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1. Introduction

Recently there has been a great revival of theoretical intereat in the

CN THE BREAKDDM! OF THE KRAMERS THEORY AS A PROBLEM OF CORRECT MODELLING

one—dimensional barrier crossing proolen, and its applicatiens to many physical-.

—chemical systems/l—7/.The problem has been modelled essentially by a ‘Brownian

particle’ moving into a double—well potential V. Since the original aorh of

Kramers/8/, a number of investigators have improved and clarified several po:nt

We mention the results for multidimensional systems in the overdarpod and under

CHESOhI

damped limit/9/, the effects of anharmonicities in the potential form/7/, theInstitute for Advanced Studies,

U iflGtDfl Roao, DUBLIN-4 (reiand) role of non—Gaussian white thermal noise/l,lO/, the effect of a rate enhancerer

via parametric fluctuations/ll/ and finally the influence dcc to the aon—arkov:

statistics of the heat bath/2—6/.

At the same time some authors addressed the problem of the dccivazion of

exact Langevin equations(LE), i.e. the LE derived from a Liouvilie equation,

ut artIcle for AZJAhDES IN CHEMICAL PHYSICS and of their reduction to the mathematically more tractable phenc::oaical

ariacy cr-art

LE employed for modelling real physical—chemical systemo/12—l5/. Mebanty cc al.

studied in great detail the time dependence of the momenta of tao Orownian

particles of mass M interacting with a harmonic potential in a id of

of mass m. Under the conditions M >> m and øtl, where m it the frqueny

of the Brownian oscillator and is the relaxation time of the bath partcles,

.rrnt address: Dpartmento di Fisco. Universita’ di Perie, iO5lOO—

very general LE can be derived. Eventhoegh such conditiona have beer. cemacoly
PERdD (Italy)



assumed at in the quoted literature/l,ii/, the structure of these exact LE is

still more complicated than that of the phenomenological LE actually treated

In particular, the friction coefficients are functions of x(t), where x(t) is

the separation of the oscillator particles, and the noise terms are generalized

(i.e. not purely additive or purely multiplicative), Gaussian and non—stationary.

The various approximations which must be made to reduce the LE derived from

the Lio,dville equation to the simple one—dimensional LE, so far discussed, are of

three types: (i) The terms which describe the rotation of the oscillator in the

fuid must be neglected; (ii) It is necessary to approximate ad hoc the x(t)

dependence of the friction coefficients which arises from the interactions between

the Brownian particles; (iii) The tern involving the mean force exerted by the

fluid on the oscillating Brownian particles must be either neglected or approxi

mated by a linear tern in x(t)—x, where x is the equilibrium interparticle

scuaration of the oscillator.

With a few necessary restrictions, detailed in ref.15, we can finally recover

the phenomenological LE

-

2)xv -
>xzV (tX

f)

where f(t) and (t) are white Gaussian noises with

i

and

(t (ci> 1 3 (

< 2 S

kT
<B

Boltzmann constant) (L

22
Here V(x) denotes the harmonic potential t x /2. These LE have been obtained

first by Lindenberg and Seshadri/l4/ by studying explicitly a specialized vers:

of a model Hamiltoriian introduced by Zwanzig/l3/ for a one—dimensional system

interacting with a heat bath. Such a model admits as a peculiar feature an exa

Langevin equation that can be derived by direct integration. The LE of eq.(l)

be then recovered by employing the Markovian approximation which corsirts on

assuming that the exact noise terms are delta—correlated Gaussian stochastic

processes.

Although criticism on ref.15 is limited to the problem of the description

oscillating molecules in a fluid via one—dimensional LE with simple noise stru

most arguments introduced by Mohanty et al./l5/ and by Lindenberg and Seshadri,

apply also to the problem of modelling the decay of a metastable state. This

problem plays a central role in many areas of science, most notably in chenica

kinetics, electron transport in semiconductors, and nonlinear opticts. In the

recent literature detailed experimental work has been carried out by several

groups/16,l7/ in order to answer the basic question: To what extent is a cne

‘I



—dcensional barrier crossing picture applicable to actual physical—chemical

systems? Experimental discrepancies with the fundamental theory of Kramers/8/

have been explained by having recourse to one or more of the correcting nechan

isms quoted above. Memory effects due to the non—Markovian statistics of the

heat bath coupled (phenomenologically) to the ‘Brownian particle associated with

ti-ic reaction coordinate x(t), are pointed out as being the most important cause

of the remarkably increased activation rates of a number of chemical reactions

in the high friction limit/l—6,l7/. The consequence of including such additional

mechanism is a ‘frequency dependent friction’/2—5/, which is supposed to account

for the unclear separation between the heat bath relaxation time scale and

the mechanical’ time scales related to the characteristic frequencies of the

driving potential V(x).

On the contrary, nobody has heeded the advice, implicit in the exact approaches

of ref. 12, that friction terms appearing in the LE modelling any single process

under investigation may involve a dependance on the reaction coordinate-itself

wi-iicn generally will be non—factorizable. The present paper is aimed at extending

Lndenberg ans Seshadri’s approach to the case when the Brownian particle is

driven by a double—well potential in the underdamped and overdamped limit. The

x—dependant friction terms are shown to affect the rate of - escape over the

cnrrier (i.e. the relaxation process) distinctly in the two regimes. Our main

conclusion is that the specific nature of the coupling between the Brownan

particle and the heat bath cannot generally be neglected by substituting the

generalized friction term with an effective one (— 4..fx(t))/i4/I somehow pro

portional to the solvent viscosity (hydrodynamic assumption)/17/.

The organization of this paper is as follows. In Section 2 we discuss, via

projection operator techniques, the derivation of the LE (l.l)—(l.3) from

Zwanzig’s model Hamiltonian. Corrections due to the presence of anharmonicities

in the Hamiltonian describing the heat bath and the coupling with the system of

interest are accounted for. In Section 3 we adapt the Lindenberg and Seshadri’s

model to the problem of the decay of a metastable state. The corresponding

corrections to the Kramers’ activation rates are estimated in the case of small

x—dependent friction terms both in the overdarnped and underdamped regime. In

Section 4 Lindenberg and Seshadri’s derivation/14/ of the LE (l.l)—(l.3) is im

proved by taking into account the effects of non—Markovian statistics of the he

bath. Finally, in Section 5 we summarize our findings and discuss their implica

tions in the applications to chemical—physical problems.
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be assimilated to those of a Gaussian noise with zero mean value and auto-correlation

i[H, ] here [

denotes the Poisson brakets, can be separated into an unperturbed part C L0

1
COS1 — (t a’c).

(2.10)

L P2
I ••j::i-?<

For dlarity we give further

- P

technique in the AppE

approximation so that the random forces F(t) on eq.(2.lO) result to be delta-

—corral ued

An alternative procedure consists in employing an equivalent Fokker-Planck

variables provided that c t<l, where now 1/ ) denotes a suitable mechanical

This applies in the presence of a clearcut time scale separation between the heal

bath relaxation process and the mechanical driving by the potential V(x) -

V
in notation of ref.l5. Our final result is a FP equation of the type:

where (x) is the 2N-dimensional column vector (a1(x) aN(x),O 0). A

detailed derivation of the generalized LE, eq.(2.9), can be found in refs.l3 ad

F(t) is the initial condition—dependent portion whose statistical properties can

functions

14.

(

p /‘‘ -
O’ (x p /

/

The related Liouvillian operator L defined as

and a perturbation part L

in order to obtain ti-re LE ‘1 1)-Cl 3) Lindenberg and Seshadri choose a quadratic

form for the coupling components a (x) and, in addition, introduce the Markovian

L0Z I cyQ
1) c&)

V’ - - [ Q
v

details of our perturbation

I i;. ?(>cp;)foraism The corresponding Fokker-PlanckCFP) equation can be obtained y means

of an adiabatic elimination procedure/18/ which allows us to eliminate the bath
where (x,p;t) is the reduced distribution function in the relevant canonical

coordinates of the system under study and F are the perturbation terms of

-e scale re’ated to the effective potential V(x) By changing the bath variab1es
order r-th of the corresponding FP operator In particular we fird

Q — r Cx) (211)

.‘

r-..._÷7Cx)I (;
°

the Homiltonian equations corresponding to the total Hamiltonian of eq.(2.7) can

F (11 x) I kT + I Q p
be rL- tteri as 2.

i -

— r’ / -

- (2.12) wnere

- V’x) OJ & O (c)
1



- 10 -

— Ii —

r/ (Iix)

io

cos(

(2.18) The third term on the r.h.s. of eq.(2.22) does not contribute to our FP equation

With the choice of ref.l4 for a Cx),
3)

zx + )

equation (2.15)-(2.l7) with the friction terms given by

eq (2 20) corrc ponds e>actly to the LE (1 1)—(l-3) The Markovian assumption is

(see Appendix). Without loss of generality we assume for instance n even so that

a very general choice of makes the model untractable, we can slightly improve

cur understanding of its role on assuming that the linear term H3

by nonlinear corrections of the type:

-

is perturbed

(2.21)

and (i1,x)exhibits an explicit dependence on k8T. The explicit dependence on the

temperature is due to the averages
QmS)

taken over the umperturbed equilibri.

bath distribution (see Appendix).

The corrections to the isolated nonlinear potential U(x) are the exact couter

for any n>l. The additional interaction modifies the perturbation part of part of the mean force exerted by the fluid on the melecular oscillator as it

appears in the LE obrained by Mohanty et al .115/. if a Cx) and 6(x) are chosen

to be polynomials in x, y()x) assumes a form still resembling that of eq.(2.20):

O. tx) x +

we readily obtain

(rlx)

We remark that the FP

(219)

V

(2 20)

now implicit in the truncation of the series of eq.(2.l5) at r=l.

Before going beyond such an approximation by calculating

can convenientl3 re-written as

L = - 2 (V’c) -2 6’c2 -

I ttX \ v

- fo - -

22

On applying the perturbation technique àutlined in the Appendix we find for

and the same formal expression of eqs.C2.l6) and (2.17) respectively

where V(x) now reads

we briefly

discuss the critical choice (2.6) for the interaction Hamiltonian H58. Although
\T ( A, -

. Z, Ocx)
- Z (-j)!!( )

the Liouvillian operator as follows:

(2.2

b) cx)]

- (x) -

I I
Dp

y

y_ Q

(2.22)
) (T x (2



It is noteworthy that the same kind of corrections to eqs.(2.16) and (2.17)
where

can cc determincd also on assuming that he heat bath consists of nonlinear oscillators

provided that nonlinearities can be treated perturbatively. If we add a nonlinear

perturbation term to H3 in eq.(2.3) and change variables as in eq.(2.ll), such o.

result follows immediately from our perturbation approach. We conclude that the

T-dependence exhibited by both the phenomenological potential V(x) and the friction

terms see eqs.(2.24) and (2.25) - is general in its nature and should be

traced back to the intrinsic nonlinear features of the total system and namely of

the Hamiltonians H3 and Hs3.. In Section 5 we discuss the physical relevance of such

a dependence for applications to chemical—physical systems. For the purposes of

Sections 3 and 4 however nonlinear corrections to HBfHSB can be disregarded with—

cut loss of generality.

With the choices of eqs.(2.3) and (2.6) for H3 and H3. we can easily compute

of eq.(2.l5). On employing our adiabatic elimination technique we readily

find

r r r- + 1
2

MJL i ox pj

+ (H,x) - x1 +_1 - (2.26)

L tLx JL P f.J

-
(‘r1,) 2 2_T +_-1 /

ii L p 2J

(9

(2.

(2.

c (),x) ± ds (X) co ( s s,
— V 1L%, )0

1ô (S0

(ri, -) .L \ ds Z >) cc

J J ‘ L’.’ J

(tl,x) ! x) soc) )J cos{ (s0-S)J

The structure of F is rather complicated. On following the procedure adopted for

by choosing an explicit form for a(x) and assuming the convergence of th

integrals in eqs.(2.27),
2

and can be given the form of polynomials

in x: eight new parameters (three from
1

and
2

each and two from 3) contra

the non-Markovian corrections at the lowest perturbation order. In Section 4 we

shall study numerically the role of the non-Markovian statistics of the heat bath

under some stronger assumptions in order to gain a deeper comprehension of the

underlying dynamics.



3. Activation rates in the Markovian limit.

In Section 2 we discussed under which assumptions the phenomenological LE (1.1)

can be employed as a sensible description of a chemical reaction. Apart from the

possible T-dependence of both the effective potential V(x) and the friction

terms arising from the inevitable nonlinearities of H5+H55, the Markovian statistics

of the heat bath are understood in the system of eqs.(l.l) as the main assumption.

In the present Section we estimate the quantitative corrections to the rate of

escape due to the multiplicative friction terms in
1

and
‘2

provided that these

can be regarded as small in comparison with the usual dissipation term —i0v of

the Kramers theory. Our treatment applies also to more general choices for V(x)

and -(N,x)as those on eqs.(2.24) and (2.25) respectively.

a) the overdamped limit

he study first the limit

end largc activation energy.

rrodalled as

V -
b x4/

. (3.1)

It represents a symmetric double-well potential with two stable fixed points,

= (e/h)2, an instable fixed point in x=O and activation energy defined as

Vo - . (3.2)

The height of the barrier L V is assumed large compared to the

Furthermore the characteristic mechanical time scale mentioned

now given by 4 ,being V(O)=a and V(x )2a. Here high

, since we chose to consider the x-dependent friction

small. This is the well known overdamped limit of our system.

We proceed further by applying the standard analysis/1,3,7/ which

eliminating the variable velocity perturbatively. We employ again the

technique in the Appendix.

The FP operator corresponding to the LE (l.1)-(l.3) can be divided

perturbation part and an umperturbed part F’ such as:

4k’T
‘ZJ

- # I ) .[ (3.4)

The result of our projection technique can be finally written as follows:

2 ()<) b(x) (K) I D -
-L J
A

where

2.-. _. /J(X) I

JI

(3.5)

thermal energy

in Section 2 is

viscosity means that

terms as comparative

consists in

perturbation

into a

(3.3)

most discussed in the literature/2-8/ of high viscosity

For simplicity we assume our effective potential to be

V

dcX) Vx) .. k ‘1 2L
. (3.6)
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odd in x vanish exactly for symmetric potentials.
The energy envelope technique is based on the assumption that the average ener9v

We make tow two relevant rcmarks
envelope E(t) > vanes slowly compared to the øverage displacemer x(t) >

(i) The restrictions under which our perturbation technique is valid can be determined
This condition places two restrictions on the parameter values for which the

from eq.(3.l4). The assumption of a definitive positive diffusion k8TD(x) within
technique is valid: the damping must be weak in comparison with the characteristic

the bistable region is satisfied when
mechanical frequencies, and the variations in the average energy envelope must be

. (3.15)
slow in comparison with the average period of oscillation inside a single potentic

)\ C well We shall justify the application of such a technique to our ptobem a the t

Such n inequality corresponds to impose that the x-dependent friction terms are

On changing variables —

small compared to -0v/l4/.

(ii) The effects of the internal multiplicative noise on the activation

rate are determined by the prefactor H( 2i, ): The dependence on the temperature

is no looger controlled by the Arrhenius factor in eq,(3.l3) solely even assuming 1/V

that
,

and
2

‘constant; the rate of escape increases or decreases depending V

on whether A 1
s smaller than A or not. In Section 5 we shall discuss some

corsequences of the main results of the present Section for application to pra:tical

chemical —physi cal problems.

b) ie urderdmpd limit

Let us now face the problem of ‘small friction terms and large activation

enargies. Following Stratonovitch/20/ and adopting notation of ref.l4, we describe

the system by LE for the deplacement x and the energy envelope E,

E E (316)

X—x v— E

the FP equation corresponding to the LE (l.l)-(l.3) reads/l4/:

2 ?(,E;) 2 (E-)]1 1 ( 2x
L X

CE_V(x)] ( D,xxL)

2 P(x E )

where the probability density P(x,E;t) is related to 1D(x,v;t) occurring in (2.1

by

x, ) ddv

P(x E t) can be exactly written as the product/20/

= w (,)E)

where w(x,t E) is the probability density that the displacement at time t is x
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The equilibrium distribution E(E) of the FP equation (3.23) can be readily

calculated ( is a normalization constant):

=

(-

E/kT)

We propose the following definition of activation time TE in the underdamped

limit: TE coincides with the average time needed for the energy envelope <‘E(t) >

to reach the value of the activation energy . V starting from its mean value Ec

T (j () d
E

0

— 20

conditional on its energy envelope being E (and also conditional on the initial

conditions). The method of Stratonovitch is based on the assumption that, in

dependently of the initial condition (x(0),E(0)), w(x,t } E) is proportional to the

time that the system -with energy envelope E- spends at x. The time spent at x is

in turn inversely proportional to the velocity at x, i.e. to v(t). Thus we obtain

a L E-Vx 3 (3.21)

where

j E- CX)3Z
/ (3.22)

and the prime denotes a derivative with respect to E. The region of integration R

in (3.22) defines the domain of x for which EV(x). On substituting eqs.(3.20) and

(3.21) into eq.(3.18) and integrating over x, we find an approximate FP equation for

the reduced probability density pE(E;t)/l4/:

(EL) -

_______

I ã L ‘(E)

(3.23)

PE(E;.6) /

L

v,here

va ax (3.24)

\ote that in this approximation the contributions of the terms proportional to
1

van’ sh,

where 0(E) is the

(

diffusion coefficient on eq.(3.23):

+

The expression (3.26) is the counterpart of eq.(3.ll) and has been obtained by sol

the corresponding MFPT problem as outlined in ref.20.

In order to estimate E0 we must calculate explicitly CE) on eq.(3.22). Tha

integral involves complete elliptic integrals of first and second kind. In toe lii-

of high activation energies however we can suitably avoid the difficulty approxir

ting V(x) by to upright branches of parabola intersecting in x=O. The height of the

barrier is kept equal to LV and the frequencies of such parabolas are as those

obtained by linearly expanding the potential V(x) around x÷ and x_ respectively.
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We can now separate TE(kBT) into two parts as follows:

ThLs we find an approximated expression for

- T) t>t t>

k CE) d = (3.28)

where

and analogously for LI(E): I E/kT

__

dE

/ (3.29)

J j0
ç;

It is noteworthy to remark that such an estimate works fairly well in the limit and

E
LV/k3Tl and that the first corrections to 4) CE> are proportional to 0(E)(..L’V.

r)

-.

________

On substituting 0(E) into eq,(3.25), we determine

_____________

E d E’

•
++()

.E0=k8T (3.30)

We are now in a position to work out eq,C3.26). Substituting eqs.(3.25) and (3.27)

Here CO denotes the limit of TE(kBT) for
2

0, while is the correcti

with eqs.(3,28) and (3.29) into eq.(3.26) yields: V

due to the x-dependent friction terms.
E

I The integrals on eqs.(3.34) and (3.35) can be calculated explicitly by substit
Q (E) & ciE (3.31)0

• eqs.(3.28) and (3.29):

0

i [ E ( - E (‘)l
On integrating by parts the integral on the right , we obtain

I
- [E + ±.

(3.32)
T)

)]_T

C

J +(/) ) JA0 0

0

where (3 2\2/4a2\0 and Ei(x) denotes the exponential-integral function/2l/,

w.ere terms will be negligible compared to terms ) from (3.32). which can be expanded as:

a1
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We can now separate TE(kBT) into two parts as follows:

Thus we find an approximated expression for (E):

C Z (3.28)

where

Iand analogously for 511(E):

)
I

(3.29)

J

dE

10

0

:t is noteworthy to remark that such an estimate works fairly well in the limit and

E
V/k3Tl and that the first corrections to CE) are proportional to 0(E)(E. f

r)

& e(
‘On substituting Q0(E) into eq.(3.25), we determine

_______________

• o&(E ++)
.E0=k5T (3.30)

We are now in a position to work out eq.(3.26). Substituting eqs.(3.25) and (3.27)

Here t) denotes the limit of TE(kBT) for
2

0, while c5t) is the correctic

with eqs.(3.23) and (3.29) into eq.(3.26) yields: V

due to the x-dependent friction terms.

J1
i dE ( ,

The integrals on eqs.(3.34) and (3.35) can be calculated explicitly by substitL

Q ()
(3.31)— 0

) J eqs.(3.28) and (3.29):

0

- [ E ( E (
-

On integrating by parts the integral on the right , we obtain

a —I +

H () (3.32) o 6T T) ii
C

0() (V)) jA J
CT

where \2/4a2\0 and Ei(x) denotes the exponential-integral functicn/21/,

here terms will be negligible compared to terms ) from (3.32). which can be expanded as:



x is an increasing function of
2

In the frame or the Strtorovitch r hoo ecs (3

(3.3a)

On employing eq.(3.38), we can determine the leading term on eq.(3.36):

.

T

(
In view of the approximations introduced in eqs.(3.28) and (3.29), contributions

proportional to

coincides exactly with the well-known rate of escape found by Kramers/8/ in the

end (3.27) prove this immediately. In the limit of high activation energies — see

(3

ia—? 0 given

in eq.(3.39). If we compare this result to that of eqs.(3.l2)-(3.14) for the over-

damped limit we conclude that the x-dependent friction terms play a different role

underdaped limit, This result makes us more confident of our approach based on the

in the two viscosity regimes.

&iergy envelope technique and on the definition (3.26) of activation time.

Anaicgousiy expanding eq.(3.37) at the first order in kBT/ V. we find

L L. —

—i

£X C (3.40)

On putting eqs.(3.39) and (3.40) together, we conclude:

— 4> .ILeL)
(3.41)

We make now some relevant remarks:

Ci) The activation rate in the undedapèd limit,

(
t\

-

=

zD / BT) (3.39)

eqc (3 28) and (3 29)- from eq (3 41) we obtain

E

i

) ()

k > 1, are meaningless. The inverse of t>on eq.(3.39)

) (
where is the inverse of the Kramers escape time for

(ST) /

(3.42)
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On putting eqs.(3.39) and (3.40) together, we conclude:

I

is an increasing function of
2

In the frame of

and (3.27) prove this immediately. In the limit of

eqs.(3.28) and (3.29)— from eq.(3.4l) we obtain:

t) (v)

the Stratonovitch method, eqs.(3.

high activation energies - see

=
(-±!

x
()

On employing eq.(3.38), we can determine the leading term on eq.(3.36):

I ‘ ep ( \T/T) (3.39)

t’1

In view of the approximations introduced in eqs.(3.28) and (3.29), contributions

f r’
prcportioial to .<>( S.\ , k > 1, are meaningless. The inverse of t>on eq.(3.39)

coincides exactly with the well-known rate of escape found by Kramers/8/ in the

unedanpad limit. This result makes us more confident of our approach based on the

energy envelope technique and on the definition (3.26) of activation time.

Analogously, expanding eq.(3.37) at the first order in k8T/LV, we find

£X

I

-

where 12) is the inverse of the Kramers escape time for / 1T—’ 0 given

in eq.(3.39). If we compare this result to that of eqs.(3.l2)-(3.l4) for the over-

damped limit we conclude that the x-dependent friction terms play a different role

in the two viscosity regimes.

(3.40)

(3.41)

(3.42)

We make now some relevant remarks:

i) Toe activation rate in the underdamped limit,

(T)



On employing eq.(3.38), we can determine the leading term on eq.(3.36)

.

T

( v/T)
2, v

In view of the approximations

proportional to

coincides exactly with the we

unerdaopod limit. This result

eergy envelope technique and

-

+

£X (v/T)
(3.40)

On putting eqs.(3.39) and (3.40) together, we conclude:

I
B (3.41)

We make now some relevant remarks:

Ci) The activation rate in the undetdampèd limit,

— (3 42)
(T) ,

ui, I
1

1
x

(3.3a)

(3.39)

is an increasing function of
2

In the frame of the Stratonovitch mothod, eqs.(3.

and (3.27) prove this immediately. In the limit of high activation enerqies - see

eqs.(3.28) and (3.29)— from eq.(3.41) we obtain:

=

( v)
(3) ( 6)’ (

where is the inverse of the Kramers escape time for 0 given

in eq.(3.39). If we compare this result to that of eqs.(3.l2)-(3.l4) for the over-

damped limit we conclude that the x-dependent friction terms play a different role

in the two viscosity regimes.

introduced in eqs.(3.28) and (3.29), contributions

k > 1, are meaningless. The inverse of <‘t>on eq.(3.39)

11-known rate of escape found by Kramers/8/ in the

makes us more confident of our approach based on the

on the definition (3.26) of activation time.

Analogously, expanding eq.(3.37) at the first order in k3T/ V. we find
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(iii) Eq.(3.46) implies that there are ranges of parameter values in which the

multiplicative fluctuations and the corresponding damping can have very strong

dynancal effects. In such a range the condition that the energy envelope

variations are slow compared to the average period of oscillation inside a

(ii) The restrictions under which eq.(3.32) for TE is valid can be summarized

as follows:

>>i (high activation energy), (3.44)

) (small friction). (3.45)

The second inequality can be justified by noting that its first term plays toe

role of an effective friction constant in M -see eq.(3.43)-

and that has been obtained in the limit The same conclusion

/ -)
can be reached by supposing that the effective’ friction constant -‘

in the denominator of the first integral on eq.(3.32) is very small compared to

•

E
denotes the average with respect to the energy equilibrium

distribution (3.25). When V (i.e.
2

is small then (3.45) reduces to

simply Stratonovitch’s original weak damping condition On the other

hnd, when V is large, relation (3.45) restricts the range of values of

2
tO

(3.46)

potential well is certainly satisfied- note that V/k3T > 1. In order to adopt

eq.(3.43) as a reliable estimate of the activation rate in the underdampet limit,

we must further impose the restriction that contributions proportional to 3

are larger than the inaccuracies implied by the approximations on eqs.(3.28) and

(3.29). Since the larger corrections are proportional to fr E
0)(k6T/V),

we must require that the following inequality is satisfied (beside

(-,) (3,47)

a..

In other words, our analytical expression for
2

is of practical

use only if the value of
“2

is not too small.

single
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4. Activation rates in the presence of memory effects.

This subject has been treated by many authors/2-6/ on using different

approaches. In the present Section we study a particular case of the first-order

correction to the Markovian limit analyzed in refs.l4 and 15. A completely general

derivation has been studied in Section 2, however eqs.(2.26) and (2.27) are of

no use for practical purposes due to the presence of too many unknown parameters.

Since we are interested in a qualitative description of the effects of the non—

Markovian statistics of the heat bath, we can simplify our problem as follows.

Let us assume that a(x)ea(x) for any ‘=l, ..., N. In this case

eqs.(2.9) can be re-written as:

>5

(X)
(t-t

[

‘ (xt)) Vt)j

+ (4.1)

± ()

where N has been chosen unit and

L [t) L cj os (4.2)
,2

Eq.(4.i) is a generalized Langevin equation and the function f(t) defined on

eq.(4.2) plays the role of memory-kernel. Generalizing the technique expounded

in ref.3 we make the problem (4.l)-(4.2) Markovian by introducing enough additional

vaniables. In cur case the Laplace transform (z) of (t) admits a continued

fraction expansion/12c/:

A

____

(4.3)

Eqs.(4.l)-(4.3) are then equivalent to a set of n+2 Markovian equations:

*
— (x) 4 ‘ c)

- cxV

(4.4
g -

where the random force (t) is a Gaussian white noise of zero mean and correL

2
-“

(4.5:

and the function b(x) is suitably related to a(x):

z. (a6’
bo) —

(X)/ .

We assume that (f(t) is approximated by means of an exponential function,

exp(-1t), which corrects the Markovian limit p(t)= J(t) on ref.l4: this

implies that n is chosen equal 1.

From now on we follow the perturbation approach described in Section 2. The

FP operator corresponding to the set of eqs.(4.4) with nl, must be separated

into a an unperturbed part /

F 1 (4.7)
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to employ a numerical algorithm which has been shown to give excellent perform

ances in such computations/22,23/. This algorithm(CFP), based on a continued

fraction expansion a la Mori/l2/, is now reviewed in ref.23. Fig.l displays our

results. The most remarkable effect of the non-Markovian corrections is the

—1

increase of as the heat bath relaxation time increases. Curve 1 refers

to the choice a(x)= I x, i.e.
1= 2=°

The small discrepancy with the

Markovian limit )) of eq.(3.l3) is to be accounted for as an effect of the

interplay of inertia and anharmonicities in the potential form/7/. These have

been disregarded when we worked out eqs.(3.9) and (3.11) using the steepest descendent

method in the Smoluchowski approximation. The more accurate values of Larson and

Kostin/7/ are reproduced with a precision of some percent.

Curve 2 refers to the case o_l_2_1 -see eq.(4.l2). In the Markovian

limit, , the smaller rate of escape confirms the predictions of eqs.(3.l2)

and (3.14) provided that C ) of eq.(3.l3) is substituted with the Larson

and Kostins rate/7/. The dependence of the activation rate on the parameter

for
1

and )2O is the main finding of the present Section. Curve 1 closely

reproduces results already obtained in ref.3. In the forthcoming Section we shall

discuss the relevance of these results in view of applicaticns to chemical-phy

sical problems.

5. Summary and conclusions. 1!

— 33 —

In this Section we wish to draw some conclusions about the relevance of the

phenomenological LE to applications to chemical-physical systems.

In Section 2 we reviewed Lindenberg and Seshadri/l4/ derivation of the LE (1.1

starting from Zwanzigs model Hamiltonian/l3/ which describes a nonlinear one-

-dimensional system coupled with a heat bath of harmonic oscillators. If snaii non

linearities are included in the interaction term — or in the heat bath Hamiltonian

a formally identical set of LE,(l.1)-(l.3), can be recovered where both the effecti

potential V(x) and the friction coefficients now depend on the system tempers

ture T. In Section 3 we determined quantitatively the effects of x-dependent

friction terms on the activation rate of a process modelled as the escape of a

Brownian particle from a well (the reactant well) to another one (the product well)

Corrections to the Kramers theory in the overdamped limit are shown to depend on th

relative magnitude of 2 and In Section 4 the effects due to the non

-Markovian statistics of the heat bath are accounted for in a simplified case where

the relevance of such a property is regulated by means of one new parameter only,

l
A finite heat bath correlation time t is proved to increase the rate

of escape of the Brownian particle over the barrier. The main analytical tool emplo

throughout this paper is the perturbation technique of adiabatic elimination of
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fast reaxing variables described in the Appendix. the potential of the isolated Brownian particle U(x) was to be replaced by an

When in refs.l6 and 17 experimenters claim that the Kramers theory fails in
‘effective’ potential V(x), (2.8). This is the potential whose parameters (activati:

dLscr birg a nLrn’be of chemical-physical processes they usually refers to tne
energy characteristic frequencies etc ) can be obtained from the exoer r’enl d.

phenomenological model (1 1) with
l 2_0 (Wang-Uhlenbeck LE/24/) and to the

of any single process The inevitable anharmonicities of the real heat bath CFss+Hs

corresponding rate of escape which for high friction constants coincides with
determine the T-dependence of V(x), (2.24), and of Second, even if

Kramers’ rate on eq.(3.l3). Theorists improved/l-9/ such an estimate on
we neglect this kind of dependence and we refer to the ‘zero-order approximation’,

accounting for a variety of additional effects all of which, however, assume the
eqs.(l.l)-(l.3), the x-dependent frictiontemrs imply that a more reliable èxpressio

rg-Unlnbeck model as a starting point or as the zero-order approximation of their
or the activation rate would be now C on eq (3 12) where the terpu

oertubation approaches The description obtained first by Lindenberg and Seshadri/l4/
enters into the correction prefactor H( 2 ) as well Slight deviations from

and discussed in detail by Mohanty et al./l5/ is to be regarded as a more realistic
the Arrhenius law have been measured recently for instance in ref.l7: a more detail

basic picture for real chemical-physical systems. This can be reduced to the well—
analysis should be of great interest.

-known Wang-Uhlenbeck model under some restrictions and approximations/l5/.
dependence on viscosity. When the experimental results for the dependence of the

e now s-smary the oroperties exhibited by the model of eqs (1 1)-Cl 3) in
activation rate on dissipation are compared with Kramers’ predictions Ci e with

corsparison with the naive Wang-Uhlenbeck picture.
the Wang-Uhlenbeck model), it is common/l6,l7/ to assume a sort of hydrodynamical

d-ccordence on the temperature. If the viscosity is kept constant in the overdamped
model for in which

tit tne actvaion rate is supposed to depend on T by the Arrhenius law — see eq.(3.l3).
--a (5.

Tr view of the findings of Sections 2 and 3 we suggest however tnat deviatiois
where iVthe solvent iscosity If we adopt the LE (1 l)-(l 3) as an alternative

rron tbc.t rurdmenca1 rule could be rLvealed by means of detailed measuerrents The
phenomenological model a new difficulty arises Since we cannot fit too many

rhysical origin of such corrections is twofold. First, when we approximated tue
parameters to the experimental data, one could think to take proportional to an

Liouvilie description of the global system through a set of LE we pointed out that
‘effective’ or ‘average’ damping?4/. Unfortunately this choice is inconsistent wit



our results of Section 3 where we showed the x-dependent friction terms play a Appendix

c s rct role in correcting the activation time in the overdanped and underdamped
This Appendix is aimed at giving some technical rules ror applying the AP

1 mit In cc (3 12) we should define as 0H( ) while in eq (3 43)

(adiabatic elimination procedure) of ref 25 to the system of eqs 2 12)

.Ad be reed ?o(l+ V) Therefore it is no surprise that many experimental
We found it easier to carry out our projection procedure by using a new set

papers conclude claiming the breakdown of the Kramers theory because of an incorrect
of heat bath variables:

prediction of the viscosity dependence of the activation rates/l6,l7/.

,Yl,ii’
‘

(A.l

cLendence on neat beth relaxGtion time This is an example of the additional N

crnisms ntrodced/l-6/ to account for the discrepancies in the v-dependence tz (A t

mentioned above. These improvements are no doubt well founded from a physical point The canonical equilibrium distribution f eq
is defined as

f view, but are still to be regarded as perturbation corrections to the Wang-
L

-hienbeck modal. When we tried to apply one of those approaches/3/ to the phenom-
In the (pQ) frame r eq

reads:

enologicai LE Cl 1)-C 3) we round that the well-known increase of the activation

( Q
-

÷
/

(A

-l ‘ -‘‘
- 1

rate with E= 1
depends dramatically on the choice of the friction parameters

-see fig.l.

conclude remarking that the LE (l.l)-(l.3) are just an example of a generalized

version of the Wang-Uhlenbeck model and therefore, before using one-dimensional

henomenologicai LE of this type, one would be well advised to check under what

assumptions these equations are valid descriptions of the dynamics of the specific

chemical -physical system under investigation.

while in the new one, (A.l) and (A.2),

vl CA.E

with a suitable normalization constant

In toe new variables
‘l2

the unperturbed, (2 13), and perturbation

part, (2.14), of the FP operator can be re-written as:

(A. E

ti0
2V Lv )
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FOOT-NOTES

p0g.

Discrepancies between our formulas (2.8),(2.l0) and (2.18) and the corresponding

ones of ref.14 are due to some minor mistakes therein.

ng.

it is not our purpose here to establish the conditions under which the convergence

of integral (2.18) can be proved. The assumption is appropriate for instance, if

N is large and are to each other as irrational numbers.
V
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