symmetrical rings around the axis.

In the case of the Higgs field we first note that the boundary condition

(1.2) excludes E(3) itself, and requires that any 1— and 2—dimensional sub—

—,•-,,
manifolds be closed. Next using the Bianchi identity we obtain from (1.1)

the usual second—order field equation

,
(2.1)

for the Riggs field, and from (2.1) we obtain at once the equation

- (2.2)

‘for Since (2.2) shows that (is a subbarmonic function it follows

that cannot vanish on a closed 2—dimensional surface without vanishing

in the interior, and hence vanishing throughout (‘) , in contradiction to the

boundary condition. Thus the zero set of consists of at most isolated points

and analytic closed curves6. In particular, in the axially symmetric case it

reduces to at most isolated points on the axis of syosnetry and isolated rings

around the axis. (The whole symmetry axis is excluded by the boundary condition).—,
In the case of the current T the space E(’3) itself is excluded for

a different reason, namely, that if is identically zero the gauge and Riggs

field completely decouple and it is well—known that there are no non—trivial finite—

energy solutions for the decoupled system. Now suppose that vanishes on an

b

U

V
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analytic 2—surface The results for show that I contains finite

elements ‘- on which ()‘) 0 . But from the Bianchi identity and the

field equations (1.1) we obtain after some algebraic manipulations

and
(.3)

and it is easy to see that this equation implies that on the normal

-.)

derivative to can be expressed as a linear combination of Y and the

tangelitial derivatives to , with coefficients which are smooth on

(and may be functions of ). Since, by iteration, the same will be trueof

the normal derivative of any order, and J is real analytic, it follows that

cannot vanish on without vanishing on a finite 3—volume containing

and hence vanishing throughout (3). Thus in the non—trivial case the

zero—set of can be at most 1—dimensional i.e. can consist only of

isolated points and analytic curves(not necessarily closed). In particular, in

the (weak) axially symmetric case the zero—set of ‘ can consist of at most

points on the symmetry—axis and isolated rings around the axis.

3. OrthonormalTriads in the pment of

The reason that we need to locate the zero—set of 3- is that

in the complement E(—’( we can construct orthonornal triads of

isovectors ncI use them to implement the weak axial sycrnetry. In this section,

we give the construction. First we note that since ‘() is at most 1—dimensional

is connected, though not necessarily simply—connected. Now let be

any point of E (3). Then at , and by analyticicy, in a finite neighbourhood

N of V ,we have . But then in N we have , and for at least

one component, Z say, of we have j 0 . Furthermore from the defnti.on

of Y we have 0 . It follows that in N the isovectors

form an orthonormal triad. The triad(3.l) formed with fixed’component of

may not be extendable to all of , because T might vanish at finite

distances fron V . But since Q in (3) and E3) is connected,

it is clear that can be covered with overlapping neighbourhoods N, each

with at least one triad. As we shall see in the next section this resultis

sufficient to implement real axial symmetry in E() , and that is all that we

shall need. Note that the are real analytic and single-valued in 3) since

they are quotients of functions which are real analytic in E(3).

11 , and 3n1.1,t&,in 1 (3.1)

Hera and throughout the components of 3 are understood to be expressed in

cylindrical coordinates.
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6. Implementation of Weak Axial Symmetry (3) From (4.4) on E (3) it also follows (for ‘= ) that

Using the triad (3.1) we can construct the isovector (j) ç,j on E(3), where .. , •zp,, (4.7)A o.

(.r in N where . (4.1)
and since the are non—degenerate on E (3), we then have

e

Now let be an arbitrary axial-scalar isovector (space-tensor isovector whose OtZ (4.8)

space-indices are expressed in cylindrical coordinates). Than ).(x)’ has the axpaneion We shall refer to equations (4.4) on E (3) and (4.8) as the equations of weak

= (L4(),)\(c) (6.2)
Yfl=X7 With theseeguatious in hand we turn to the topological charge

distribution.

and since by weak axial syrnnetry

V1O in N V (4.3)

we obtain at once from (4.1) the relation
V

inN. (4.4)

Equation (4.4) shows that the vector i.ijx) implements the covariant derivative

V

in N . To extend it to E (3) we note that if ‘.a is any alternative

basis e.g. for a neighbourhood N’ , and La. is the isovector constructed

as in (4.1) from then from (4.4) we have V

(45)

Thus we have

or in Nc\ N’ . (4.6)

Equation (4.6) shows that L is unique and basis—independent int(ja result

that can also be verified directly from (4.1) using weak axil symmetry. Si7nce

E (3) can be covered with overlapping neighbourhoods N it follows that 4.i.)

0.

and eq. (4.4) extend to all of (3) as required. Note that Li.) will also ie

real analytic in E (3). In particular Li.) will be unique or single—valued in

E (3).
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6. Elimination of Rings of Topological Char

5. The Topological Charge

To show that rings of topologital charge are not possible we let R. be

The general expression for the topological charge contained in a volume —

17
a ring of zeros of . From the results on R. is isolated in

\7 with smooth surface £ on which Q is wall—known’ ‘to be
(3) ana hence can be surrounded by a torus of revolution whose surface

where =Jii (5.1) her entirely in E(3). Letting the volume V of the previous section be

such a torus, the curve must be a circle in which loops the torus in

is the Maxwell field projected out of F by 4) . In the axially symmetric
the direction orthogonal to the toroidal axis. Then, since C is closed and

case is independent of 4’ and hence if we choose \T to be a volume of
(3, 4) is single—valued in E (3), the expression (5.5) for the charge

revolution we have
inside the torus yields zero, as required. Thus the rings are ehininated and

Q y.
CtX.

, (5 2) the charge is located only on the symmetry axis

where the line integral is along a curve C in orthogonal to the azimuthal

direction. The precise nature of depends on the topology of and will

be specified later. Now from (5.1) we have, in particular,

( b’ (53) -

Hence using the equations (4.4)(4.8) of weak axial sytxsnetry, we have

on E (3). (5.4)

Suppose now that the curve C lies in (3) except possibly for the end—points

‘X. and . Than (5.4) can be used in the integral (5.2) and we obtain the

closed expression

Q where (x (4tx(x, (55)

for the topological charge Q- contained in V .

It is well—known that the topological charge as defined in (5.1) must be

located ac the zeros of . From our results on these zeros, we see that in

the axially syn—etric case the charges can be located only at solated points O€

the axis of symmetry and on rings around the axis Our first step will be to show

that the rings are not possible,so that the charge must be located only on the axis
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in (3)

and since A and are real analytic throughou E(3) we then have

Next from (4.8) w have

.&j 0
(7.2)

4) inE(3) (7.3)

where is the maximum of (SB, E’ in E(3). Since B is non—trivial and

is real analytic, we have O.<.ç < 00 , and hence on integrating (7.3) along a

straight line between any two points X and X0 in E (3) we have

4
— where .n&xLs’r)

Keeping fixed and letting —)O we see from Cauchy convergence that JCx)

has a finite limit as • Then. by letting Xs.(’) and )( (‘3,’)

we see that

‘j-:;
(7.5)

where the finite value ‘fl is independent of z. Equations (7.2) and (7.5) give

the required limits.

Incidentally, we note that since is real analytic in E (3), it

must be periodic in 9’ , and hence, since from (4.4) we have

—>(X
the constant ‘r in (7.5) must be an integer.

identified with the topological charge.

8. Charge Distribution on the SymmeyAxis.

To determine the charge distribution on the z—axis, we let the volume

of the previous section be any volume of revolution which lies inside all rings

of zeros of and cuts the z—axis at just two points and where

c 0 . Then, apart from % and t , the surface of V lies entirely

in E (3) and the curve is a curve joining ‘ to ‘3, with all its

interior points in E (3). From (5.5) we then have for the charge in

Qm ‘rI.’) - where .T(’ ‘ t)
t::G

‘But from the limits obtained in section 7 we have for ‘L 0 ,

[‘i- -k

where n” is independent of z. It follows that

0,m (8.3)

But since the volume \T may contain any number of charges, and two successive

charges of the same sign would yield Q ± 2Y , eq. (8.3) implies that the

charges must be of alternate sign and of the same magnitude.

In particular, if the charges are required to have the same sign then there

can be only a single charge(of arbitrary magnitude).

7. Limits of and on the Axis of Symmetry

In order to determine the charge distribution on the

say) we shall need the limits of and is..?’ as

consider these limits in this section. First from (4.4) we

symmetry axis(z—axis,

and hence we

have

(7.1)

(7.4)

(8.1)

(8.2)

as

In the next section

(7.6)

will be



9. Equivalence of Weak and Strong Axial Symmetry.

The results for the charge—distributions were obtained using only the

weak axial symmetry equations (4.4) and (4.8). However, for completeness an.i

for the discussion of the masterpotential, we wish to show that for analytic

fields satisfying (1.1) and (1.2) weak axial synraetry actually implies strong

axial symmetry i.e. eqs. (4.4) and (4.8) can be extended from E (3) to E(3).

For this purpose we note that eq. (4.8) can be integrated along any

curve r from X0 to )( in (3) to yield

) i. § £a ,

of U)(X along t’ with respect to

is path—independent because the

(4.4) in E (3) in the special case

• where -‘J. denotes the parallel transfer

the connection I\ . The value of x)

.integrability condition for (4.8) is just

when X is replaced by the components of 9.

But now since J\ and are real analytic throughout (3) and the

complement consists only of points and curves (so chat i(3)

is connected) eq. (9.1) defines an analytic extension of t..(x.) as

Furthermore, for any \(‘ which is real analytic in .(3) eq. (4.4) then

extends analytically to (3), and this is just the condition of strong axial

symme try.

Note that the result would not necessarily hold if () contained a

2—dimensional submanifold I because I would necessarily disconnect E (3).

Then L.(x) would not necessarily be path—independent and the values of w(x)

obtained coming from the two sides might not agree. This can perhaps be seen more

clearly by considering the infinitesimal version of the above proof. First we

note from (7.4) that L3 remains uniformly bounded as x—’ and that

by recycling this result into (4.8) C$() and all its finite derivatives.ra uniformly

bounded as X—) . Thus C. has a smooth( C limit) as C

But if ‘) contained a 2—dimensional
‘

, the smooth limits on either side of

Z night not agree. When l() is at most one—dimensional, however, the

values as )t—)’Z() are independent of the direction of approach and so IA) has

a limit which is unique as well as smooth when X.—’ • The analyticity

of the extension follows by differentiating (4.8) again to obtain the elliptic

equation

Since the coefficients in this elliptic equation are analytic the smooth

solutions must be anlytic as required.

10. The Existence of the Masterpotential \J

We wish to show that the existence of the ruasterpotential \J found in

previous papers5 is a direct consequence of axial symuesry condition (1.3).

Inserting the field equation (1.1) in (1.3) we have

(10.1)

and thus the result is established and the role of ‘v.I clarified. Note that

(10.1) is itself a type of covariant Cauchy—Riexaann equation and hence night be

of some use in seeking explicit solutions of the field equations.

(9.1)

and taking the inner product of this equation with I..) we obtain

= (10.2)

But eq. (10.2) is just the Cauchy—Riemann—type equation which was used previously

to deduce the existence of a masterpotential \J such that

a S (10.3)
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11. Field equation for ‘V\T in the Mirror—S_ymmetric Case.

It is known that when the system is mirror—symmetric the field equation

for \,J contains only the fields ,
- .I and which occur

in (10.3) and hence this equation and (10.3) form closed srstem. We therefore
A

wish to derive the field equation for W directly from our present res).ts.

From the second—order field equation (2.1) for we obtain

(11.1)

But from the normalization of 4 and the mirror—symmetry condition (1.6) we have

0 and 0

respectively, where • Hence has a component only in the

direction of the vector

— (a 4 ,
. (11.3)

and

t4V- : (11.4)

where

and -L

Hence from (11.1) we have

(:-
and this is the required equation for w. Of course, we must use (11.5) and

(10.3) to make it explicit in W.

We wish to show here that previous results(12), which state that a

spherically symmetric charge distribution must be of maximum strength unity

can be derived as a simple corollary to our present results. First we note

that the results for ‘X() imply that a spherically symmetric charge must

be located at the origin. Then since spherical symmetry simply exçends axial

symmetry to all three axes , we have from (1.3)

-

where L is the angular momentum operator, X is any scalar i&ovector and

— is our previous (.) • But from (12.1) we have

—> ‘ -_-, —.

(.LL) > 2. -AX. O ‘ (12.2)

(12.3)

since the are non—degenerate in L) — 0 . But this means that for

each fixed . in Et)-o the form a canonical set of generators for the

isospin group. Furthermore since they act only on the 3—dimensional space of

the they can generate only the trivial or 3—dimensional representation.

Thus

s a and 3k

But then from (5.5) we have for a volume V enclosing the origin

l-k) 31(4)
(12.5)

• 12. Corollary for the Spherically Symmetric Case.

(11.2)

(12.1)

and hence

(- - —..
At\

or

(11.5)

(11.6)
(12.4)

which is the required result.
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