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ABSTRACT

The relaxational dynamics of a planar rotator in an M-fold cosine
i
SOWNIAN MOTION IN 10061 TENTIAL: ADPDLIC 0 1ELE QRELAXATION ! s . . . . : . <. e D
BROWNIAN MOTION IN A PERICDIC POTENTIAL: APPLICATION TQ DIELECTRIC RELAXATION potential subject to a randem torque is investigated in detail. For the

case of a periodic potential with large barrier height, the numerical results

the rvelaxation dynamics are in complete agreement with an approxing
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. solution. The latter is derived on assuming a harmonic potgarial at the

bottom of the potential minima and & large time-sca

3
&
—
m
»
o
)
i
14}
rt
JoN
s
3
o
&
rr
&
=
o
o
o

the short—time Jibration inside each potential minima and a lonp-time

hopping phenomenon over the potential barriers. For M2 2, the: uopping

b B R -
Fabio Marchesoni

ohenomenion is found to be the dominant feature of the orientational autoe-

correlation functiou. The average hopping time is explsined sstisfactorily

in terms of the Kramers activation rate theory. = In particu
agreement is found between the numerical results of the ecscape rote and

those obtained from the modified Kramers' predictions valid for low

Departmenc of Microelectronics and Electrical Engineering,
“ AP iy : PN P he cosine  model is applied to the study of ¢
Tridity College, DUSLIN 2 (Eire) . friction coafficient, ok Y

dielectric spectroscopy. The parricle mobility and the complex
‘ permittivity of a dielectric material are calculated by rumerical solutions

for rotational velocity and orientational auto-correlaticn fuactions,

respectively. The main Eeatures of the experimental observables

¥

determined analytically and compared to the corraspond
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The applicability of the plane rotator model to dielectric spectroscopy is

also discussed.

to Z. Phys. B August 1984




1 I)('ﬁRODUCTION

The present paper is aimed at developing in more detail the applications
of the one-dimensional browaian motion in an M-fold cosine potential
introduced by Dieterich et al /1,2/ and Risken and Vollmer /3,4/.  An

; Diancux and Volino /5/ deals with the problem of
diffusion in a periodic potential by disregarding the inertial effects.
These treatments are based on the Fokker-Planck equation (FPE) formalism.
In vef 5 many analytic results are given due to the simpler structure of
the corresponding one-variable (displacement x (t)) FPE. In refs 3 and 4
the.tyo—variable FPE (in x (t) and x (£)) isvreduced to a set of
differential-difference equations and then inﬁegrated numerically, whereas

nrefs 1 and 2 calculations are done using the continued fraction expansion

S

pio

iy

thie relevant statistical auto-correlation functions (acf). Despite the

[a]

ictchac the latter technique has produced reliable results through

[

comparatively fast computer algorithms /6,74 the rapid convergence of the
zxpansion introduced in ref 3 eénables us to explore the dynamics of the

brownian motion in a sinusoidal potential over a wide range of parameters.

he algorithm used in the present paper is due to Reid/8/ . The algorithm
allows 2 detailed numerical discussion of the relaxational dynamics of the
zodel by computing the Laplace (Fourier) transform of relevant acf's. A

d derivation of the basic differential-difference equations used in

ref 8 have been recently reviewed by Risken /[9/ and Coffey et al /10/.

Ouz approach to the problem under investigation has been inspired by the

conciusions of a previous analysis by Praescgaard and van Kampen /11/. They

nave shown that in the cdseé of an M-fold periodic potential a large separation

bertween short and long-time relaxation process can occur provided that the

thermal (activating) emergy k,T is small cempared to the activation energy
(or barrier height) AV. The features of the phenomena of resonance (or
libration can then be distirguished from those of the diffusion (or

hopping) process.

Our main conclusion is that the numerical Tesults give a convincing

-

evidence for the analytical results of the outlying picture of brownian

y . .

motion presented in ref 1l. TFor the case of high activation energy

GQV’7k;r)3 the orient;tional relaxation within an M-fold periodic
potential with M> 1 turns out to be a diffusive process even in the-
underdamped  limit. The time scale of the latter process can be related
to the activation time = defined as the average time necded for the
brownian particle to reach the top of the barrier. The Kramers' approacﬁ

to relaxational processes /12,13/ therefore proves to be a powerful tool Zfof

calculating the diffusional physical quantities of the system.

A great variety of physical phenomena in condensed matter have been modelled
by a number of authors /2,4,9~11/ on the basis of the one-dimensional motion

in a periodic potential. Following Reid /8/ and also Praestganrd and va

=3

Kampen /11/ we apply this model to dielectric spectroscopy.  The model
assumes that -the molecule has M equivalent stable orientations, ie M
potential minima of the orientations. These minima are separated by similar
potential barriers whose heights AV are larger than kgT." The molecule
librates about one of theseminima, subject to damping (with frictional
coefficientﬁ}) and a random torque T(t), representing the neighbouring

molecules to a first approximation. '

For a two-dimensional system (planar rotator) with moment of inertia I,

temperature T and orientation £, the equation of motion is:



M A ! f o
T _nTw -V (8) +T{t) (1.1)

where ‘the Langevin torque T (t) 'is assumed to be gaussian white noise with

(o =0, <T)TEOy =2k TAaTI) . (1.2)
We assume potential V) to vm". -

VI0) = _V, cos(J18) | (1.3)

The correspending FPE can be rewritten as:

~ & S ~N N

2 P wty) = P B.J\k s (I19) 2 ¢ .rm\w“\zb\ro;.&uhu\ W\S.'S
I ve ! 0 mgv vo\ow Jeo*

where the adopted notation is as follows:
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5y = vV, /14 . (1.5)

('is the transition probability density %u (©,w; i@?&. mbmo/..‘ov of the

’

<

rocess with delta function initial conditions:

p (6,000 0) = S(VBY~Fy) ¢ (W (N-Wo). (1.6)

The equilibrium probability distribution is given by

(8 w) = ) exp m: Sw\m%v exp ?«\x cos (1 @Vv 5

o —

Of course we pretend not to describe the details of an actual complicated
meny-body process. by employing such a sigplemodel. In particular the
aon-markovian statistics of the heat bathsimulating the surroundings have

sroven to affect greatly the relaxational properties of dielectric

o
o
o
=l
H

samples subject to external electric fields/14/.  The qualitative
predictions obtained from the model so far, however, do explain

setisfsctorily a wide variety of experiméntal and numerical cbservations

To analyze the model of eq (1.1) we are interested in the following acf's:

5) The mobility or conductivity spectra of particles undergoing
b, P S

rotatimalmotion in an M-fold potential, given by the following cquation

ﬁ ;o[ Lawt ol :
M) - Re e L, e (wlwby Sty (1.8
a - k
- o
Here {...)  denotes the average evaluated under equilibrivm  (Maxwell-

nm .

-Boltzmann) initial conditions and notation is as in eq. (1.4). T?,v is the
cosine Fourier transform of the rotational velocity equilibrium acf :
Y7 5,2 < EE 1
Cop18) = (WBWODeg /L"), (1.9)

From eq (1.7) ASHVQ@ - T‘.‘.WJ \

1

= oLE

-4

o

.

(ii) The equilibrium orientational acf of the rotating molecule
R A
{eos Blt) con 0V, -Lens@y
ko (&) - i et
4 Leos® @ Ve, = Lcosd G, .
The complex permittivity is related to the orientational correlation (in

(1.10)

the absence of internal field corrections) by /15/:

Y w) = £'w) - 1 ) = Ep + (&, ~e ) [1-rw- (1.11)
mvo IDS»r\ -
. ;o e L cos D) movmnovvnbl dT ..w ,

where muwsa &, denote the static and infinite frequency permittivities,
respectively. The power absorption (in the far infrared (IR))is given by /15/:
W) = w )/ ne (1.12)

where n is the refractive index and c is the velocity of light in vacuo

The plan of this paper is as follows. In Section .2 we discuss

for the mobility. The static mobility, T@. is related to the

diffusional coefficient and compared with Kramers' predictions of the latter

for both the overdamped and underd amped limit. Recent results /16/ for

the relaxation in the underdamped limit are tested successfully. "Effects

J

o
a2
[

due to the non-~linear nature of ‘the potential show up clearly whe
dependence of the dynamic mobility, ,;?d , on frequency 1s investigated.

')
The results on the dielectric loss, &£ (W) , are discussed in Section 3.  We

find that in the limit of high activation energies (AV Y ,aw.ﬂv the approximate
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(fi=1), it is like as it falls inside through 9 =-7. Each feature

mentioned above speeds up the re—equilibration process by increasing the

relaxation rate by a factor 2 each, so that
‘= (2.13)
pa 8%4 .

Mechanisms (i) and (ii) are well understood, while (iii) is peculiar to our

model. The effects due to (iii) can be computed directly in the overdamped

limit on employing the mean-first-passage—time technique 7,18/, The time

« needed for the brownian particle to reach the bottom of a neighbouring

L S e . o £l L

well ( for instance U = 2% ) starting out at 0 is given by:

o (T -y/tee® ﬁs Y/4 cos b

.. 2 e |

- B 9 ¢ <o . (2.14a)

0 o
T. can bLe readily recast as:

[e}

e & Ll cos
(T v/ e s ( ~yHeos d .
- s & e
T & \B < =¢ (2.14b)
s I Jov
and on integration by parts and some simple algebra:
a -
- T ¥HMeos O b - z
nood R L (y/s
- B f s B an I (ve) |
'Ce o ;;: L <A oa] A 29{7. [ o (2.15)
- -n
1 is 'a Bessel function and for 74 can be zpproximated so. as to yield

the expected result
-1
T L 9 (2.16)
Co 2 l .

{s that of eq (2.10). The same result is recovered in the

underdamped limit on adopting an appropriate approach for small viscosities

ie aré now in a position to compare the results of the numerical algorithm
£57 the translational diffusional constant D, eq( 2.2), with our predictions,
3, bassd on the Kramers' theory (eq( 2.13) and eqs (2.10) and (2.11)). For
computational convenience we only report numerical results for Cdel(t)
obrained on assuming delta function initial conditions eq {1.6), with

@W,= 0. This is the case usually studied in the literature via computer

simulation /16-1&. As shown in ref 20 the differences between Cﬂufi)and

Léaﬁ{t) concern the short-time behaviour only, so that the reported
results for P are to be regarded as very close to the actual values for the
particle mobility. In particular we note that (i) the derivation of eq (2.1}
is still valid under delta funétion initial conditions provided that 7 =0;
(ii) the linear approximations. of eq (2.33-(2.9) do not depénd on the

.
{initial conditions; (iii) on the limit y>>& , the escape rateﬁz,
4
and (2.11), is not appreciably affected by the choice of.f(s,w;ﬁ) since the
hopping ﬁhenomenon is a long-time process. Corrections due to the different
initial conditions can be estimated analycrically/20/. ‘Finaliy, ail these

statements have been checked numerically by comparing Ceq(t) and Cdel(t) for

several relevant choices of the model parameters/8/.

In the limit . of high barriers Cj))d) the agreement with the theoretical
predictions is very satisfactory both in the overdamped and underdamped
limit. In fig 1 we display D andx versusy for M =1 and $=10. A
large discrepancy between % and D occurs as expected at small values of z{,
where D tends to the correct 'Debye's limit' d%/@; (see Section 3). in

fig 2 we present our results for the under_damped regi@e (¥=1, 3’= 10).

A linear dependence on P is achieéved; the slope of the straight lire
fitting to our numerical points resembles more closely that predicted by
Blitticker et al /16/, (2.11b), compared to the earlier estimate due to
Kramers /12/, (2.11a).  Our results provide an evidence for the validity

of the theoretical arguments supporting the refined version of Kramers'

approach /6, 21 /.

The ability of the activation rate theory to determine the static
mobility (for M = 1) for the entire range of fricticon coefficient is the

main result of the present Section. Claims about the breakdown /1/ of the



Kramers' theory by some authors /1,2/ are due to the inaccuracies in

their algorithm, aad their application of the theory to the problem under

study.

(5 . sor
®) dvnamic mobility

In this paragraph we illustrate some results for the dynamical mobility,

[

¢ (1.8), which cannot be explained in terms of the derivations leading
to egs (2.3) and (2.9) based on linear approximations. The nonlinear
nature of the external poteantial V(B) is shown to play a dominant role in
explaining tt e .

explaining the spectrum of Cdel(t> (or Ceq(c))

In figs 3~5 we observe a behaviour similar to that detected by Dieterich

et alyyy in the range of relatively small friction coefficient 3= 0.05.

At %‘= 2, a strong oscillatory peak appears zpproximately at the resonance

frequency (figs 3 and 5):

1'1 - o
Ll = &
o VY (2.17)
- - . . 3
(see egs (2.5)=(2.7)). At @‘z 1 the spectrum of Cd=l(s) in fig 3 1is
<
dominated by a central peak, reflecting the diffusional character of the
brownlan motion inside the. well (see also fig 5). At an intermediate
- - . N 3 n
temperature )‘= 1.4; a pronounced minimum shows up in Cdcl(s) near

N
s = 0.5120. In fig 4 the position of C, ,(s) maxima is plotted versus

del
N for B=0.05. The dashed region corresponds to the simultaneous
presence of two maxima. For @}O.Z the transition between the oscillatory
and the diffusive regime takes place without the appearance of a minimum
at finite s.

LL

uch a behaviour cannot be explained in terms of the analysis in the linear

v

~
approximation of Section 2a. Indeed for CL(S) in eq (2.9) we observe gither 2

central or an oscillatory peak but do not observe both peaks simultaneously.
To fully account for the features of the spectrum of Cdel(t) we should

therefore be able to include the effects due to the non-linearity

Effects due to mon-linearity are shown clearly on analyzing PC@) in wore

detail. Fig 5 shows that the dynamic mobility presents appreciable
I A
substructures especially around 2510. These are better resolved in fig 6.

A natural explanation consists of tracing back the new peaks to a

(nonlinear) harmonic structure. A more refined discussion of the resonance
dynamics of the model lies outside the purview of cur investigationi ' We
remark that a qualitative support to our interpretation comes from the

similar fine structure of the orientational acf spectrum (see Sections

3 and 4).



In this Section we examine the effects due to the multiwell structure of
the periodic potential V(@) ({> By simply rmzmwdm variables 9= M
in eq (1.1) we realize that the angular velocity rotational acf can be

obtained from the case with M =1 on having rescaled ol—Mal ~and Y- I17.

This argument does not apply to mmnAan From eq (1.10), m ") is obtained

e St [
3 /\?vc?vq?wavvs% Rn

4

as a free normalization parameter when a comparison of the model predictions

s carried out / 8/. In view of

.
T
©
B¢
w
2t
i,
2]
[0}
o]
rt
(o]
b,
(a9
I
T
L)
b

easy properties
of Fourier transformation we can rewrite eq (3.la) for ¢ QLV apart from a

on coefficient,

3
W
£
©
i
e
(20
rt
+
&
3]
<
=]
o]
]
=]
o
foi)
e
™
m
,‘- .

) & _qwt _
Lo m 3 K., (£) dt (3.1b)

o
,
g
L
&

with mmgmnv defined Mn.mn (1.10). '

Our analysis yields results roughly similar to those derived analytically under

gevers assumptions by Praestgaard and van Kampen /11/. Under some
he brownian motion in an M-fold
poteritial arises entirely from the motion bounded inside a single well
(résonance or libration), while lon

ime dynamics is dominatad by the

of the brownian particle over the barriers. The latter

phenomenon 1s shown to produce a ncnmww diffusional behavicur for K (&),
eq

i
i
i

which becomes dominant for high activation energies (- »¥). Th

that irrespective of the dynamics inside a single well, the rel
process for M>1 is governed by the slow diffusion over the potential barriers.
The activation time of this mechanism corresponds to an effective time scale

for the relaxational process. A marked difference in’ the relaxational behaviour

o]

is therefore expected between the single well and the multiwell cosine porenti

“
d

(see Appendix B). I 3

These ideas are quantified on giving an approximate analytical expression
for WanAnv. This is obtained from the analytical results of Praestgaard and
1=
van Kampen. First of all we recall that for the brownian motion im a paraboli

2 N
potential, V()= Q P\N (Q

NHAnv is given by:
W, (8)] ~4
oL o [F U \
) coshv 2L~ 1 (3.2
v

where W (&) is ds in eq (2.5). In the limit of free relaxation Awrvou
. ;

= YA ), the corresponding orientational acf,

we obtain:

>

K =lm K@)« oxpf =& (taptae )
Q-O %«00 - m:

A
K (8) can be written in terms of a continued fractionm expansion/1¢/:
Y=0

A ) ohmv A

¥= S o+ S+ + S+ N

n o

&+ (3.4
1

The corresponding diffusional constant is then defined as the inverse of
A .
K. (0), and for large friction mmwvv&v is approximated by

y=0

A

. e

%%uo (0) ﬂw”\, WIN , ('Debye time') . (3.5
S



This result coincides with that for D for w.uo, computed in Section 2 (fig 1).

Following the procedurs cutlined in ref 11 (see Appendix B), we find our

approximate expressions for the normalized . orientational acf's:

_x t
M™M=1) (3.6)

We note immediately that in the limit of large barrier height Auvv&v the
fiyst term on thé r.h.s. of eq.(3.7) vanishes. A purely diffusional (long-
-time) term then describes the relaxation in a multi well periodic potential. .

The ¥ /d= lizmit of K  (t) for any M > 1 is given by/11/:
=

¢ i
r o M

Ko (k) ~ exp| =X mw..oowm.mvww .
€ / YOSV A P - n ML (3.8) H.

¢ . is to be related to the Kramers' activation rate & for an M—fold
M

cosine potential. From ref 11:

N — g N H
W= Nx mzvuv\ :

z 22
while #  cen be obtained from egs (2.10) and (2.11) with nobn n(wu MY

For the case M = 1 the short-time contribution proportional to K (&)

i

e

ght of th

o

fully describes the rélaxational process. Increasing the he

barrier AQ,VNXV. the motion inside the well becomes strongly oscillatory

as the resonance frequency, eq (2.17), being proportional to 'y , becomes
N

much greater nrmn\w, The behaviour of Wmaﬁnw for M =1 and vawv 2 is

therefore expected to be markedly different.

. ) - - s . " , - )
In fig 7 we report the frequency of the maxima of £ () for the case M = 1,
The overdamped and underdamped regimes are clearly distinguishable. Indeed

from egs (3.6) and (3.2) in the Hwawmwwvv&N Nmnmnv can be approximated as

.r,. w\
meg m\/s\x \c\& E. C.S

From eq (2.5) we find the following two asymptotic behaviours

bt

e m»+nowmbm.\v B,

s

[

(3.10z)

Ke (8) —

MJ i 2
-20
Y>> = = (3.10)

overdamped limit, (3.10b), only ome (diffusional) loss peak arises around
MANM\RW. In the underdamped limit we still have a diffusional peak on the
left hand side of the spectrum mﬂocsmm. however a more pronounced, sharp
librational peak shows up at high frequency around 2il(see also fig 8) .
The discussion for the analytical expressions explains the numerical

results of fig 7.

Now we present some results for M =2 Our algorithm works quite well for ¥
too. By choosing M = 2 we do not imply for the amount that this is a
suitable choice for fitting experimental data on dielectric relaxation
(the usually adopted multplicity M lies between 8 and 12). The case

M = 2 is relevant, however, to several studies of the dipele—dipole



interaction in the presenca of external noise/10/. The conclusions reported

below are to be regarded valid for any M.

In fig 9, we show the position of the loss peak u)m versus fﬁ. For 3“ =4,
T 1

the librational contribution to Keq(t) (eq (3.7)) is ma e almost negligible

—~

sce also fig 8), For this case, we find readily that W, is centred approximately

at 2.3 .. As explained in Section 2, X, is related to the Kramers' escape rate

2
‘}q = hence iﬁn o~ 4727. Qur numerical results for W, are compared with an
[ - ~ 0

th .. . . o
accurate theoretical estimate, &7m . This has been obtained by bridging the

in eq (2-10), valid for large to intermediate viscosity, with the
o e . . BHL . . :
the small to intermediate viscosity, 12 n o 0f ref 16:
-1
-1 RHL -1 ;
AN U I é
s 2 (3.11)

st
wneva

e 2 _ay/A
ekl [ (LY d/B) -1] 3Y o ) (3.12)
‘} - e ; v .-
"y Ut raqamy wa)?er] o

ete agreement between the theoretical estimates and the

is a further proof of the validity of the theoretical approach

in ref 16, in combination with our results for .,

4. CONCLUSTONS

The mobility of a particle,;j(h)land complex permittivity, 54(tdjj
of a system of dipolaf molecules undergoing rotational brownian wotion
in an M-fold cosine potential are given in Sectioms 2 and 3 respectively.
In spite of the noq/lineér effects reported in Section 2, yet the approxi-
mation of 1](%) to a set of M parabolic wells is shown to reproduce most of
the diffusional features for .both the rotational and oricntational a.c.f.'s.
In parti;ular we find that the diffusion coefficient is related to the

Kramers' escape rates over the entiré range of the friction coefficient.

The numerical results of Reid's algorithm allow us to determine the activatio
rates for the undercdamped limit ﬁhich agree closely with a recent refinement
of.Kramers' work (Sections 2 and 3). An important conclusion of Sectien 3

{s that the hopping dynamics in a multiwell potential determines the relaxati
behaviour irrespective of the friction coefficient.

The present work has dealt with mainly the relaxation behaviour of the

brownian motion in a cosine potential. The librational features of the

(o8
ol

frequency spectrun for L) W0 and <COS’\3[£)C(E>"S{O§> could be investigated
a subsequent paper. We note, from the specturm of yi(bJ) , that a second
peak appears at the 2nd harmonic of the oscillator frequency, due to tha
nori-linearity in the model. In fig. 8 (see also discussion for ¥ = 1 in
Section 3) a librational substructure appears on the r.h.s. of the loss peak,
This feature is enhanced in the spectrum of the péwer absorption o/(13),eq (1
A finer structure of peaks is superimposed on the usual (sub)-harmouic struct
detected ‘in &A(DJ). It may be emphasized here that this finer structure

(fig 10) . of peaks in- O (U3) especially for low ;3 is not due to
the characteristics of a non-linear deterministic oscillator.. These may be &t

to the stochastic molecular dynamics in a non~-linear potential and are
important numerical predictions of this model. The reliability of the presen
model to interpret the far infrared spectroscopy of dielectrics is an outstar

problem. To apply the one-dimensional cosine model to a dielectric system,



we must determine the crucial parameters, M, 4 and - O .. The parameter

55 can reasonably be assumed to be proportional to the macroscopic viscosity
(hydrodynamic hypotheasis). However we do not know whether fﬁ is to-be taken
small (underdamped limit) or large (overdamped limit). From experiments,
however, we find that the frequency of maximum éﬁkﬁ)decreases with an
increasé in viscosity and thus Zduw lies: along the décreasing branch of
the curve in-fig. 9. It follows therefrom that a comparison of the model
with the experiment is meaningful for large values of. & only and possibly
i

for M lying be;ween § and 12.  For the case ol < % and for low }/ s a
linear dependence of dielectric relaxation time on viscosity is found, eq (3.5),
as for the Debye's model.

A puzzling experimental feature of delectrics is that a dielectric system
with strong dipole-dipole coupling exhibits & single relaxation time whereas

a2 dilute solution of these systems gives rise to a distribution in the

. . "
relaxation times /22/.This leads to a half-width of £ (W) of almost 1.14 decades

curve for dilute solutions of n-alcohols in heptane (weak coupling)/24/.

This paradoxical feature can now be explained by this model. For 3’>c& , We
Tz

find from eq. (3.8) that I\_ () is an exponential decay function of time.

“

i
xpression for £ (oJ} is !

o

I . G W
e(w) = — 4.1)
w4 & ' °
with o 2w (4-cos 2T ).
=3 ln o
1
This implies that the half-width of the e (u curve is proportional to
s (eq. (2.10), for large (3 ).

«L decays exponentially with an

increase inﬁ{. Hence the half-width of the dielectric loss peak is dependent

for systems with strong coupling (like n-alcohols and water) /23/  whereas a broad
)

Finally we may emphasize that the results reported here can be cxtended
to other fields of condensed matter. In particular, the frequency dependence

of the mobility spectrum of a superionic conductor is explained suc

[}
o
v
%)
h
o
jor
ot
g

by the periodic cosine potential. The model yields results for the difiusion
coefficient (related to the static mobility) over a range of the values of
fhe friction coefficient. = This can explain the dependence of mobility on
the impurity concentration in a semiconductor. The dependence of current on
the capacitance and resigtance of the Josephson's junction for an extremely

undamped case,. can also be explained.
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and C (t) respectively are easily obtained. (In the parabolic approximation
L

no escape over potential barriers can occur, ie w-=0). KL(t) given by

sE) = plE) 2 <A@, +80) A0, -86)) .

eq (3.2) is also obtained in ref 11 (eqs (12) and (21)), on adopting

iyl v (3.7)

Chandrasekhar's solution for the second moment of EIQ@O,{)/13/. ;
; " Eq (B.7) reduces to

An M=fold cosine potential with high barriers (¥>X) is approximated in
ref 11 by a replica of parabolic potential wells, eq (B.2), for & S(t) = F (i) LA (1) /§67)>L . G
ivl e ﬁ/ﬁﬁ . Each of these wells is centred at a cosine potential minima
© =21Tv(v=0, ... M- 1). The relaxational dynamics of the variable ¥ . for M = 1'and 2. Here <"'>L denotes the corresponding acf.for the linear
w(t) é;n then be reduced to the case M = 1 (Section 3). On the contrary, : case. It is interesting to note that eq (3.8) is not valid for MY 2. In
the acf's for A(t(ﬁ))kare to be treated cautiously due to the relevance of ! fact for M = 1, eq( B.8) follows immediately from the usual linear

the M-fold potential structure. approximation and is valid for high barriers only. For M = 2, the two

potential wells are symmetric, the evolution of A@(t)) inside oither of

N
rmuLia

The equilibrium acf's of observables depending ony(t) are separated by : ‘ the wells is indistinguishable from each other. The resultant form

Praestgaard and van Kampen into a short-time, $(t), and a long-time term, for M= 2 is therefore the same as for M = 1 except that ¥ valucs are

different for the two cases. It may be noted that equation {B5.8) follows

after making corrections for minor mistakes in eqs (36) to(39) of ref 11

/A1) ‘[“ = S t + L(k .
LA AB) >QJ3 (+) ) (3.5)

. When A(t) is D(t) or coséﬁkt), eqs( 2.4) and ((3.6) and the first term on
(a) The short-time term, S(t) ~ If the planar rotator starts out in the potential

the rhs of eq (3.7) are readily obtained.
wiell around , @% at time t =0, the probability that at time t > O it

ig etill librating inside the ~w-th well is:

o ir
vt (b) The long=-time term, L(t) = For M » 1 the hopping phénomenon plays a

(L) = e B.G . . . s S P : Doy

{ (B.5) ; major role in the relaxation of AVU(t)). TFollowing ref 11 this mechanism
where the appropriate escape rate,X, is independent of ¥ due to the ! is illustrated by introducing a probability Pv(t) for the rotator to be in
gimilarity between the various potential minima. In Sections 2 and 3, X % the w-th well at time t and also a transition probabilityW(W—ji t}, HAY,
is related to the Kramers' escape rate for any M. In the Praestgaard and . (defined as the probability that it makes its first jump between t and
van Kampen approximation for V(§), S(t) is obtained by the application of t + dt ending up in the V—tb we 11).  For determining the equilibrium
¢q (B.1) to an M-fold harmonic potential with a probability normalization statistical properties of the system, the rotator is assumed to lie at the

)
constan: dependent on time, (B.6): bottom of a poteatial well & with probability P‘J=1/T1. L{t) is then
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