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A note on products of infinite cyclic groups.

Introduction

In his book[2], Fuchs introduces the notion of a subgroup X of a Specker group

P being a product and goes on to establish a Lemma [2, Lemma 95.1] which
yields a useful characterization of the quotient P/X and enables an easy
derivation of Nunkes characterization of epimorphic images of the Specker group
[4]. Unfortunately this Lemma is incorrect as we show in section 1. In section
2 by suitably strengthening the hypothesis we regain a characterization of

the quotient.h Throughout,all groups are additively written Abelian groups and

our notation follows the standard works of Fuchs [11,[2].

(o]
§1. Suppose P = 1T < e > is a Specker group, then Fuchs defines a
‘ =1 .
fose]
subgroup X of P to be a product T <>Ln>4 if for every m, the mth co-

n=1

ordinates of almost all X are O and X consists of all the formal sums 2 s X,.
To avoid confusion with the usual meaning of product(i.e. X is a product if it
is isomorphic to a cartesian product of infinite cyclic groups) we denote a

. %
product(in the sense of Fuchs) by > " and reserve the symbol 1 for the more

usual meaning.

Lemma 1 If Y is an endomorphic image of P then Y is a product(in the sense
of Fuchs). -
Proof. Let o« :P—> P be an endomorphism with T oL = \/ . Let T,

denote the projection of P onto < €.> , and set, for each n, Y4 _= €, oL,
Since < €, is slender, the map LT, T Pe> Len > maps

almost all &€ to zero i.e. ¥, = & XT, = O for all but a finite
number of indices ¢ . Thus for every n, the mth co-ordinates of almost all

o %
J, are zerc and so the set of sums {ZSL\ALg is a product Z <\j‘-_>
(=1

in P.



Now define /.’;:P—""> P by (""')nieé)""')ﬁ = ZALSL.

For each n=1, 2, . . . ., & T and /S“ﬁ”,\ map P into a slender group

DO
~and agree on S = ® <e.> . Hence ® . = AT, §orall n. So &X = f3

L=t P}

and \/ = T & = Im/$ =~ Z_*.< 4;> » and thus Y is-a

(=t

product(in the sense of Fuchs).

o0

witn Po= T1 Ler>, e Y= T1<2ed

Counter—example.

=t

Then P/\/ ~ 'T?la" 1(113 and this is a complete module over ﬁhe ring jz
‘=

of 2-adic integers. Moreover the torsion submodule of this quotient is not

dense in the 2-adic topology. Hence it has a direct summand H = 32_ gnd

if £ x> is dense in H then H/<x> is divisible. Choose :\ e P ;

such that y maps onto x modulo Y and let X = <‘:l, Y > . Then cértainly

X is isomorphic to P and hence is an endomorphic image of P. PRy Lemma 1 X is

= : /
~ H?/.(l“)/(x>

a Erc-duct(in the sense of Fuchs). However P/)(

(o)

which contains the divisible subgroup H_/<1> . However if the conclusion of
Lemma 95.1 in 2] were correct then P/X would be reduced. So X is clearly a

counter—example to the quoted Lemma.

Acknowledgement. — The above arguments arose from interesting discussions with
Peter Neumann and Adolf Mader. The wain idea in the counter-example is

essentially due to the former.

§2, 1In this section by introducing an appropriate topological concept we can
00

regain some information about quotients. Let P= L ' L e;> and
L=

topologize P with the product topology of the discrete topology on each component.

We refer to this topology simply as the product topology on P. The subgroups
oD
P = TT L g, > areeaa basis of neighbourhoods of zero.

n (= a



Proposition 2. If X is a subgroup of P which is closed in the product topology
then

R ¥ ;
(i) ¥ is a product Ml < Nl

c=t

(i1) P/X is isomorphic to a cartesian product of cyclic groups.

Proof. Part (i) is a well-known result due to Nunke [3]. He shows that there.

o . n :
are elements 2 in X with (a) uﬁm = O for ¢ < N (b) = A = O if and

only if x" = O (c) \.ﬁﬂ divides W, for all u in XN \VD .

(Subscripts denote components in the product P). Moreover if X is closed,
* a . ‘
X = 2 Lx >,

t - , ﬁl l . . , .
In establishing (ii) we let &: = X, in order to simplify notation.

Noticz that it follows easily from the properties (a) (b) (c¢) uvhat if

o a n n n
= Z Ly also then Y = d and X =Y is

n Nl

[\

multiple of &71 .

Suppose Q& € P is given by a = (a,, a,5 esseeeess. ) then we may write

a, = ¢, nf + 5 where 0 & § < n’. .
|
Also Q.- X, = 7y 2t S+  where 0<¢ s, < o~ﬂ
K 1 ) - |
— -~ = . 3 .
Dw ﬂ.upu (X, = wmw + mw where o < ww < 3 etc,

Define a map ww from P onto the cartesian product of the cyclic groups of order

&. by mmAPv — ﬁw:m:.. i -vm:v. -t v . We must verify

(8

. *\ n .
that ﬂ is a well-defined homomorphism. Suppose X = 2. < 4" >then since

mw_ = uh., = &_ we get that €, and §, are uniquely defined.
!
\ \ -
Now O,-04, = a,- ¢, (x,+ Rd ) = (erhk)d +5, (some ke
. . ! \ 2z x
and so S, 1is defined as before. Note that X -1 — Rhx® ¢ and
’ ’ P » . . -
so by property (c) Rw;uwlr x 3 is a multiple of mw . Making this

] T
substitution one easily obtains that Q,~ QY 37 hﬂr+ RY 1, = S, mad Lw
and so S, is defined as before. Repeating this type of argument easily gives

that & is well defined. Moreover & is easily seen to be a homomorphism.



Finally Ker E;L = {qe?_] S, =83,.= -,.,,:03 i.e. if (le'Ktr?g
then a = (“c\.
i
Q.L:. rl(',\l-%-r\I’_

1
3 etc.

i.e. o = Z_ rL N and so Ker ¢ = X .

k3
c\3+r113+Q1

Hence P/)( ~ T X4 (Clk ) where ZL (C\L) is to be inter-—
preted as ZL if C\L = O. ‘ '
Given Proposition 2 one can easily recover the characterization of homomorphic.

images of P (Nunke [4] or Fuchs [2, Prop. 95.20).

Coroliary 3. Every epimorphic image of P is the direct sum of a cotorsion

group and a direct product of iniinite cyclic groups.

Proof. Let K be a subgroup of P and let K be the closure of K in the product

topology. From Proposition 2, K is a produc.t, say K = zji,*< X >

and P/K is a product of cyclic grgups; Let P=P® ?7_ where P.) P,_ are

the products of the < €. with d‘\ f,-'L 0 and d‘\ = O respectively. Then

K < P, and P,/K is algebraically compact stince it is a product of finite
cyclic groups. Since ié' < X;>is contained in K, the quotient K/K is cotérsion

and this combined with P,/I.( being cotorsion implies P, /K is also cotorsion

f1, su(p)l.
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