

Title Brownian Motion on a Submanifold of Euclidean Space

Creators Lewis, J. T.

Date 1984

Citation Lewis, J. T. (1984) Brownian Motion on a Submanifold of Euclidean Space. (Preprint)

URL https://dair.dias.ie/id/eprint/932/

DOI DIAS-STP-84-48

Brownian Motion on a Submanifold of Euclidean Space

by

J.T. Lewis

Dublin Institute for Advanced Studies
10 Burlington Road
Dublin 4, Ireland

Abstract:

A martingale characterization of Brownian motion on a submanifold of Euclidean space is proved and the implications of the consequent martingale representation are discussed.

51. Introduction

Price and Williams [1] proved a martingale characterization of Brownian motion on the unit sphere S² in \mathbb{R}^3 . They used the martingale representation which, by Jacod's theorem [2], is implied by martingale characterization, to prove a result on the structure of Brownian motion on S². Their martingale characterization was generalized to Brownian motion on a hypersurface in \mathbb{R}^d in [3]: Let f be a real-valued \mathbb{C}^2 -function defined on an open set in \mathbb{R}^d ; a process X on \mathbb{R}^d with $f(X_0) = c$ is a Brownian motion on the hypersurface $f^{-1}(c)$ if and only if X is a semimartingale such that

- (i) $dX_t \frac{(d-1)}{2}H(X_t)n(X_t)dt = dM_t$, where Mis a continuous local martingale.
- (ii) $d < XX^T >_t = P(X_t)dt$. Here H(x) is the mean curvature at x, n(x) is the unit normal at x and P(x) is orthogonal projection of \mathbb{R}^d onto the tangent space at x. In this note we prove a generalization of this result to a submanifold of \mathbb{R}^d of arbitrary co-dimension: a process X on \mathbb{R}^d which starts on a C^2 -submanifold Y is a Brownian motion on Y if and only if X is a semimartingale such that
 - (i) $dX_t j(X_t)dt = dM_t$, where M is a continuous local martingale.
 - (ii) $d < XX^T >_t = P(X_t)dt$.

Here j(x) is the trace of one-half times the second fundamental form of the imbedding, and so is normal to the submanifold; the term - $j(X_t)$ dt is the drift which is required to keep the process on the submanifold. This martingale characterization is proved in §3; the proof makes use of Baxendale's equation for Brownian motion on a sub-manifold of \mathbb{R}^d given in [4], and this is described in §2, In §4 we give a result which generalizes the theorem of Price and Williams [1] on the structure of Brownan motion on S^2 .

Brownian Motion on a Submanifold Let V be a C^2 -submanifold of \mathbb{R}^d ; we claim that a process X on \mathbb{R}^d which starts on V and satisfies

$$dX_{t} - j(X_{t})dt = P(X_{t})dB_{t}, \qquad (2.1)$$

is a Brownian motion on V. Here B is a $\mathtt{BM}(\mathbb{R}^d)$, a Brownian motion on \mathbb{R}^d ; P(x) is orthogonal projection of \mathbb{R}^d on the tangent space $T_{x}(V)$ to V at x, and j(x) is one-half times the trace of the second fundamental form of the imbedding evaluated at x. We have to show that X+ stays on V for all t>O and that X is a diffusion whose generator is a constant multiple of the Laplace-Beltrami operator z on V. Now these are all local matters, and it follows from the inverse function theorem that a \mathbb{C}^2 -submanifold of \mathbb{R}^d is locally a level set $f^{-1}(c)$ of some \mathbb{R}^d -valued C^2 -function f defined on an open set in \mathbb{R}^d , where r is the co-dimension of V, and such that the rank of the derivative f'(x) is equal to r for all in x in $f^{-1}(c)$. It is enough then to establish our claim for a submanifold V which is a level set; in this case it is easy to define j(x) and P(x) on an open neichbourhood W of $f^{-1}(c)$, the open set on which f'(x) has rank r, and (2.1) has meaning as an Itô equation on an open set in \mathbb{R}^d . To be brecise. let P(y) be the orthogonal projection of \mathbb{R}^d on $E_{\rm V}=\ker f'(y)$ for all y in W; when x is in V, the subspace $E_{\rm X}$ coincides with Ty(V), the tangent space to V at x. A vector field v defined on W is said to be a tangent vector field if v(y) belongs to E_v for each y in W; it is said to be a normal vector field if v(y) belongs to E_v^{\perp} for all y in W. Given a pair v,w of C^1 -tangent vector fields, we define a normal vector field s(v,w) by

۷.

$$s_y(v,w) = P(y)(v \cdot grad w)(y)$$
 (2.2)

where $P^{\perp}(y) = I - P(y)$ is the orthogonal projection of \mathbb{R}^d on E_y^{\perp} . Then $v, w \to s_y(v, w)$ is bilinear and symmetric; the restriction of s to V is the second fundamental form of the imbedding of V in \mathbb{R}^d . Define the normal vector field j by

$$j(y) = \frac{1}{2} \operatorname{trace}_{E_y}(s_y). \tag{2.3}$$

which makes sense since s_y is a quadratic form on E_y . Let 7 be the differential operator defined on C^1 -functions on W by $(\nabla g)(y) = P(y)(grad\ g)(y),$ (2.4) and let Δ be the differential operator defined on $C^2\text{-functions}$ on W by

$$(\Delta g)(y) = \text{trace}(P(y)(P(y) \text{ grad } g)'(y)).$$
 (2.5)

It is important to notice that both $(\nabla g)(y)$ and $(\Delta g)(y)$ depend only on the restriction of g to V and that ∇ is the covariant derivative on V, and Δ is the Laplace-Beltrami operator on V. We shall require the following identity:

$$\frac{1}{2}(\Lambda g)(y) = \frac{1}{2} \text{ trace } (P(y)g''(y)) + j(y) \cdot (\text{grad } g)(y).$$
 (2.6)

A process X in \mathbb{R}^d which satisfies (2.1) is a diffusion since (2.1) is an Itô equation with continuous coefficients; to compute its generator, we apply Itô's formula to the process g(X) with g an arbitrary C^2 -function:

$$dg(X_t) = (grad g)(X_t) \cdot dX_t + \frac{1}{2} trace (g''(X_t)d < XX^T >).$$
 (2.7)

It follows from (2.1) that the bracket process <XX^T> satisfies

$$d < XX^{\mathsf{T}} >_{\mathsf{t}} = P(X_{\mathsf{t}})d\mathsf{t}, \tag{2.8}$$

so that (2.7) becomes

$$dg(X_t) = (grad g)(X_t) \cdot P(X_t) dB_t + j(X_t) \cdot (grad g)(X_t) dt$$

$$+ \frac{1}{2} trace (P(X_t)g''(X_t)) dt. \qquad (2.9)$$

Using the identity (2.6) we have

$$dg(X_t) - \frac{1}{2}(\Delta g)(X_t) = dM_t,$$
 (2.10)

where M is a continuous local martingale satisfying

$$dM_{t} = grad g(X_{t}) \cdot P(X_{t})dB_{t}; \qquad (2.11)$$

it follows from (2.10) that the generator of the diffusion X is $\frac{1}{2}$. Now let $f_1(y),\ldots,f_r(y)$ be the components of f(y) in some orthonormal basis for \mathbb{R}^r ; then applying (2.10) with $g=f_j$ we have

$$df_{j}(X_{t}) = 0, t>0, j=1,...,r,$$
 (2.12)

since grad $f_j(y)$ is orthogonal to E_y , so that $dM_t=0$ and $(\Delta f_j)(y)=0$ for all y in W. Hence X_t stays on V for all t>0 almost surely. This establishes the claim.

Now consider a \mathbb{C}^1 -distribution E of k-dimensional subspaces on \mathbb{R}^d . We can define P, s, j and Δ as before; the only difference is that s is symmetric if and only if E is involutive, where the bracket operation $\{,\}$ on vector fields is defined by

$$(v,w)(y) = (v \cdot \text{grad } w)(y) - (w \cdot \text{grad } v)(y).$$
 (2.13)

Suppose that E is involutive; then, by the classical theorem of Frobenius (see [5], for example), there is a unique maximal integral manifold of E through each point and the above proof establishes the following proposition: Let E be an involutive C^2 -distribution on \mathbb{R}^d and let X be a process on \mathbb{R}^d such that $X_0 = x$ and

$$dX_{t} - j(X_{t})dt = P(X_{t})dB_{t}.$$
 (2.14)

 $\frac{\mbox{Then}}{\mbox{x of}}$ X $\frac{\mbox{is Brownian motion on the maximal integral manifold through}}{\mbox{them}}$ E.

53 Martingale Characterization

The description of Brownian motion on a submanifold V given in §2 suggests the following Martingale Characterization of BM(V):

A process X on \mathbb{R}^d which starts on V is a BM(V) if and only if X is a semimartingale such that

- (1) $dX_t j(X_t)dt = dM_t$, where M is a continuous local martingale.
- (2) $d < XX^{T} >_{t} = P(X_{t})dt$.

We have to show that if (1) and (2) hold, then there exists B, a $BM(\mathbb{R}^d)$ such that

$$dM_{t} = P(X_{t})dB_{t}. \tag{3.1}$$

Let \tilde{B} be a BM(\mathbb{R}^d) independent of X, so that

$$d < X\widetilde{B}^{T} >_{t} = 0, d < \widetilde{B}\widetilde{B}^{T} >_{t} = Idt,$$
 (3.2)

and B be the process on \mathbb{R}^d with $B_0=0$ and

$$dB_{+} = P(X_{+})dX_{+} + P(X_{+})d\tilde{B}_{+}. \tag{3.3}$$

Then it follows from (1), (2) and (3.2) that B is a continuous local martingale on \mathbb{R}^d and

$$d < BB^{T} >_{+} = Idt, (3.4)$$

so that B is a $BM(\mathbb{R}^d)$. Moreover, from (3.2) we have

$$P(X_t)dM_t = P(X_t)dB_t; (3.5)$$

it remains to show that $dM_t=P(X_t)dM_t.$ Let \widetilde{M} be the process on \mathbb{R}^d given by $\widetilde{M}_0=0$ and

$$d\widetilde{M}_{t} = P(X_{t})dM_{t}; \qquad (3.6)$$

then

$$d < \widetilde{\mathbb{R}}^{T} >_{t} = p^{\perp}(x_{t}) d < MM^{T} >_{t} p^{\perp}(x_{t})$$

$$= p^{\perp}(x_{t}) p^{\perp}(x_{t}) p^{\perp}(x_{t}) dt = 0,$$
(3.7)

using (3.6) and (2), so that M is a continuous local martingale whose bracket process vanishes. It follows that

4

$$dM_{\xi} = P(\chi_{\xi})dM_{\xi}$$
 (3.)

and the proof is complete.

54 Martingale Representation

Let X be a Brownian motion starting at x on a level set V of $\mathbb{R}^d,$ and let Y satisfy $Y_0 = 0$ and

$$dY_t = P(X_t)dX_t$$

(4.1)

so that $dY_{\boldsymbol{t}}$ is the tangential component of $dX_{\boldsymbol{t}};$ by (2.1) we have

$$dY_t = P(X_t)dB_t$$
 (4.2)

so that Y is a continuous local martingale. Suppose now that \widetilde{X} is a BM(Y), starting at x, which is adapted to the filtration of X; let \widetilde{Y} satisfy $Y_0=0$ and

$$d\tilde{Y}_{t} = P(\tilde{X}_{t})d\tilde{X}_{t}. \tag{4}$$

Then we have the following

Nartingale Representation: The processes Y and \tilde{Y} are related by the Itô equation

$$d\tilde{Y}_{+} = C_{+}dY_{+}, \qquad (4.4)$$

where

(i) for each t,
$$C_{t}$$
 is an orthogonal transformation of \mathbb{R}^{d} such that

$$c_{t}P(x_{t})c_{t}^{T} = P(\widetilde{x}_{t}). \qquad (4.5)$$

(ii) the process C is X - predictable.

Let $\{n_1,\ldots,n_r\}$ be an orthonormal set of normal vector fields on V; let $\{b^1,\ldots,b^r\}$ be a set of independent BM(\mathbb{R}^1)-processes independent of both X and \widetilde{X} . Then, by the argument in §3, the processes B and \widetilde{B} such that $B_0=\widetilde{B}_0=0$ and

$$dB_{t} = dY_{t} + \frac{r}{j=1} n_{j}(X_{t})db^{j}, d\tilde{B}_{t} = d\tilde{Y}_{t} + \frac{r}{j=1} n_{j}(\tilde{x}_{t})db^{j}$$
 (4.6)

are both BM(\mathbb{R}^d) and X and \widetilde{X} satisfy

$$dx_{t} - j(x_{t})dt = P(x_{t})dB_{t}, d\tilde{x}_{t} - j(\tilde{x}_{t})dt = P(\tilde{x}_{t})d\tilde{B}_{t}. \tag{4.7}$$

Moreover, \tilde{B} is B-predictable so that, by the martingale representation theorem for BM(\mathbb{R}^d), there exists a B-predictable process C of orthogonal transformation on \mathbb{R}^d such that

$$d\tilde{B}_{t} = C_{t}dB_{t}. \tag{4.8}$$

Hence, from (4.6), we have

$$C_t dY_t + \sum_{j=1}^{r} C_t n_j(X_t) db^j = d\tilde{Y}_t + \sum_{j=1}^{r} n_j(\tilde{X}_t) db^j;$$
 (4.9)

forming the bracket process of both sides with b^k we have

$$c_{t^{n_k}}(X_t)dt = n_k(\tilde{X}_t)dt, k=1,...,j,$$
 (4.10

which establishes (4.5). By subtraction we have $d\tilde{Y}_t$ = C_tdY_t , establishing (4.4). It follows from (4.5) that C is X - predictable.

8.

Remark:

For a hypersurface we have r*1 and then $x \to n(x)$ is the Gauss map of the hypersurface. When the hypersurface is the unit sphere S^2 in \mathbb{R}^3 , the normal subspace $\mathbb{P}^{\perp}(X_t)\mathbb{R}^3$ is spanned by the vector X_t and we recover the theorem of Price and Williams [1] as a special case.

Acknowledgements

It is a pleasure to thank Michiel van den Berg and Paul McGill for many instructive conversations and especially to thank
Paul McGill for help with §4.

References

- [1] G.C. Price, D. Williams: Rolling with 'Slipping': I.

 Sém. Prob. Paris XVII Lect. Notes in Maths. 986,

 Berlin-Heidelberg-New York: Springer 1983.
- [2] J. Jacod: a general theorem of representation for martingales

 Probability (ed. J.L. Doob) Proc. Symp. Pure Nath. A.M.S.

 XXXI (1977) 37-54.
- [3] M. van den Berg, J.T. Lewis: Brownian Motion on a Hypersurface
 Bull. London Math. Soc. Bull. London Math. Soc. 17 (1985) 144-1
- [4] P.H. Baxendale: Wiener processes on manifolds of maps

 Proc. Royal Soc. Edinburgh 87A (1980) 127-152.
- [5] S. Kobayashi, K. Nomizu <u>Foundations of Differential Geometry</u>

 <u>Vol. 1</u> New York and London: Interscience Publishers 1963.