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Abstract

DIAS-STP-8i-16

STOCHASTIC DIFFERENTIAL EQUATION STUDY OF NUCLEAR

MAGNETIC RELAXATION BY SPTIN-ROTATIONAL INTERACTIONS

James McConnell

Dublin Institute for Advanced Studies

Dublin 4, Iceland

-

The mathematical methods based on stochastic
differential equations and the rotation oparater, which

were developed for the study of cfotational Brownian motion

znd its implications for dielectric dispersion and absorption,
are extended so as to yield ensemble averages of certain
products of orientational and angular velecity functions. As
a conséquence, & procedure for caleulating nuclear magnetic
relaxation times arising from spin-rotational interactions,
vhen inertial effects are included, is presented for molecules

of any shape.

1.

rotational thermal motion

INTRODUCTION

The theory of nuclear magnetic resonance relaxation caused by

1,2)

was applied by Hubbard in a sequence of
3-7)

papers to quadrupole interactions, intramolecular dipole-dipole

interactions and spin-rotational interactionms. The treatment of the last

type of interactions is particularly difficult in that it involves the

calculation of the ensemble average of the preduct of functions of orien—

tational angle variables and angular velocity variables. In his earlier

investigation Hubbard

3)

regarded the angles and angular velocities as

independent sets of variables, so that the ensemble average of the preduct

was

the

assumed to be the product of the enmsemble averages of the function of

orientational variables and of the function of the angular vélocity

variables. towever the orientational and angular veloecity variables are

not

4,5)

independeint and Hubbard later proposed a method based on a Fokker-

Planck equation which enabled him to write down a general expression for

the

and

For

the

Laplace transform of the ensemble average of the product of orientational
angular velocity functions which occur in spin-rotational relaxation studies.
the case of a rotating spherical molecule Hubbard deduced expressions for

spin-rotational correlation time and for the spin-rotational contributions

to the reciprocals of the longitudinal and transverse relaxation times.

tha

A method based op Euler-Langevin stochastic differential equations,

ensemble average of the stochastic rotation operator and the Krylov-

Bogoliubov solution of nonlinear differential equations has been found very

powerful for the investigation of dielectric relaxation processes when

8)

inertial effects are included ‘. Indeed the method is generally applicable

to processes whose investigation is based on the correlation functions of

spherical harmonies. Confining our attention to nuclear magnetic resonance

pheaomena we have already applied the method to the calculation of spin=

lattice relaxation times.

9)

It may be applied witbout difficulty to the



contributions of intramolecular dipole~dipole interactions and of
quadrupole interactions to the nuclear magnetic relaxation rate of ideatical
rnieclei, but not to the contributions of spin-rotational interactions.

It is the purpoée of the present paper to extend the above mathe-
matical method so that it will provide the ensemble average of the product
of the orientational and angular velocity functions encountered in the study
of spin-rotational interactions. In Section 2 the formalism for these inter-.
actions will be summarized, definitions given and the extended mathematical
method will be presented in a manner applicable to molecules of any shape,
In Section 3 a detailed study will be made for the spherical model of the
wolecules, and the results will be compared with those derived by other
metheds. Finally in Seétion 4 the probIEm for asymmetric molecules will

be considered.

2. SPIN~ROTATIONAL INTERACTIONS

2.1. Definitions and basic equations

We consider the contribution to nuclear magnetic relaxation of
identical nuclei in identical molecules. The spin-rotational interaction
is the sum over all molecules in a system of the sum of the interactions of
the magnetic moments of the nuclei in a molecule with the magnetic field
produced by the rotation of that molecule. For later comparison with the
results of Hubbard we follow fairly closely the potation of ref. 5. Let
us denote by 1‘.‘ the spin operator of the ith nucleus and by /}'ﬂijb the

e
angular momentum of the molecule that contains this nucleus. The spin-

rotational Hamiltonian of the ith nucleus,

A Gfi - 4 L ’ ,C‘ J 2.1

[
where Cj is a dyadic with the dimensions of a frequency. Hubbard expresses

: ] ! ) 4
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where L, are the spherical components of ]j; in the laboratory system and

‘ A 3 / .
Ug = \,;E‘/ 2:-,/@"‘1' Dﬁ'y{xc) ﬁ;} }f,) j‘,y_ - (2.2)

In this equation
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where (:;v are the constant cartesian components of the dyadic referred

/
to axes fixed in the molecule. In (2.2) I) is the rotation matrix for

v -
the transformation of a spherical tensorlo) and C(;7 5. % are the Euler

“y lv.'



angles specifying the molecular system with respect to the laboratory

coordinate system. We sece from (2.3) that

@ ,() . ~ G

my -m v
The contributions (l /T;)[ ,< //1 , from ti.e spin-rotational
interactions to the reciprocals | /T , | /T of the longitudinal

and transverse relaxation times ] N lq_ respectively, are given by
. 2

{ (A r
"':(_"" = QI/WL) R -(-: = t}:(o)+ _3’ (-/")u)') (2.5)

where {J, is the angular velocity 6f the Larmor precession,
A 00 oo
| ) ( ~dwl
:]— (w)= 7 go [ (~ LH{ - L6 ot 2.6

and C {u), not to bz confused with the dyadic components, is defined

o4 :
(€)= LY () U “”/7 (2.7).

ii
where the angular brackets denote ensemble average for thermal equilibrium.

We see from (2. 2) that

Ctr) >: z /ﬂﬂﬂ <D (4o, Be) V’«rD(d 19,849, ) :5 ((; j ,5}>

TR A AN (2.8)

We take for the molecular frame of reference the principal axes of inertia
through the centre of mass and write the components of angular momentum as
T w I 23 T (,J , where I. I 1 are the principal moments of

y Ty T 7S R

inertia and bo, Wy ) W0y the corresponding cartesian components of angular

velocity. Then replacing }g; Lk)by I Ml{:)we express (2.8) as

C LC) f_lE }_ ’gm“ oy /J <D (X /E)}‘((“)))/:.[('));D/f:é?{‘-lv})/?‘Jo)')".m/ 49‘(&)%;3)>)

=) mpne-f

(2.9)
a sum of ensemble averages over the product of a function of ‘angle variables
and a function of angular velocity variables.
At this stage we introduce the stochastic rotation operator?i(f).
We see from (2. 9) that

C (t) > z 2/@ 'emv

AvElmnz-t

D (a( (H/’ 5.16) )’l(r)D (d (o)/p ON lu)}CJ le)w ,,)>

(2.10)

Now
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where R((f)ls the rotation operator that brings the molecular frame at time

11).

+
zero to the molecular frame at time t and R{ft) is its adjoint Since

R{E') involves the angular velocity through the relation

Cz’fé{(;) - ¢ <Ju .Q(U) 2(@)) (2.11)



—fH-

it follows that

<\{ (— > (o) = A «o)? ») } (-Pro) —dh: m)lu () (w>
# < \/})ﬂ{\—f};m); ()\;la}) ?2({')\{”‘("@ laJ)~9\"—loa>(&OM/&) wy(c)>’

However the angle and angular velocity variables though not independent
are separable. This allows us to take the ensemble average firstly over
the angular velocity variables, denoting it by <-‘->w , and then over the

angle variables at time zero. Thus

3 -
| < 27 7
,{t) = Q“E E (— h/@‘ /Qr I/‘Iy L C[ [—d\;w] L(( (C:‘,P’-"=’>j Q,,;[—/Z;IJJ

i
AVEl mnz-p

X Y,)i('[”i“” - dyro7) (R? )%“’)%fc/’>wY“\['/:’sfo),-- Acew,)
= -,/9\ /- E(— M/ér uI\; (< ]\lt’)“v (l—);.v/o)> '>

/“,V/m =t ""1)\

vhere =i p denotes the-m n-—element with respect to the basis

\{’)“I({))’U),oelc') Y (f{vl &lo)) \(‘ {[/1 (o), .a{(c,}) . We conclude that
oy Z ) 08 15T L (R,

L ,u)v =l mype . 11.)

If we succeed in calculating (R/f’) w, lb) Lu,(o)>w, we may be able to

find (?/T;>andﬁ/7;>/ . from (2.5), (2.6) and (2.12).

To perform these calculaticns it is helpful to define the Laplace

2 <
transform CL.‘IS) of (J Le)
e

L4 ”
C o= L ’Sr( [é-)dﬁ (2.13)

(XY

£
with C.['ﬂ given by (2.9). Then, from (2.12),
vi

m ” -s&
) ,@M‘,@W L{J\,e <E[6)Aq,,.1l‘)wrlc)\)u6((j (2.14)

[ W 2. .
/ vl mn=~/ n,~m

and, from (2.6),
j/w) = Jg’_((':):(—i‘m) + C“;:)(&'u))_ (2.15)

As will be explained below in subsection 3.3, we may replaceI/w.,)by J,/D)

in the extreme narrowing case. Then (2.5) arnd (2.15) yield

. , :
(.s:;-_: ’ (-:f: - 2 j/") = 2 ¢es) (2.18)

We write '/T for the common value in the extreme narrowing case of

(/T) and(/"/'; , and so

The spin-rotational correlation time is defined as the

~
Lo

&ntegral from zero to infinity of the normalized autocorlelatxon function

of U(C} , so that
J < /o) -U:g(e)B dt
LVt Utad

From (2.2) and ;é\: J{v = zgwgwe deduce that,

T, " (2.18)

-
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2
where we have used (2.4) and the property of Wigrer functionsl")

R
Jy At .
(D/,Z,,,\\:{) /, )/,} - ( ) M ‘I” E:\,; F, }/) . (2.19)

13)

From a result of Hubbard we find that

{ ! ‘
<r}>_j (o{t-[o)J /’;{0)) 7’;-10)) qu{j{[t))/)’;(f)’ )Q{r) )wu(g) w, (o}‘>
K -m 4 ‘
/ /
— >’£ < Do _(,:(“('”; /{i‘m} Vt‘“”) Dom(dt‘(”, /,’ ll—)) y‘,/('/) €9, L&) l-u\,f'01>

Hence T3’_ _w_:_
AN RE S DA b

X D }(0(;/0)‘ /;Ju)' }4./09224{&; (t—j) /? ), Ve f@?%(r;%@(z.ZO)
= ( ()

by (2.10), since m and M are summation indices. It follows from (2.13)

that

P £ A~ 4L
—5t - . '~ - o
L e < U; )" U, (> dE - C. 5% (2.233

2o 3 4 o
L <L¥%o) Y): (E)>dt = .. (o). (2.22)

To obtain the denominator in (2.18) we note that ?2/0) is the
identity operator, that the Wigner functionms in (2.20) for C=0 are

consequently independent of the angular velocity, and therefore that

/ /
< (:Do)_h[g(‘.(c)_’ /';‘ (o)' )f‘- (c)) ip ”A(O(clc,)) /57‘. r.:)) Y l;/’) &, lE) &, (a)>

(2.23)
o~ /
= <J>0’FM(01;IG) Ufi/c), Ve to)) :DD_,\/o(,.'a),f,/u),y‘./oj)> L, ror>,
For a rotator of any ShapelA)
4T
<Q}A(o) A‘Q(o)> = ‘&:N I}A ‘ (2.24)

Then employing (2.19) and the orthogonality relation

A o T )\,K. )‘./ yT’LS' d‘ ‘_A“’Y';
Y { { s ( D A, fy) = et VA
ga C{) fo ‘”L,(o [fﬁQAF DHA,/D,{)/PI{’;(’ 127, J

Q)"f'/

we see that

ZD' (Ail) ) fited, f-(a)>j>’ (o(c"?’ /?;107, }";(ai>>

i} 50—-7— j A}/(o] dd ) Jdﬁ /u)gh/) /.,jj (d ) /4’ (o) Ve Ig;)D (c{ !o)f’/.), ¥ ,\,\(2 25)

- (’) Smn
= 3 ,
Hence from (2.20), (2.23) - (2.25)

~ 2
p* o~k 2 S m g ‘
<'U;,§o) U. Ia)> = Tz 2 8., &) " 'g‘,,w I,
3 .’ .
TS z‘ - m t { : (2.26)
L2 7 )"l b, Ty
We conclude from (2.18), (2.22) and (2.26) that
?‘91 C‘f:o{o)

E (" AL I

the value of .;(0/' to be obtained from (2.14).

Tow (2.27)



!HOI

In the extreme narrowing case we deduce from (2.17) and (2.27) that

3

. \
\\\u.) \I.. . A.
Lo, 24T S S oygl 40T e
(\\.M.o W\Wm_\ \,nJ. w,x.ln\\ ’

Thus the spin-rotational contributions to the reciprocals of the longi-
tudinal and transverse relaxation times are proportional to the spin-—

rotational correlation tima.

|HH|

“ ,
2.2, General method of calculating < ﬁm\mv n&,hag NCC\C\UV

We have seen in the previous subsection that the evaluation of

KV\J“V. g%\¥ﬂw& V.Mm% wmama:nmnmdoan:m<mwcoomnwmo:mmavwomcmﬂmmm
over angular velocity space of HN\Wb w, (&) ?»Xcvvzrmﬂmﬁmxww is the

rotation operator that brings the molecular coordinate system at time zero
to its orientation at time £ . In studies on dielectric phenomena we were
concerned only with the average over the angular velocity space of MNth. and
we shall now show how in principle the previous method may be adapted so

as to meet the requirements of the spin-rotatiocnal problem.

The rotation operator obeys the stochastic differential equation

{(2.11), which we now write

are) { m).M . .mmev Rie) (2.29)

dt

omitting the subscript of g. because we shall focus attention on one
~ .
molecule only. In (2.29) M has components uﬁ. ur,vuw in the rotating
~

molecular coordinate frame that obey the commutation relations

(. 3)--¢d, [ [7:,33--¢7, [3,3)- =<1,

which we express briefly as

MH.:HQ (], m\.xva (2.30)

~

L ¢ . being unit vectors in nrﬁ\»‘ and y» — directions. We suppose
~P &Y

that the rotation of the molecule is due to thermal motion in a steady
state and that the components ﬁg.mﬁyvmmvxwwvrwNﬁuom ?u\mp in (2.29) obey

the Euler-Langevin equations



-12—

g _ - dte)
Lo, - (1 '13>“’~»“"s—“ ~1Bw ¢ LoTaE
_ . , dhfie)
Lo, ~(T,-1)oe - -LBe, +1, %"

_ < c“ I (e
j[ 55 - ( lw ":Z >t% k% = ":23 )% Qﬁ + l? :;f: /

p
where B ,B;,fgg are frictional constants and [{/; 2’1/:,'1/1/3\37:3 Wiener

processes. Equations (2.31) are nonlinear and & (t) Ldlff)) Lu?!f/

\
will be centred but in general non—Gaussianl5/. If the molecule is

. . - . . .
spherical or linear LJ\CQ obeys a Langevin equation and is a centred
P > b g

Gaussian random variable.

16)

has given a general method based on earlier studies of
g (=3

- . 17 - . . . . .
Krylov and Bogoliubov ) of solving a nonlinear stochastic differential

Ford

equation of the type

. drlt)

—F € O(f)x(t—))

vhere XLE) is a random variable that may be an operator, ¢ a small
parameter and ()(tj a stochastic operator. Since accounts of Ford's

8,18)

method have been published » we shall just quote results that are

relevant for our purposes. Equation (2.29) is obtained from (2.32)

by the substicutions

s RiE) cOle) —» -] am).

Then we write

)Z(t)—’(IHF('f’)H Fiose FloreFlor) {Rep,

(2.31)

(2.32)

(2.33)

..13_

- (')

where I is the identity operator and (f) are stochastic operators
~~—

with zero ensemble averages.

oL Ried
d e

In our previous investigations we were concerned only with the
solution of (2.34) but now we must find ;?(tj) in order to calculate the

average value of P (&) L lt) L\)',[c,). Since

(‘E O{C'/>°-> - <(J_.g/t})>:@

* because (:gi(ﬁ)>'567, it is found that

.
¢ Floy = - ), (e wm)dt, i
o c{@f r[(j )T wig)-{(Twe) Dot} ]

((gt)')-cfdff d(‘ d(’ [(7 m(r)/(]f.u/ ,\)(lz.cﬁ/rz,:

~

< (Jue) T et Jote) (T w){Jwe)lFew

ATt Toott )T we)> = T-wieT wien)(
and that in general

n-1
el _ ()\) B Lol ¢ 0 —¢ Fo(ujzf'\ﬂ” )
o Ely - - elto- (D) Fio g, -

The non-stochastic <:T2(t£>obeys an equation

. ) {2 Gy '
. ( e 1) £ L & AN s iy ){?3(5) (2303

(2.35)

it )

b
. ('f /(‘;)/>)

(2.36)



We also have

¢ Uy , e .w/{) ~f (T we)(T e >dg
S A ) 16 (T )T o)1
?L'JQL 1o = jmu dt; f At ’Z<(J'“[h[ VI () Q:’ &) )/‘ (2.37)
-~ ((\) ,ult)){j w(m))((J e Q)\J'“i/ 0>
= T ), i) >T i) 1) 2
U T (T o) > LT we) (T 2 1e3)
On substituting the values of _Q,“?t') into (2.34) we may be able to obtain
(i}Z!t;>in a form suitable for further computation. Then finding h}Ei)
from (2.35), or from (2.36) and (2.37), and substituting into (2.33) we
have ?21&) and may proceed to calculate Zf??(t) &L(r)MO;U;wequired in (2.125.
In these investigations the operators are independent of the angle
variables and so we may denote ensemble averages either by [~-~>L¢ or by 4“':}
For convenience we shall adopt the latter notation.
A1l the above considerations are applicable to molecules of any
shape. We shkall now apply the general theory of this section to a spherical

molecular model.

_..15__

3. SPHERICAL MOLECULES
3.1  Calculation of <: F%[t’ Ldﬂ(k)idffut>

When the rotating molecule is spherical in shape, eq. (2.31) reduce

to

= Ales

Lwter - — I Bw(é) + 1 dt 3.1
and u)(fjis a Gaussian random variable with zero mean. Then, since the

mean value of the product of an odd number of such ta s vanmhes,_ﬂfcc*)
given in (2.37) vanishes, as indeed do N, .,)"., L‘é-} , etc.. It has
been shown that®)
o[ e yT =g { T (oo™ o]
(V[ - e Pk e
4y T - (B e 2Berne - G a'w)g“s by O
0TS -Bred)e T Be g N g 55
HTPTE 4 e be ke ] 07T T

where
s f » 2 T s

) ( +)> being the eigenvalue of :Y and

4T
L (3.4)

I%°°
) i
where /é is the Boltzmann constant and 7— the absolute temporature. It

is found in dielectric absorption experiments that the value of does mnot

19,20)

exceed a few per cent We see from (3.2) that <f12(t£>is a multiple

of the idéntity and so commutes with :L ,:L . J? .
2

Ve wish to calculateRLt) from (2.33), (2.35) and (3.2), and use



) 9. ) .
the value so calculated to obtain < i‘\(t)tﬁ, (f)g).{\"‘l;’- Let us suppose
. .

that 4\ 1is &an odd integer. The contribution to RU_") Ld“[ﬁ‘) t'-d,',/D)

(i)
. v
corresponding to C-l = Lr} containsg only terms with an odd number ofww's

and so the ensemble average of the contribution vanishes. We may therefore

deduce from (2.33) that

-~

{RW e Bas, 00> = <(Z P+ Fibre SFan e >R

(3.5)

21)

For a steady state solution of (3.1) we have

/KT -—"_Bt‘t:c_:" mnm .
<(") & m> , Ca,p:/,g);) (3.6)

It follows from (2.37) thatzz)

4 —Blt-1) T 9% me

.[‘
/’——— 2 2 . M
Jl 6y — (’”i’) JL ”'/» e, dle € NN

We see from (2.36) that

{4 & & &
i i)
“F ('c):‘faz"i)z Lé:)slf,"fo cFoelicmne - ¢ | (Jowe)s Eldt .09
Let us calculate < I £d, (&) Luv,zo)>> < EiF (z’é“)w,“ (E‘)Ld,,/a;;),
< £ 4 Fﬂ(‘)d")wy (c")u{{li‘)>' From (3.6)

T

r
QISR ~Bt
- - sl
(T wed = 4,1 5 2™
>~
since {:ZO in (2.6) and 2ll subscquent equations of Section 2 From

_‘17_

(2.35) and (3. 6)

e ’T €t ‘
¢ }’(/f}-— clt df“[z j) C)w([;) "%-Tj]dq[,(‘e*g/f“ f‘7
A8z o ©
(3 10)

and therefore

2 s t«)
4 ¢ F(;\i‘)k}«ib/wﬂa> =7 ;’ - Jx ‘1 Ldt—. Ltl b <w/- k(t-) 6D W (6) 105>

S X (3.11)
+y = Tg, (Beet +e™™),

on introducing ),' from (3.4). From the properties of Gaussian Variableszzs)

o le) Lode) i 18,) Lo 05D
(J/@,‘ &) L, /t*,)> (LJS (t‘,}) Lo, l'o)> +<(«> L')w (e )><l‘,{/t*)@,)//g,>

"

+ L 18) toy09D> L LML) w165 G.12)
hue :(Aﬁ l §oclyy o BlEEIR) (8.5 et B Eﬂ)(-g/m,-:-_i)
€ e |
(odt, (o'dﬁ D0 (6 10, (6) LoD
¢.12

p—r L
Al -5t] 7 oo -
= Y “'-I' £ {(‘eg'{; - gi‘)‘;r%fr(e 5’5‘17\_'};()/ g~ + & V'-~r )/

and on employirg (2.30) we deduce that

ap(a AT :
L8 T (eIt ) o = -—d\f—j—{(/_.z & ”ie-”t)];l (3.14)
+ (=275 BleH ) (] 2,0



-Lo—

(7 2} I‘L(le/ . v
Since and ) are non-stochastic, we see from (3.9) that

AT

-Bef
1 &u’e i ﬂ,( ‘{6 jiﬂér}(é FIC‘)(/ lt)w,:c)ﬁc((‘

(3.15)

¢4 F/(Lt)‘)%ltr)&u),/a)> 2 =
_cf L, lr}(7 mt))ig/r:(t)w o el

Now, by (3.8),

e,
AT £ ggfj(o e SUlepdE

7 7\° t t- & & (3.16)
A { —rl P ) f 2 3 _ ' o
] (7) S.o TP et [ [t [ae o-Flertstoe
- 2
which is a ccnvolut:’on?'!")‘ ‘Next we have from (3.7) and (3.10)

o - 2
"J CLZjL{JU—)< ¢ F(Ltjw [f')'\)‘,(c)BCgt‘
oy

z
- {T Jfff(/ e~55) <, Le)[f di J’c’{;z J. Jwle)uet,) s.1m
S

1

-56Y] N
.._Y [—“/+ )Jt’/oy~/.:/).
UsAng (3 12) we c‘eluce tha

f fd(’ Z J{J (wfﬁ)w (6w (£, 20,002

4587/
{ T -3¢ ‘ -
j‘e—gf{&v j(ﬁ —/ 'Fjb’:)”f-jr]v('@gr“z +e E’C) (3.18)
1.(,2’3&7—! + 'EC) ¢ (\Z-f%/\ﬁ\:)} .

Cancelling terms in (3.17) and (3.18) and integrating with respect to (f'l .

we obtain

~1G-

{-.
| Qe L F iy ey oSt
14;7 2| - Pt . ,.5'(' - 2
= -y %J{JMI,(I +3e Ef—?BTe -3y o m38E) iy

. Bt - Y .
Fi( T e ) (5P BEbE, LB - o

2 3)
The equation in (2.35) for ¢ F[C’) gives

((32_)._ (__( dl‘ c{f ,( (“' 7’ CEI Z j j“)lr(t)"’ (e )A;n (C‘)

=l ’J [E 'L’w,(i)“_'q(t‘; &) z J w (6) =B &) 320
+§=,L %(ﬁ:)f”mt )}}

so that

()
) ff(c‘;‘(b) ( '_"Jf,f:,(t.)) et F ?t.)w,/cba![j
o - '
= L:{f: Lh‘[ﬁ .(U Lfa} fo‘z}{i‘h (A"'B-w(’——})} (3.21)

where
-

A- > T L LT @) wyle) wl6)eod ) v o

-

ﬁ'}:l{l

<3 J Z j 7y e 0)elE) 0,16 w105 B 66

D
D=
/ET T E;(m(t}%(c—,)w‘/@)w/ob Bt 3.22)
C I a( 7
} ~ D6 -
D j; ];{<qu€) wa.(t.)é:{{{t,):\_}“(o)>\_@ LAl (—’s)\
a,c("—/
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To evaluate /"\, we extend (3.12) to the product of six «s's and employ

{2.30) to derive the relations:

Z JJ11-27137 - (~p1g
o Z«]v‘]-a: [J AB,];.)IAJV + gﬂvjl" L‘(‘Z'fpry)
ool 7 -)

'Mw‘

t

~

Y

2 ] j l\] —J :}’1(]1—”]:‘)((72-22> (3.23)
Z' JC J“;’J ]n’j J Z "a:}—vejﬂjﬂ, jﬂja
a,b,c=f et |

jw

20 LLILLL - T (Try

a, L,(

After a long but elementary calculation we deduce from (3.21) - (3.23) that
& 13/
_(‘f att) (T wies) 2 F U6 o, >dE,
" e - o~
/ s _ €4 & /t} _plee b gk, -0
_ / AT f'- J/ﬂ]\)f{k‘, j{) e, 4(9 d{; . “NL e H
\ I v (e (E Bl +E b -6+
(4[27—?;] T3 ettt T

+{BT"~U 1T +2L7500 ¢ (Togure)

T /*v f"(r fv“- SR - r -0
"{f‘f?'””w'«wff»ézz AT eure)

+[Q j 2 Jj ,u~l_/ o {[’;‘”j.,-t}‘.‘([;"e“?(t‘*q-*(\;t}*hd})

(3.24)

and we see that the multiple integrals are cenvolutions.

_2 1-

The value of < E)' F“;b) W, () éuula)>is now obtained from (3.15),
(3.16), (3.19) and (3.24). If we wished to find <{£° Fl‘llf’)c\),/(‘)w,/c-i>,
the calculation would be extremely long;  for example, corresponding to A
in (3.22) we would have a summation yhich involves the ensemble average of
the continued product of 8 w 's and this consists of 105 terms. We shall
not therefore take the calculations further. For our purposes we do not
require an explicit expression for the rotation operator R/E’) but such an
expression may be written down from (2.33), (2.35), (3.6) - (3.10), (3.20),
(3.2) and (3.3). The value of { R/f) ”,Jt’)a’#)ﬁm> is obtainable from
(3.2), (3.3), (3.5) and our calculated values of < l W lt) WV(O)"})
< Q_LF[’Z'(;) Loﬁlt’}w',(o),\ s <f“ F/"fﬂzu#(t)w,;.ab. Explicit vaiues
of the integrals occurring, which in fact are not required for the
investigation of spin-rotational interactions, may be derived by inverting

the Laplace transforms of the convolutionszs).
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LTI N,
3.2 The Laplace transform of < Kie) eo (&) 'v.'.,fc:)>

,In the case of a spherical molecule eq. (2.14) becomes

3
E ('-_)h\/@‘ /}r (J e"s R b/ﬁu (Hw (u)>¢{d (3 25)

C‘_’(¢5>= 'J'w?
{ 35 Lo

/u~v"/ n==/ h-

the integral being the Laplace transform of the operator < (R(t)wyls) w,zof),
As an illustration of the method of calculation and approximation we take

the first term

5 'r‘ 5 [ t4 b, ~C4)
Y EAS ~RUE-6, 4Tt Uy~ 0y
JD '~) ""{_g G e ’ (3.26)

on the right hand side of (3.24) and we approximate <R1t‘J>in (3.2) by

~BG.-€ 5
/ ’ We shall calculate the Laplace transform of the expression

- -BG. &
(3.26) multiplied by £ Y

R
= *( f%\)j%]y Ji;f, ) ;ﬁ?

, noting that
6 6
c((’ Jflr ( d’

‘v

_B(b.. Edtttsy -6}

—(B+BG; e~ f) -5ty t-Q)

(28 an) (6~

X
ATV [ Ve _BC.t —L34BENE  _OBRG)E /R
:*\//“L)LJTV e BRI ST e W ST

<

The Laplace transform of this is
() ~-

T/ (s+36 )5+ Bt BG) (s 284 BS)) 273
' “Bg e W

{‘\\

By inverting this we may find the value of (3.26) multiplied by ¢

Lot us write (3.27) as
-yl L) s
Lr (B 163 )14 }3* G (2+5+G)

For the small values of J with which we shall be concerned, C) defined

The factors | +(9/B)+(7J"2+($/g)+(;

(3.28)

by (3.3) is of order )/ are at least

of order unity. However.for values of D/ﬁ of order G, or less, and so for

)

the extreme narrowing case when § will be taken equal to zero, (5/ B)-F C‘)

is of orderf . This will raise the order of (3.28) to I“j, ’/ﬁT/(IB')
Then in order to obtain an approximation of order 1‘ ],, 2’1/&7//{1 5') it will

— )
be necessary to include the term 'Y

LRe>.

-
contained a factor (§ +B(7j) , we would have had to include terms

in (3.2) when approximating

Similarly, if the denominator of the Laplace transform had

-
proportional to 7’ in the approximation of < }:’/bJ>

On performing the calculations we obtain

{n€_$t< 'R/L')a'i/,('t.“) L"rlc)> At

EL L y3J -
ROz T S +7>’+“56; (sr‘B«L@CWsm + %6,
+X L s+ B rf(’;C)' S+2B + bb), (54.22»}-7;’(.)1

A R 8 ]
t s+ 3B+BG  (s+E +b6)g(s72b+8 Pl

()1 51
+l Q ;0,#:9)&’ I 5+%:BG (5484 BG)

S+ ,z B 56,

[ N
ﬂ/[j S+ 5+ 86, (§+8+84‘,)' S+28+/§4,-T§1'-38#~B,;}

+ 28(J-1) s BALTEED)
(S+ B+ 86, )2 (5+284 Bg)" " 6t 843662 80, Yo 500 85
2

(3.

-y

J
)

P
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In the present representation

' -_Jo -l 0 -/ o-ﬂ
o / ? J} JZ O ‘/ R ;L 3 O O Oi >
o0 o 5 ) e

i
-

~ 0

T i
Ny
- 3.34
o ( )
the rows and columns being numberec in the sequence -1, 0, 1. The matrices
q
of (3.34) may be obtained from those of Rosez') by making the substitutions
L I\’ . M 2
- —-——p —
(V?x - /%LJ‘ ’ ?% T Jw , ! i$’ A :TQ
in order to take account of the minus sicn in the comnutation relation (2.30).
We see from (3.33) that )
LT
BC-2yB(1+2p+ayps)- Ul
- - g
G: y’J? z.}/ IZ~> "+ IE
V)
In the extreme narrowing case of &y KK b%ahg)we may replace § by zero in

{3.29) when calculating Jlﬂdo)from cts) as given by (2.15). Then (2.17)

vields
.
Ter
In order to deduce {6’ from (3.32) we must perform the summations

over “m 1, 4,3 involving the b's and the operators outside the curly

brackets of (3.29). A brief calculation gives
3
™ /%? ( ) (fo (é’L
Z ( ) /g y /uv -[ I - MF‘ I + Q i (3.36)
ja‘v’" ans=1 B

" where we have employed (3.31). Then we deduce from (3.3%4) that

z z(’ m/é;‘/@w D(lfw‘iv)] :m-?(j:—é_ C, (;!. (3.37)

=homns-d

< 2 cto). (3.35)
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On evaluating ;T jv from (3.34) and substituting we likewise find that

A
ER )
_u%;, Z’—,{f)”‘:@w‘/g-w (‘L Jv )m}_m =0 (3.38)

3D 1, (3.29)

Equations (3.36) - (3.38) were already given by Hubbard
the terms that require special attention for §=(J are all proportional

to :zh :Iv . On account of (3.38) they give zero contribution to ((3),

and for the purpose of calculating I//T;d_from (3.35) they may be dis-
regarded. However for the sake of completing a record of this calculation

we shall retain them.

On putting j: [/ in (3.29), employing (3.33) and expressing the

results as power series in we find Lhat
Ao Smse"sr< R(t) o, (E) i Ir)>
¢=0 2
AT 5, T8 -8 (z‘ ¢, x2.)]
- 1B - 2 . ' (3.39)
'f")fm[“}z ol + & (T 2ars)]

b RN
'"%i J/ATV +7I??"fﬂjv +'7£‘)/ ijw‘*"'}v

For the reason given in the previous subsection it is to be expccted that,
if we were to continue our calculations so as to include the & FT (fﬁ
term on the right hand side of (3.5), the coefficient L of LLT.I

%8 Z2hid
would be altered. The other terms on the right hand side of (3.39) are

32). Equation (3.32) combined with

in agreement with the result of Hubbard

(3.36) - (3.39) yield

C"’)'éwg {((“ b2 ("‘)(l—y—r B )+ (2 :‘L Il}(z y-Eyre) }
(0 H GO By - Gl

. "
JKYD
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and so, from (3.35),

. @;II(( ”» J’[ “}+ ({( crp (3.40)

To obtain fkl* we note that for the sphere (2.28) becomes’
, - ,ZI’}\ L_s—,/'

__f ] 3/% Zﬁ/( )"‘,@ﬁv/{ (3.41)

75d]
Now
2
22 ()" e, A, 3y e ey ey Ban8,
ATl m*t ALVl mnE -/

g < ) » A 2 - X
"'2 Z /’)m’gnf’gmv gh/-m d/«'v = C/” 'f‘rz (J.)

AV st

by (3.36), and we may express (3.41) as

__.!.._: IWAT((”+G)C,)M—. {3.42)

T 1
z _ 7 ) i 3.42) yield
b_(i/cl!,ﬂl»l)and( ) yi

1 2 f \?.
] /i'--/) 1Z2 2 \?"' il
/ ,;____,, 4= S g g (3.43)
— ] - f)"’ ,
B 2%+ e

o

in agreement with Hubbar633>. When (‘l = (7{ , (3.43) reduces to

UVr = T s
B 1 icti ime that occurs in the
vhere we have written 15 as [% , the friction time that o s in

discussion of the Debye and Langevin equations. Then ?}f is .ndependent

>

-29-—

of the orientation, as it should be according to an earlier result of

Hubbard for the spherical molecu1e34>.

35)

McClung carried out an investigation of spin-rotational inter-

actions for spherical molecules by employing the eigenfunction expansion

36)

procedure of Fixman and Rider to obtain a series expansion for the

orientational-angular velocity conditional probability density from the
Fokker-Planck equation. Applying numerical methods he calculated a

correlation time which characterizes the anisotropic spin-rotational

interactions.

37)

. . . 7 .
If we denote this correlation time by 'T}r , then in our

notation

4o AUTE B8y 2 (5B

On comparing this equation with (3.42) we find that

3/5’_%2}])?"(: @?4") /?")L’rt’;,(--

When we substitute for 7%4. from (3.43) into (3.44), we obtain

v, = | Ay Ryt

£~
38)

which agrees with the result of McClung and his collaborators™ *.

(3.44)
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4. ASYMMETRIC MOLECULES .
. - / o
4.1, General equations . !{LL 1] 0 -é_
= |
We now consider the case of a molecule with no special symmetry J\= o 1 !
properties, whose rotational Brownian motion

is governed by the Euler-

)
oSl
Li}
<SS
S

<

- » (4.5)
= b )
. | . 0 @ 0 3 0 0
Langevin equations (2.31). With an obvicus generalizatien of & 1 2 ~-; - .
. ’ and we see that J j J commute with each other. As a consequence
satisfying (3..4) we choose ¢ 1irn (2.32) as given by , N ty M Y3
of ‘this
§ = ( Ve Tg %T v
Z ( 1 3)" 4.1 <IR{(‘_")>‘-‘ I +L B ‘:—(/_.‘@PB"")]‘ .. -.}\eéé :
) . ~ i=l I; rg( ¢ (4.6)
and expand the components of the steady state ¢ngular velocity: ‘
’ where i
wl 32 17 . -
) goj(fli—z LJ C)-if"i é)(r/w»-" . . 2) s E(DU\‘-:D(Z))IL
, é I R A A 4.7
w1 ' r
Then ZO (€’ is a centred Gaussian random variable obeying
[3

. 7] ¢ < -5 !
¢* <é\9 (£) o 'zs)> = 0, "-‘; Y {4.3)

D(u R T D(”. ’701 T n 0T
On the other hand .
—
/. /

, i By (4.8)
: 7 :
kA
’ ™ D (7'}__ ’KT I 5]'\) ‘7,53 (/77_,' + 7)-;) - 7)7[ /i;)z .f. EQE« + ?)3 )
 ta, > = é‘w [+L AL !

T ] Y
~ JII’&I; ! "Bl E’;“ B: {gg_ "/' gg/
(4.4)
P

B 1t
L] G gt v
T

L] | 1 %ww <%, +] B33%)-27
D 2
4 ; . £ 3 : gr
» Jj,If (13} t B -8,)" b 5By (3, + % BE B (54+E) w9
where MR is a2 cyclic permutation of 1, 2, 339)L — ( 17‘ ’ ls)”) ) ] -4(2 ko)
) T ‘ .
We immediately make some simplifications. In order to calculate I’ P’ (‘B"'-{— )57'
relaxation times we shall work in the three—dimensional representation

given by (3.34). From these we deduce that
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(2) {
4 .
Thus @ is a correction to \@ of cnamnk . The same is true of

Fd £

the summation terms in (4.6) with respect to H . We must therefore

ol
restrict our calculations for the asymmetric rotator model of the molecule

41)

to corrections of just one order in ‘D\ to the Debye~Perrin limit

—55—

4.,2. - Calculation of A\ Mmml A‘,tl:.HY\L....,E,V

We return to (2.33) with & given by (4.1)and deduce that

I

A«%NQ&.E E&&V = N et v@\&,vw +<s Fio DN S Y

) (4.10)

+ 45 F 10 coteypord oy SR,
On account of the restricted order of approximation available monA%v\?Vwﬂ
the case of an asymmetric molecule we mrmﬂ.. not proceed beyond the terms
written explicitly in (4.10). In the spherical model AM NH.N:M:g P‘LW?Q\C\V\;
which is proportional to the ensemble average of a sum of products of

three angular velocity compenents, vanished because they were centred

9
Gaussian variables. In the present case hb.\m\; is given by (4.2) mﬂabrv
{

3 = l‘w.\&\lﬂv ] ay
. ?L [ " - ¢ * . NIH Nr\u
m&. (v) = \T ) € &\, (&) %LWL Nxﬁl (46.11)
where r.v vdx \m is a cyclic permutation of 1, 2, 3 and
< T .\N . .
p. = '&'{lwwl (4.12)

[

1.

Then from (2.35)
. ? I
(31 \ . , . )
Am qu\t@.\la.\&\/ =< m\W .Hw oﬁnﬁatﬁa\@rw\&v mﬁ,. S (4.13)

On substitution from (4.2)

. N : 4 [ A .
A wa. \m\\v&w\ﬁvvﬂx\b_v = WkAﬁQ. Am.\bu\shmﬁynttvxﬁv,ww\ nw.»\n\&s\h\bw“ \EV
(4.14)

‘ 0
_\Z‘vE% [ WL_Q?“.:.VL«. v,

‘m, mtAﬁhua v
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and we see from (4.3) and (4.11) that cach term on the right hand side
vanishes unless \EV v, ~ are 1, 2, 3 in some order. Moreover
T T N | e xhu AP -2 =) :
L d\L - SN ﬁﬂ,\n‘xvt,dkﬁ\;-v. H\.U\A\ﬁ\&. .N\HN
gLy (4.15)

- \K ?\Ax@v \N\}.\\,sw\ 2 e fixl = w\%\ =/,
In evaluating .\ MN:\.V (& S\:GVHHO,J (4.10) we already know
= i
A...\L \m\v:\ \3\ from (4.4) and we now calculate A 4 T Q\:L \lsr\PuoE
(4.13) and (4.14). Employing (4.3) and (4.11), and remembering that

\RV t» A are all different we have

ﬁ l.uw ﬁ)! l 0o 1) o
np\s\,& B ZAEI L) 6) L0, (8, 1w >l

DLlAT) LBt ,mww PR AL

\m«» .NL; o

- m.& ey i) wy U022

st

2 t
al Bt )5 R A - T
] J T gt [ BRI (R BB
K - s w» oL RN SR Y )
1, et M BerEe -t |
l"\N\A ~d !'J N
= w\;\,\mlﬁb .Q,\"W}ﬁ\,\v ,mluw\rﬁ . 'h\:w: v\\mr,l.mblmuﬂﬁ
P&M\« ;~r.«b\>.~ﬁ V<¢|W\ﬁ ﬂ\\.?\ W_\ + W..ﬁ
+ %W\ﬁﬁ&,\wwklm('wv*vﬂ) - \%NW@—\ w\vm\
ﬂm\x\wv\ - .\\WJ\.
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Similarly we deduce that

ﬁtAmn\ o ﬂv \\.\w \ﬁ ) n\v :\\v

LAED el e Bt . o BB =82,
M rHt ¢ «N& + _\W.\+«W.ﬁ «W\:l.wv\ + W&. ?

mtﬁr\, 16) e e w0,
(£7)° e %te -5
Lo L But B +B

On using the relation

M/\, \/c - \.ﬂ).
LI 1]

which is a consequence of (4.12), and (4.15), we conclude that

s Fioamltla ?v

f =¥
== \M@h o\u.ﬁaiﬁ\ N ﬁ\ BB~ B4 Br)

:\mim e Amzwx.ml v (4.16)
r@lﬁ;\ﬁ\ + IW\.WI

it,‘i, Be(3,-B,) :,Z w,i

\QL w~«
%\ﬂ (i . - WA.\V ;
H_wmnwwzmﬂmnrﬁﬂmnymﬁL:mOm A\ m w«lwﬂ%; mﬂyﬁxsvvv mo,»?Hov

From (2.35) . ¢ o
1
ﬂ«d £) W L) wy \L,v < lM Munﬁ h«ﬁ %A&ﬂ\@ﬁ,ﬁ\& (& w18

48 x (4.17)
lA&A\NI.VhQ» :r.uvvmﬁwr\mc\nf\k\rcvw-
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Since it was pointed out at the end of the previous subsection that we

must restrict our calculations to corrections of order u\ , we replace

3 . (i) . . .
each &J; in (4.17) Ly & E_,._ . Then proceeding as in subsection 3.1

for the sphere we now obtain

4

i)
e F AQE [E) e, 000>

(‘0

T \ﬁ
b\S ’ ¥ ’

L1,

P

‘vmtm. :r\»)vv«.ﬁ , o \x;\w\vﬁmn

T..\.m %xv v\» -k nv

'—"’\

T,

4 \v « (1- e B 1~ E\M wm (4.18)

<)

|“ww.l

0 o
4.2.  The Laplace transform of A _/\WVPV..NW\?\\?\V

)
-s5€ . .
In calculating % 4 Avm\m,\gk:\x rov\oév from (4.10) and
© <
(4.6) it must be remembered that g defined by (4.7) is not a multiple
of. the identity, and so care must be taken in performing integratioms.

It may be shown n:mnbwv

. Gt
L., 7 .D. (4.19)
PN

The integrals that appear in our calculations are of the types

w0 -
Mu..%\snn‘rmm. %ﬁ.ﬂ\\%w» 66 ﬁ\ mmwmvv‘%.vnvb

. 0 i,
Ve write the first integral as Rc .\N.A.\w, Nuﬂmu.l S.\Mum\uun@. Since

L (G-iTT i -1 = (o) vl +& s
= %\h@m MH\NV) &~ Huﬁum
[“eww LG+ (G -] )" i sy [-eToc] ~(6=02)7

..rv o

\

Now

V\ &o%&«p@ = 0»

ol

\mi, P m\.ﬁchM)p Ww

&

by (4.19), and so
~ Ch -1
- I .
\c @ »4:@ » HE = m‘l Do«f S\.Hxv (. 20)

It may likewise be shown that

o
Rc & &;«ﬁm m\ Q+.®Hv»w (4.21)



Equation (4.4) yields : ' '
4 ¥ y ) j,( / In order to write down the matrix representatives of the operators
r /o) - L/ ( «r;f’ l Z~ Bt £~2, )f]
. 1 "1’ Iﬁ L 70’ ,.) £ g’ \ occurring in (4.22) in the representation defined by (3.34) we put
<ca [t)ew (.,)> o € T s - g ’
/ ,M L I),,,LJ- (gf + B -2.)

:D(/‘ 2{4) _Pe . (4.23)

Using this equation, (4.16) and (4.18), and employing (4.20) and (4.21)
2 Then from (4.5) and (4.7)

we deduce that -
f” {
’Sf_< )\/t/u/ lt)ew, 703> (‘f z? *-;D‘r-a 0 "i—D”'?(Zl I
T a7\ -] - | = :
- &;J £ (6413, +9L) +§ /—(4» BAgT) LGBl )} 227 0 PERRLY o
/"“ . 1L
7 v \'\ ’L@FD"—Z‘D’V © %j),'f%.?“"‘"h"\\\g
I(} Lf) L {P( +E, H]/) 4 +./7r5[)( R+B- oL
; VTP -~ " () - +’ ’. F 7
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Omitting subscripts for the moment we may say that when S= Din (4.22),
L R - . .
. é‘;/]) J,, j' }»7(:) i< )..> [” or rg\+>]1> ‘ ( ¢ 1‘{:37 ‘i“:] 'Z‘)"’ . &= (Bor a)\p except for = Gl'f‘.flwhere a=0 . SJ.nch—.}/‘gapproxmmtely
’r/.lv (‘Bﬂ gv L ‘( . iy ')'I) ,} by (4.8), (4.9) and (4.23), and since C; defined by (4.7) is of ordch N
- -6 - < - -
4 ~ the non-vanishing elements of (— G+ L’r7) ’ are in general of order T ’
the first term on the right hand side of (4.22) is of order/%T/(_L}’")a'xd
the others are of order )f/ﬁ J /(17) Howeveré‘() is of order I}'/(/KT}
In the above, J7 and 7 are the numbers such that f; \T)/A is a cyelic " and so produces a contribution of order: /ﬁT/(I B), as it did in eq. (3.29)
permutation of 1, 2, 3 and v is the number which with distinet values of for the sphere ~

A and V. constitutes the set 1, 2, 3.
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4.3. Calculation of spin-rotational relaxation times

A prerequisite for the calculation of the different spin-rotational

oh e
relaxation times is the value of (_L €;>€<'R{t)bﬁJf)M%hv>dt)required for
) R A (Y
substitution into (2.14). It is ceen from (4.22) that in the integral
there occur operators which are more complicated than t%ewv d{:f g 4.0 ) ;7 T
j B PR T e L0 Btlv), iy

met in the study of the spherical rotator. A graat calculational difficulty

arises from the presence in j <f Ez{t) /tjfwyAv)) A" of terms like

B
('{2) /«J; . This difficultr disappeared in the spherical model vhare
T i . . /‘ e - .
the .J,\J, ~terms did not contribute to L (<) . 1n order to derive a
[
satisfactory expression in the du.J; ~germs it would be essential to

7/
extend the value of <;12(t9:> in (4.6) to at least one higher order 1n)
. 39 ’
This would be laborious but the means of doing it is available ).
It is not difficult to see that, when the results of the presenc
section are applied to a spherical molecule, we obtain agreement with those

of Section 3. Indeed (4.24) reduces to

-
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Then the last term in (4.22) is a multiple of :[ALI“ and so, as in subsection
L4
3.3, gives no contributicn to (fe) . To order }Vﬁ |/?Ij;) the other

i R
terms in (4.22) give to f <Q[€) whlt/w‘)ia’/>[.{7.f— the contribution

- 4T J,;”T)L. - r,) -)
). L ~[ V(2D
5.1 % [t 27 (b ) (D700 22

.

l) may be aparoylmaced by’}/ %Z and thus the last expression becomes
Lo /Z e,

L G-r ) d4rel ] erel

which agrees with (3.39) in the approximation of the present section.
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At the present state of our knowledge the most that one can do
for a totally asymmetric molecule is to explain how the various relaxational
times associated with spin-rotational interactions are related to Ci;)
through the equatioms (2.5), (2.6), (2.13), (2.17), (2.27), to show that
Cﬁ;z is related by (2.14) to the Laplace transform of <:qa[t)tgjt)¢q/(c;t>
and to express this by (4.22). The investigation is entirely theoretical.
Since, as has been pointed out in a recent study of the dielectyic
relaxation of asymmetric polar molcculeséh), there is no obvious way of
determining j;h IiL’2537 a comparison with experiment is not yet possible.

Special cases of the asymmetric molecule, other than the spherical

model, are being currently investigated.



6. CONCLUSION

It has been found possible to apply the averaging procedure used
previously for functions of orientational variables to products of functions
of orientational and angular velocity variables encountered in the study
of nuclear magnetic spin-rotational relaxation phenomena. An analytical
method has been developed and this yields results which are in agreement
with those obtained, by very different methods, by Hubbard and by McClung
and his collaborators for a rotating spherical molecule. It has been
shown how the method could be employed for a molecule of arbitrary shape,
and attention has been drawn to szome of the zalculational difficulties that
would be encountered. It may be concluded that the mathematical approach
based on the stochastic rotatign opcratormis adequate for the investigation
of the nuclear magnetic relaxation processes arising from spin—lattice,

intramolecular dipole-dipole, quadrupole and spin-rotational interections.
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