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~ostract:

submanifold of fuclidean space is proved and the implications

o

£
v

4 martingzie characterization of Brownian motion on a

the consequent martingale representation are discussed.

9. Introduction

Frice ‘and Williams [1. proved a martingale characterization of

@

Brownian motion on the unit sphere 2 {in R3. They used th
martingale representation which, by Jatod's theorem {2}, i3
impiied by martingale characterization, to prove a result on the
structure of Brownian motion on S$2. Their martingale
characterization was generalized to Drownian motion on-a
hypersurface in RY in [3]: Let f be a real-valued c2-function
defined on an open set in rd; a process X on ® with fiX,) =c is
a4 Brownian motion on the hypersurtace f=1{c) if and only if X is . a
semimartingale such that
(i) dXy - —(97]—
martingale.
(i4) dexxTs, = PIX,)dt.
Here H(x) is the mean curvature at X, n(x) is the unit normal at =

H(XgIn(Xy)dt = dhyp, whereMis a continious local

and P(x) is orthogonal projection of RY onto the tangent spece at
x. In this note we prove a generalization of this resuit to a
submanifold of Rd of arbitrary co-dimension: a process X on Rd
which starts on a C2-submanifold V is a Brownian motion on V if
and only if X is a semimartingale such that

(i) dXy - j(Xg)dt = dM¢, where M is a continuous local

martingale.

(1) deXxT>y = P(Xg)dt.
Here j(x) is the trace of one-half times the second fundamental
form of the imbedding, and so is normal to the submanifold; = the
term - j(Xy)dt is the drift which is required to keep the process
on the submanifold. This martingale characterization is proved in
§3; the proof makes use of Baxendaie's equation for Brownian
motion on a sub-manifold of RY given in [4], and this is described
in 52, In §4 we give a result which generalizes the theaorem of
Price and Williams [1] on the structure of Brownan motion on S2.

§2  Brownian Motion on-a Submanifold

Let V be a C2-submanifold of Rd; we claim that a process X on

R4 which starts on V and satisfies

dXy - J(Xg)dt = P(Xy)dB (2.1)
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ic a3 Brownian motion on V. Here B is a gM(RY), a Brownian motion
on Rd, ?{x} is ortnogonal projection of ®Y on the tangent space
Te(¥) to V.oat x, and jx) is one-half times the trace of the second

fundamental form of the imbedding evaluated at x. We have to show

that ¥ stays on V for all t>0 and that X is a diffusion whose
-tor is & constant multiple of the Laplace-Beltrami operator

£ on VY. Now these are all local matters, and it follows from the

inverse function theorem that a Cé-submanifold of RY s locally a

t £ 1(c) of some R9-valued €2-function f defined on an open

, where r is the co-dimension of V, and such that the rank

level s

an o«

e
set in R

ivative f'(x) is equal to r for all in x in £V e). It ds

—h
ot
~
¢
Q.

er
then to establish our claim for a submanifold V which is a
set; in this case it is easy to define j(x) and P(x) on an
eichbourhood ¥ of £-1(c), the open set on which f'(x) has rank r,
} has meaning as an 119 equation on an open set in Re. To
|

et Ply) be the orthogonal projection of rd on
)

£, = ker f'(y) for all y in ¥W; when x is in V, the subspace &y

coincides with T4(V), the tangent space to V at x. A vector field

v defined on W is said to be a tangent vector field if v(y) belongs
te Ey for each y in W; it is said to be a normal vector field
if v(y) belorgs to Ey for all y in W. Given a pair v,w of C}—tangent

y
vector fields, we define a normal vector field s{v,w) by

'

sy(v,w) = P (y)(v-grad w)(y) (2.2)

d
on £ .
J

Then v,w - sy{v,w) is bilinear and symmetric; the restriction of

where P;(y) = 1 -.P(y) is the orthogonal projection of R

s to V is -the second fundamental form of the imbedding of V in rd,

Define the normal vector field j by

Sy
ily) = etracegy(sy). . (2.3)

which makes sense since sy is a quadratic form on Ey.

Let 7 be the differential cperator defined on cl-functions on W by

(gg)(y) = P(y)(grad g)ly), (2.4)

and let A be the differential operator defined on t2-functions

on W by

(ag)(y) = trace (P(y)(P(y) grad g)'(y)). (2.5,
It is important to notice that both (vg){y) and (ag)i{y) depend oniy

on the restriction of g to V and that v is the covariant derivative

on V, and & is the Laplace-Beltrami operator on V. We shall require
the following identity:
3(ag)(y) = 3 trace (P(y)g"(y)) + jly)-(grad g)(y). (2.6

A process X in RY which satisfies (2.1) is a diffusion since
(2.1) is an ItD equation with continuous coefficients;  to compute
its generator, we apply Itd's formula to the process g{X) with g
an arbitrary C2-function:

dg(x,) = (grad g)(X,)-dX, + } trace (g"(X,)d<Xx'>). (2.7)

t) t

It follows from (2.1) that the bracket process <XX'> satisfies
d<xx">, = P(X,)dt (2.8)
t t/dt, ‘-
so that (2.7) becomes

dg{X¢) = (grad g)(Xg)-P(Xg)dBy + j(Xg)s(grad g){X¢l)de
+ 3 trace (P(Xg)g"{Xi))dt. (2.9)

Using the identity (2.6) we have

dg(Xy) - 3(ag)(Xy) = dMy, (2.10

where M is a continuous local martingale satisfying

dMy= grad g(Xy)-P{X;)dBy; (2.11
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it follows from (2.10) that the generator of the diffusion X
is du. Now let fy(y),...,fy(y) be the components of f(y) in
some ortronormal basis for R'; then applying (2.10) with g = fj

we have

df5(Xg) = 0, 20, j=1,...,r, {2.12)

since grad fj(y) is orthogornal to E, 50 that dMy = 0 and
{afj)(y) = 0 for all y in W. Hence Xt stays on V for all t-0
almost surely. This establishes the claim.
Now consider a CY-distribution E of k-dimensional subspaces
on R%. ve can define P, s, j and s as before; the only difference
is that s is symmetric if and only if E is involutive, where the
o

ket operation [,! on vector fields is defined by

~n

vl ly) o= (v.grad w)(y) - (w-grad v)(y). (2.73)
Suppose that E is involutive; then, by the classical theorem
of Frobenius (see [5], for example), there is a unique maximal
integral manifold of E through each point and the above proof

esteblishes the following proposition: Let E be an involutive
d

C2-distribution on R and let X be a process gﬁ_md such that

Xy = % and

dXy - j(Xg)dt = P(X¢)dByg. (2.14)

§3  Martingale Cheracterization

The description of Brownian motion on a submanifold V given
in §2 suggests the following Martingale Characterizaticon of
BM(V):

A process X on R which starts on V is a BM(V) if and chly if

X is a semimartingale such that

(1) dXy - j{X¢)dt = dMy, where M is a continuous local
martingale.
(2) d<xx'>p = P(Xy)dt.

We have to show that if (1) and (2) hold, then there exists B, a
BM(RY' such that

Let B be a BM(RY) independent of X, so that

d<xBT>, = 0, d<BBT>, = 1dt, (3.

and B be the process on RY with By = 0 and

dBy = P(Xy)dXy + P (Xy)dBy. (3
Then it follows from (1), (2) and (3.2) that B is a continuous
local martingale on RY and

d<gs’>, - Idt, (3.
so that B is a BM(RY). Moreover, from (3.2) we have

P(Xt)dMy = P(X{)dBys (3.
it remains to show that dMy = P(X¢)dMy. Let M be the process on

given by Mg = 0 and

dMg = P (X¢)dMys (3.

2)

.3)

4)

5)

rd
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nemary:

For a hypersurface we have r»1 and then x-— n{(x) is the Gauss
map of the hypersurface. When the hypersurface is the unit sphere
sZ in R3, the normal subspace ?l(Xt)R3 is spanned by the vector X,
and we reccver the theorem of Price and Williams [1] as a special

case.
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