DIAS Access to
Institutional Repository

Title	A Note on Products of Infinite Cyclic Groups
Creators	Goldsmith, B.
Date	1980
Citation	Goldsmith, B. (1980) A Note on Products of Infinite Cyclic Groups. (Preprint)
URL	https://dair.dias.ie/id/eprint/918/
DOI	DIAS-STP-80-40

A Note on Products of Infinite Cyclic Groups. by
B. GOLDSMTTH

Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland and

School of Theoretical Physics,
Dublin Institute for Advanced Studies, Burlington Road, Dublin 4, Ireland.

Introduction

In his book[2], Fuchs introduces the notion of a subgroup X of a Specker group
P being a product and goes on to establish a Lemma [.2, Lemma 95.1] which yields a useful characterization of the quotient P / X and enables an easy derivation of Nunkes characterization of epimorphic images of the Specker group [4]. Unfortunately this Lemma is incorrect as we show in section 1. In section

2 by suitably strengthening the hypothesis we regain a characterization of the quotient. Throughout, all groups are additively written Abelian groups and our notation follows the standard works of Fuchs [1],[2].
81. Suppose $P=\prod_{n=1}^{\infty}\left\langle e_{n}\right\rangle$ is a Specker group, then Fuchs defines a subgroup X of P to be a product $\prod_{n=1}^{\infty}\left\langle x_{n}\right\rangle$. if for every m, the moth coordinates of almost all x_{n} are 0 and X consists of all the formal sums $\sum s_{n} x_{n}$. To avoid confusion with the usual meaning of product (i.e. X is a product if it is isomorphic to a cartesian product of infinite cyclic groups) we denote a product (in the sense of Fuchs) by Σ^{*} and reserve the symbol T for the more usual meaning.

Lemma 1 If Y is an endomorphic image of P then Y is a product (in the sense of Fuchs).

Proof. Let $\alpha: P \longrightarrow P$ be an endomorphism with $\operatorname{Im} \alpha=Y$. Let π_{n} denote the projection of P onto $\left\langle e_{n}\right\rangle$, and set, for each $n, y_{n}=e_{n} \alpha$. Since $\left\langle e_{n}\right\rangle$ is slender, the map $\alpha \pi_{n}: P \longrightarrow\left\langle e_{n}\right\rangle$ maps almost all e_{i} to zero i.e. $y_{i} \pi_{n}=e_{i} \alpha \pi_{n}=0$ for all but a finite number of indices i. Thus for every n, the nth co-ordinates of almost all y_{i} are zero and so the set of sums $\left\{\sum s_{i} y_{i}\right\}$ is a product $\sum_{i=1}^{\infty}\left\langle y_{i}\right\rangle$ in P.

Now define $\beta: P \longrightarrow P$ by $\left(\ldots, n_{i} e_{i}, \ldots.\right) \beta=\sum n_{i} y_{i}$. For each $n=1,2, \cdots, \alpha \pi_{n}$ and $\beta \pi_{n}$ map p into a slender group and agree on $S=\bigoplus_{i=1}^{\infty}\left\langle e_{i}\right\rangle$. Hence $\alpha \pi_{n}=\beta \pi_{n}$ for all n. So $\alpha=\beta$ and $y=\operatorname{Im}_{m} \alpha^{i=1}=\operatorname{Im} \beta=\sum_{i=1}^{\infty}\left\langle y_{i}\right\rangle$, and thus Y is a product(in the sense of Fuchs).

Counter-example. With $\left.P=\prod_{i=1}^{\infty}\left\langle e_{i}\right\rangle, \operatorname{set} Y=\prod_{i=1}^{\infty}<2^{i} e_{i}\right\rangle$ Then $P / Y \cong \prod_{i=1}^{\infty} \mathbb{Z}\left(2^{i}\right)$ and this is a complete module over the ring J_{2} of 2-adic integers. Moreover the torsion submodule of this quotient is not dense in the 2-adic topology. Hence it has a direct summand $H \cong J_{2}$ and if $\langle x\rangle$ is dense in H then $H /\langle x\rangle$ is divisible. Choose $y \in P$ such that y maps onto x modulo Y and let $X=\langle y, y\rangle$. Then certainly X is isomorphic to P and hence is an endomorphic image of P. Fy Lemma $1 X$ is a product (in the sense of Fuchs). However $P / X \cong \prod_{i=1}^{\infty} \mathbb{Z}\left(2^{i}\right) /^{\prime}<x>$ which contains the divisible subgroup $H /\langle x\rangle$. However if the conclusion of Lemma 95.1 in [2] were correct then P / X would be reduced. So X is clearly a counter-example to the quoted Lemma.

Acknowledgement. The above arguments arose from interesting discussions with Peter Newman and Adolf Mader. The main idea in the counter-example is essentially due to the former.
§2. In this section by introducing an appropriate topological concept we can regain some information about quotients. Let $P=\prod_{i=1}^{\infty}\left\langle e_{i}\right\rangle$ and topologize P with the product topology of the discrete topology on each component. We refer to this topology simply as the product topology on P. The subgroups $P_{n}=\prod_{i=n}^{\infty}\left\langle e_{n}\right\rangle$ are a basis of neighbourhoods of zero.
Proposition 2. If X is a subgroup of P which is closed in the product topology
that ϕ is well defined. Moreover ϕ is easily seen to be a homomorphism.
and so S_{3} is defined as before. Repeating this type of argument easily gives
substitution one easily obtains that $a_{3}-r_{1} y_{3}^{\prime}-\left(r_{2}+k\right) y_{3}^{2} \equiv s_{3} \bmod d_{3}$
 and so s_{2} is defined as before. Note that $x^{\prime}-y^{\prime}-k x^{2} \in X$ and Now $a_{2}-r_{1} y_{2}^{\prime}=a_{2}-r_{1}\left(x_{2}^{\prime}+k d_{2}\right)=\left(r_{2}+r_{1} k\right) d_{2}+s_{2}$ (some $k \in$

$$
y_{1}^{\prime}=x_{1}^{\prime}=d_{1} \text { we get that }
$$ $\phi \quad 7847$ d_{i} by $\phi(a)$

Define a map ϕ from P onto the cartesian product of the cyclic groups of order $\varepsilon_{s}+\varepsilon_{P} \varepsilon=\varepsilon_{2} x^{2} \jmath-\varepsilon_{1} x^{\prime} \jmath-\varepsilon_{D}$ әхәчм әхәчм $' p>1 s>0 \quad$ адачм $2 p>2_{s}>0$

A1so

Suppose $a \in P$ is given by $a=\left(a_{1}, a_{2}, \ldots \ldots \ldots\right)$ then we may write multiple of d_{n+1}

$$
x=\sum^{*}\left\langle y^{n}\right\rangle \text { a1so, then } y_{n}^{n}=d_{n} \quad \text { and } x_{n+1}^{n}-y_{n+1}^{n} \quad \text { is a }
$$ Notice that it follows easily from the properties (a) (b) (c) that ii

In establishing (ii) we let $d_{n}=x_{n}^{n}$ in order to simplify notation
> $x=\Sigma^{*}\left\langle x^{n}\right\rangle$ (Subscripts denote components in the product P). Moreover if X is closed, only if $x^{n}=0$ (c) x_{n}^{n} divides u_{n} for all u in $X \cap P_{n}$
are elements x^{n} in X with (a) $x_{i}^{n}=0$ for $i<n$ (b) $x_{n}^{n}=0$ if and
Proof. Part (i) is a well-known result due to Nunke [3]. He shows that there
(ii) P / X is isomorphic to a cartesian product of cyclic groups.
then

Finally

$$
\operatorname{Ker} \phi=\left\{a \in P \mid s_{1}=s_{2}=\ldots .=0\right\} \text { i.e. if } a \in \operatorname{Ker} \phi
$$

then

$$
\begin{aligned}
& a_{1}=r_{1} d_{1} \\
& a_{2}=r_{2} d_{2}+r_{1} x_{2}^{1} \\
& a_{3}=r_{3} d_{3}+r_{2} x_{3}^{2}+r_{1} x_{3}^{1} \text { etc. }
\end{aligned}
$$

i.e. $\quad a=\sum_{i=1}^{\infty} r_{i} x^{i}$ and so $\operatorname{Ker} \phi=X$.

Hence $P / X \cong \quad \mathbb{T}\left(d_{i}\right) \quad$ where $\mathbb{Z}\left(d_{i}\right)$ is to be interpreted as \mathbb{Z} if $d_{i}=0$.

Given Proposition 2 one can easily recover the characterization of homomorphic images of P (Nunke [4] or Fuchs [2, Prop. 95.2]).

Corollary 3. Every epimorphic image of P is the direct sum of a cotorsion group and a direct product of inīinice cyclic groups.
Proof. Let K be a subgroup of P and let \bar{K} be the closure of K in the product topology. From Proposition 2, \bar{K} is a product, say $\bar{K}=\sum_{i=1}^{\infty}{ }^{*}\left\langle x_{i}\right\rangle$ and P / \bar{K} is a product of cyclic groups. Let $P=P_{1} \oplus P_{2}$ where P_{1}, P_{2} are the products of the $\left\langle e_{n}\right\rangle$ with $d_{n} \neq 0$ and $d_{n}=0$ respectively. Then $\bar{K} \leqslant P_{1}$ and P_{1} / \bar{K} is algebraically compact since it is a product of finite cyclic groups. Since $\bigoplus_{i=1}^{\infty}\left\langle x_{i}\right\rangle$ is contained in K, the quotient \bar{K} / K is cotorsion and this combined with P_{1} / \bar{K} being cotorsion implies P_{1} / K is also cotorsion $[1,54$ (D)].

References.

「1] L. Fuchs, Infinite Abe1ian Groups Vol I, Academic Press, New York and London 1970.
[2] L. Fuchs, Infinite Abelian Groups Vol II, Academic Press, New York and London 1973.
[3] R.J. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math, Soc. 13, (1962) pp 66-71.
[4] R.J. Nunke, Slender groups, Acta Sci. Math. Szeged, 23 (1962) pp 57-73.

