DIAS Access to
Institutional Repository

Title	Rings of Monopoles with Discrete Axial Symmetry: Explicit Solution for N=3
Creators	O'Raifeartaigh, L. and Rouhani, S.
Date	1981
Citation	O'Raifeartaigh, L. and Rouhani, S. (1981) Rings of Monopoles with Discrete Axial Symmetry: Explicit Solution for $\mathrm{N}=3$. (Preprint)
URL	https://dair.dias.ie/id/eprint/949/ DOI
	DIAS-STP-81-31

RINGS OF MONOPOLES WITH DISCRETE AXIAL SYMMETRY: EXPLICIT SOLUTION FOR $N=3$

By
L. O'Raifeartaigh and S. Rouhani

Dublin Institute for Advanced Studies
Dublin 4, Ireland
\qquad

Abstract. It is shown that, in contrast to continuous axial symmetry, discrete axial symmetry admits scparated $\mathrm{SU}(2)$ monopoles in static equilibrium. The Corrigan-Goddard conditions on the parameters are enormously simplified and for 3 equidistant monopoles are identically satisfied.

The Corrigan-Goddard (CG) Ansatz (1) for n separated SU(2) monopoles in static equilibrium contains $n(n-2)$ conditions for $n(n+2)$ parameters. in accordance with the index theorem. However the $n(n-2)$ conditions are such that, in general, it is not possible to solve them explicitly or to relate the independent parameters directly to the physical properties of the system. For this reason it may be of interest to simplify the conditions by imposing symmetries on the system.

The purpose of this note is to consider those symmetries that can be implemented by linear transformations of the Ward-Atiyah S-variable. ${ }^{(2)}$ These are the reflexions of the cocrdinates x, y, z and the rotations φ around the z-axis. However, since the group of continuous rotations around the axis does not admit separated nonopoles, ${ }^{(3)}$ only the discrete subgroups R_{k} where $Y=2 \pi \mathrm{~m} / \mathrm{k}$ $m=1 \ldots k$ will be considered. It is found that for R_{n} and R_{n-1} the co corditions simplify enormously and that, for R_{n} and small values of the parameters at least, the system described is a (non-zero) ring of monopoles with equal spacing. In particular for $n=3$ and R_{3} the co conditions are automaticaily satisfied and there is an explicit solution (more precisely an explicit transition matrix) which describes 3 equidistant monopoles. The fact that the discrete axial symmetries R_{k} admit separated monopoles located at the discrete angles of the group, throws some light ${ }^{\dagger}$ on the rather surprising earlier restit (3) that continuous axial symmetry does not admit separated solutions, since the continuum limit of an R_{k} system would require an infinite number of monopoles on the ring and hence an infinite energy.

Let us first recall the essential features of the co-Ansata. Let

$$
g=\left[\begin{array}{ll}
\rho & (-3)^{-1} e^{-k_{n-1}} \tag{1}\\
s^{n} e^{-k_{n-1}} & H_{n} e^{-k_{n-1}}
\end{array}\right]
$$

be the Ward transjtion matrix ${ }^{(4)}$ and let

$$
\begin{equation*}
H_{n}=\gamma^{n}+a_{n-1} \gamma^{n-1}+\cdots+a_{1} \gamma+a_{0}=\prod_{r=1}^{n}\left(\gamma-w_{r}\right), \gamma=2 \xi+x_{+} \xi-x \xi^{-1} \tag{2}
\end{equation*}
$$

where the coefficients $a_{r}\left(\zeta, \xi^{-1}\right)$ are polynomials of degree $(n-r)$ in ζ and ζ^{-1} and are hermitian in the sense that $\overline{a\left(5, \bar{s}^{-1}\right)}=a\left(-\bar{S}^{-1},-\bar{\xi}\right)$ Then the $c G$ Ansatz consists of choosing
${ }^{\dagger}$ Note that a previous interpretation in which the continuous axial symmetry becomes twisted as the monopoles separate is incorract. (9)
construct the following table: quantity $C_{r}(5 ; 5)$ to denote either a_{r} or b_{r}. In terms of C_{r} one can then of the a_{r} is inherited by the corresponding b_{r} and hence we can introduce a

 of ζ alone. Thus the invariance may be expressed completely in terms of $a_{r}(5,5$) are invariant (or reverse their signs) under the transformations reverses its sign) and that such will be the case if the coefficients invariant with respect to these transformations if H_{n} is invariant (or
 reflexions and φ-rotations correspond to $\zeta \rightarrow 5^{-1}, 5 \rightarrow-5^{-1}$ and $\xi \rightarrow \zeta e^{-i \varphi}$

 The linear transformations of the ζ-variable mentioned above are first ($2 \mathrm{~s}+1$) Laurent moments of the b_{s} are zero. in (4) as the CG-conditions. Note that the conditions simply state that the venient to treat c as a free parameter and regard the right hand equations where c is a constant (identified as the Higgs constant). It will be con-

$0=\left(\frac{l e}{1-x+e}\right) \frac{\Sigma}{5 p} \oint \frac{1 R e}{1}$

$\mathrm{n}(\mathrm{n}-2)$ conditions for them may be expressed as
 for odd n. The coefficients $b_{r}(\zeta, \zeta)$ in (3) are not polynomials, but,
as will be seen later, they inherit the symmetry properties of the $a_{r}\left(5,5^{-1}\right)$
 and the integers n_{r} are such that K_{n-1} is linear in γ in the axisymmetric

 $10=s_{-j} \frac{\zeta}{S p} \oint \frac{11 e}{T}$
automatically satisfied for $m \neq 0$ leaving only the ($n-2$) conditions

 the ($n+2$) parameters to n. Note that when \in is real, the system is x-reflexion be made real by a suitable choice of azimuthal angle $\left(\zeta \rightarrow \zeta e^{i \varphi}\right)$ thus reducing

R_{n}-invariance reduces the polynomial H_{n} in (2) to the form $S \rightarrow S$ for $\varphi=A n, m=1, \cdots, n$ and the only powers ξ° for $l \leqslant n w h i c h$ are
invariant with respect to such rotations are ξ° and ξ^{n} one sees that $\zeta \rightarrow \zeta e^{-i \varphi}$ for $\varphi=2 \pi m / n, m=1, \ldots, n$ and the only powers ζ^{ℓ} for $\ell \leqslant n$ nhich are

 and (x and y) reflexions the hermiticity requires that the C_{r} be real Here and throughout m is defined so that $n=2 m$ or $n=2 m+1$, Note that for x, y

$\left(\tau+u_{1}\right)\left(-u_{1}\right) \tau$	$(1+\mu \tau)(1-4)$	$(1+u)(r-u) \frac{\tau}{T}$	$(1+u)(z-u)^{\frac{1}{1}}$	$(1+u)(r-4)^{\frac{\pi}{i}}$	suoţtetpuos fo $0^{\text {on }}$
$(\varepsilon+m) \frac{\tau}{4 m}$	$(\varepsilon+m i) 4$	$(\varepsilon+u) \frac{\tau}{u}$	$(\varepsilon+u) \frac{\tau}{u}$	$(\varepsilon+u) \frac{\frac{z}{u}}{u}$	s.azamered fo ${ }^{\circ} \mathrm{N}$
	$\left.0=(S)^{1+1 x^{\prime}}\right)$		$(\underline{S}$	$\left.\left.(\underline{r})^{\mu}\right)=(\$)^{+}\right\rangle$	иот̧+! puos
e^{e} pue $f^{\prime} x$	STtuedterex	\&	κ	x	иотхәтғวу

to first order in ϵ the Ansatz $\quad H_{n}=H_{n}^{s}+\epsilon\left(s^{n}+s^{-n}\right)$ where H_{n}^{s} is the axisymmetric Ansatz, actually satisfies all the CC-conditions and hence furnishes an explicit solution for all n .

The R_{n}-invariant Ansatz (5) is not automatically z-reflexion invariant and if we impose z-reflexion invariance it reduces further to

$$
\begin{equation*}
H_{n}=\gamma^{n}+a_{n-2} \gamma^{n-2}+\cdots+a_{n-2 m} \gamma^{n-2 m}+e\left(\zeta^{n}+(-\xi)^{-n}\right) \tag{7}
\end{equation*}
$$

where $\mathrm{n}=2 \mathrm{~m}$ or $2 \mathrm{~m}+1$ and the azimuthal angle has been chosen to make ϵ real. There are only $\mathrm{m}+1$ parameters in (7). On the other hand, from the table 1 we see that for z-reflexion invariance the $b_{2 r}(\xi)$ are odd in ζ and hence the odd-order conditions in (6) drop out, leaving only the ($m-1$) conditions

$$
\begin{equation*}
\frac{1}{2 \pi} \oint \frac{d s}{5} k_{2 s}(s)=0 \quad s=1 \cdots m-1 \tag{8}
\end{equation*}
$$

for the ($m+1$) parameters. (Actually, for even n the $f_{2 r+1}(5)$ are identically zero). Thus the combination of R_{n} and z-reflexion invariance reduces the $n(n-2)$ conditions for $n(n+2)$ parameters to ($m-1$) conditions for ($m+1$) parameters, where $n=2 m$ or $2 m+1$. In particular, for $n=2$ and $\dot{n}=3$ there are no conditions.

The Ansatz (7) is hermitian, has total monopole charge n, and is regular in the neighbourhood of its axisymmetric'limit if the limit is regular (which is true for low values of n and very likely for all n) ${ }^{(5)(6)}$. One might ask however, what kind of configuration the Ansatz actually describes. The R_{n}-symmetry implies that any monopole (zero of the Higgs field $\Phi(x)$) off the z-axis must be accompanied by $n-1$ other monopoles all lying on a ring. Hence the Ansatz must describe either a ring of monopoles with equal spacing or a set of monopoles on the z-axis. Actually the monopoles on the z-axis would have to be at the origin since separated monopoles would be inconsistent with the fact that in the axi-symmetric limit the zero at the origin is nondegenerate in the z-direction ${ }^{(5)(6)}$. (Note that for odd n the z-reflexion invariance would force at least one monopole to lie at the origin). But now a direct computation of $\Phi(0)$ for small ϵ shows that it is not zero for any n and hence the system describes a non-zero ring of monopoles. (The computation is faciliated by noting that because of the R_{n}-symmetry we have $\Phi(0)=\left|\Delta_{0}^{-1} \partial_{+} \Delta_{n-1}\right|$ where Δ_{r} are the usual moments ${ }^{(6)(7)}$, and that only the coefficients ${ }^{2}$ and b_{0} of K_{n-1} enter the computation. Furthermore $f=0$ for even n and $b=-\epsilon\left(\zeta^{n}-\zeta^{-n}\right) / a_{1}$ for odd n . In fact for odd $\mathrm{n} \quad|\Phi(0)|=\epsilon \quad$).

As illustration let us consider $n=2,3,4$. For $n=2$ the Ansatz (7) reproduces. the separated 2 -monopole solution of Ward. For $n=3$, by suitably normalizing the coordinates we have

$$
\begin{equation*}
H_{3}=\gamma^{3}+\gamma+E\left(\zeta^{3}-\zeta^{-3}\right) \quad \text { and } \quad K_{2}=\frac{\left(\gamma-\omega_{3}\right)\left[\left(\gamma-w_{2}\right)\left(w_{3}-w_{2}\right)+\left(\gamma w_{1}\right)\left(w_{3}-w_{1}\right)\right]}{\left(w_{2}-w_{1}\right)\left(w_{3} w_{1}\right)\left(w_{3}-w_{2}\right)} \tag{9}
\end{equation*}
$$

where $w_{1}+w_{2}+w_{3}=0$ Equations (4) then reduce to

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint \frac{d 5}{\zeta} \frac{\left(\omega_{1}^{2}+w_{2}^{2}-\omega_{3}^{2}\right)}{\left(\omega_{1}-\omega_{2}\right)\left(\omega_{2}-\omega_{3}\right)\left(w_{3}-\omega_{1}\right)}=c \text { and } \quad \frac{1}{2 \pi i} \oint \frac{d \zeta}{\zeta} \frac{2 \omega_{3}-\omega_{1}-\omega_{2}}{\left(\omega_{1}-w_{2}\right)\left(\omega_{2} \omega_{3}\right)\left(w_{3}-\omega_{1}\right)}=0 \tag{10}
\end{equation*}
$$

The first equation simply determines c for the given coordinate normalization and the second is the CG-condition coming from (8). However because the integrand is odd ${ }^{\dagger \dagger}$ in ζ the CG-condition is automatically satisfied. Thus the Ansatz (9) constitutes an explicit solution. It obviously describes 3 equidistant monopoles.

For $\mathrm{n}=4$ by suitably normalizing the coordinates, we have

$$
\begin{equation*}
H_{4}=\gamma^{4}+\gamma^{2}+a+E\left(\zeta^{4}+\zeta^{-4}\right), \quad K_{s}=\frac{\left(\sigma^{3}-3 i 0^{3}\right) \gamma+(\sigma-3 w) \gamma}{w \sigma\left(w^{2}-\sigma^{2}\right)} \tag{11}
\end{equation*}
$$

where a, ϵ are parameters and $\pm(\omega, \sigma)$ are the roots of $H_{4}=0$ for γ. Since K_{3} contains no even terms in γ, the odd coefficients b_{r} in (3) are zero, and ${ }^{3}$ so the equations (4) reduce to

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint \frac{d \zeta}{\zeta} \frac{\sigma^{2}-3 \omega^{2}}{\omega \sigma\left(\omega^{2}-\sigma^{2}\right)}=c \quad \text { and } \quad \frac{1}{2 \pi i} \oint \frac{d \zeta}{\zeta} \frac{3 \omega-\sigma}{\omega \pi\left(\omega^{2}-\sigma^{2}\right)}=0 \tag{12}
\end{equation*}
$$

As in the $n=3$ case the first equation simply normalizes c relative to the coordinates. Thus there is one CG condition. It is not automatically satisfied and relates the parameters a and ϵ. The system described is a set of 4 monopoles located at the corners of a square.

Finally let us consider R_{n-1}-symmetry (for $n \geqslant 3$). Since the only powers ξ^{e} for $l \leqslant n$ which are R_{n-1}-invariant are s° and ξ^{n-1} we see that R_{n-1}-symmetry reduces the polynomial. H_{n} in (2) to

$$
\begin{equation*}
H_{n}=\gamma^{n}+c_{1} \gamma^{n-1}+\cdots+a_{n-2} \gamma^{2}+\left[\alpha_{1}+\beta_{1} \zeta^{n-1} \bar{\beta}_{1} \zeta^{n-1} \gamma^{n}+\alpha_{0}+\beta_{0} \zeta^{n-1}-\bar{\beta}_{0} \zeta^{n-1},\right. \tag{13}
\end{equation*}
$$

where all the parameters are independent of $\}$ and only the β^{\prime} ' are complex.
${ }^{\dagger+}$ To see this more explicitly note that $\omega_{3} \leftrightarrow-w_{3}$ and $w_{1} \longleftrightarrow-\omega_{2}$ as $\zeta \rightarrow-\zeta$ For example for small $\epsilon, \omega_{3}=-\epsilon\left(\zeta^{3}-\zeta^{-3}\right), \omega_{1,2}= \pm i+\omega_{3} / 2$.

By suitably choosing the origin on the z-axis and the azimuthal orientation, one of $\left(\alpha_{1}, \alpha_{i}\right)$ can be set equal to zero, and one of the β_{i} made real. Thus (14) contains essentially ($n+2$) parameters. On the other hand, because the roots w_{r}, and hence the coefficients b_{s} in (3), are R_{n-1}-invariant, the Laurant expansions of the b_{s} are expansions in ξ^{n-1} and ξ^{n-n}. Hence the CG-conditions (4) are automatically satisfied for m;o, and reduce again to the zero-moment conditions (7). We then have ($n-2$) conditions for the ($n+2$) parameters in (13).

The R_{n-1} symmetry implies that (13) describes a ring of $n-1$ monopoles, together with a single monopole on the z-axis, or else a set of n monopoles which are all located on the z-axis. The analogy with the R_{n}-case, suggests that it describes the ring for non-trivial values of the parameters, but we have verified this only for the colinear $n=3$ case. Assuming that (13) does describe a ring, the 4 free parameters could be identified as the Higgs constant, the radius of the ring, the distance between the single monopole and the ring centre, and one internal variable. For example, for $n=3$ we have, for a suitable choice of origin and orientation,

$$
\begin{equation*}
H_{3}=\gamma^{3}+\left[\alpha_{1}+\beta_{1}\left(\zeta^{2}+\zeta^{-2}\right)\right] \gamma+\alpha_{0}+\beta_{0} \zeta^{2}+\bar{\beta}_{0} s^{-2}, \tag{14}
\end{equation*}
$$

where only β, is complex. There is only one CG-condition, namely the one shown in (12), and this condition is not automatically satisfied.

In contrast to (8) the Ansatz (13) is not automatically y -reflexion invariant, since that would require that both β^{\prime} 's in (13) be real. The Ansatz is also not z-reflexion invariant and z-reflexion invariance reduces it to

$$
\begin{align*}
& H_{2 m}=\gamma^{2 m}+a_{2} \gamma^{2 m-2}+\cdots+a_{2 m-z} \gamma^{2}+\beta\left(s^{2 n-1}-s^{1-2 m}\right) \gamma+\alpha, \tag{15}\\
& H_{2 m+1}=\gamma\left\{\gamma^{2 m}+a_{2} \gamma^{2 m-2}+\cdots+a_{2 m-2} \gamma^{2}+\left[\alpha+\beta\left(z^{2 m}+s^{-2 m}\right)\right]\right\}
\end{align*}
$$

for even and odd n respectively. In (15) the azimuthal orientation has been chosen so that the single β which occurs is real, and the system is automatically y-reflexion invariant. There are $m+1$ parameters in each case in (15), and since the z-reflexion invariance means that the odd-order conditions in (9) are automatically satisfied, there are ($\mathrm{m}-1$) conditions for these ($\mathrm{m}+1$) parameters. Since the single monopole and the ring-centre must now coincide, the 2 free parameters are presumably the Higgs constant and the radius of the
ring. Note that for odd n the expression in (16) is just γ multiplied by the expression for even n in (7). For $n=3$, (15) reduces to

$$
\begin{equation*}
H_{3}=\gamma\left[\gamma^{2}+\alpha+\beta\left(\zeta^{2}+s^{-2}\right)\right] \tag{16}
\end{equation*}
$$

the CG-condition (12) is automatically satisfied and the explicit solution is the same as the colinear $n=3$ solution found in a different manner by Brown, Prasad and Rossi ${ }^{(8)}$.

In conclusion it might be remarked that one could continue along the same lines and consider R_{s}-symmetry for all $s \leqslant n$. However, for $s \leqslant n-2$ the CG-conditions for the special moments $m=5,25,35 \cdots \leqslant n-2$ are not automatically satisfied so the system is a little more complicated.

-8-

REFERENCES

(1) E. Corrigan, P. Goddard, Comm. Math. Phys. 80, 575 (1981).
(2) M. Atiyah, R. Ward, Comm. Math. Phys. 55, 117 (1977)
(3) P. Houston, L. O'Raifeartaigh, Proc. Conf. Diff. Geom. Methods, Clausthal 1980 (ed. Doebner, Springer, Berlin 1981).
(4) R. Ward, Comm. Math. Phys. 79, 317 (1981).
(5) M. Prasad Comm. Math. Phys. 80, 137 (1981).
(6) L. O'Raifeartaigh, S. Rouhani Schladming 1981 Lecture Notes, Acta Physica Austriaca (in Press).
(7) E. Corrigan, D. Fairlie, P. Goddard and R. Yates, Conm. Math. Phys. 58, 223 (1978).
(8) S. Brown, M. Prasad and P. Rossi, M.I.T. Preprint.
(9) L. O'Raifeartaigh and S. Rouhani, Phys. Lett. 105B, 177 (1981), Errata, 105B, 489 (1981).

