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1. Introduction

In [15] J.-M. Souriau showed that, when suitably completed, the phase

space and flow of the Kepler problem in n-dimensions could be identified withA non—unitary S-K—S pairing of polarizations

(Revised version)
-T—:s(the cotangent bundle of the n-sphere minus its zero section). and its

geodesic flow (for the standard metric). This extended a similar result of

3. Moser [7] concerning the energy surfaces. Souriau also observed that

had a complex structure invariant under the flow. In [10] I showed this complex3. H. Rawnsley

structure was a positive polarization for the natural symplectic structure of the

cotangent bundle and therefore determines a quantization of the flow [6, 13, 1].

T 5” has a real polarization, given by the cotangent fibres, but this

is not invariant under the flow. By using the method of moving polarizations,

School of Theoretical Physics 3. Elhadad [3] quantized the flow using a limiting procedure, despite an

obstruction to the formal pairing noticed by R. Blattner [2]. There is noDublin Institute for Advanced Studies

obstruction to the pairing of the real and complex polarizations, so we can useDublin 4, Ireland

the transformation defined by the pairing [2, 5, 6] to carry the quantization of

the flow from the complex to the real polarization. The generetor of the unitary

group so obtained on L. () is g [— + (‘vi — I ) / 1 J “ which has spectrum

(k - _
0,1,2.,.. . This agrees with the semi—classical spectrum

of A. Weinstein [16] but has different multiplicities.
Abstract

. .

The pairing of these two polarizations is of interest since it is not

unitary. It requires some tedious computations to establish it as a houndedTc half-form pairing of two polarizations of the I

linear operator between the Hilbert spaces of the two polarizations. It isKepler manifold is found and shown to define a bounded

closely related to the Laplace representation of spherical harmonics [8].linear isomorphism of the two Hllbert spaces, but is I
This paper is divided up as follows: §2 summarizes the theory of polar-not unitary.

izat1ons end half-form pairings and as an example I obtain Bargn’ann’s transforir [I

between the real and complex polarizations of Ci’. The reel and complex

polarizations of T S” together with the formal expression for their pairing

are described in §3. The rigorous existence and non—unitary nature of the pairing

is established in §4. An appendix contains the svaluation of some integrals

required in §4.
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I thank the referee for suggestions which have considerably improved the 2. Polarizations and the half-form pairing.

presentation of the original manuscript. Thanks are also due to R. Blatther If ,c.,) is a symplectic manifold, the space C(X) of complex

and D. Simms for their help and interest in this work. functions on X is a Lie algebra under Poisson bracket:

= •q.1+’ =

If determines an integral do Rham cohomology class, there is a Hermitian

line bundle L. with connection V over )( having curvature ‘.1CA) . The

space L of sections of L is a C(Xj-module where, for qec(X)srL

= V S + atTtcps

This representation of is known as prequantization. See [‘4) for details.

A polarization of is a subbundle F of the complexified tangent

bundle TX which is

Ci) isotropic,

(ii) maximal with respect to Ci),

(iii) integrable.

Condition (i) means ) vanishes identically when restricted to F’ . If

dim X = then by (ii) dim ‘fl. for all c X. If F° c. TwX.

denotes the bundle of covectors vanishing on , then Ci) and (ii) are equivalent

to ‘ maps F isomorphically onto F°. We shall take integr.hle to

mean: FF has constant dimension and F , F.-F are closed under the Lie

bracket of vector fields. Thus the complex Frobenius theorem of Nirenberg [9)

applies to F

There are two main examples of polarizations. If F F , F’ is called

real and is the tangent bundle of a Lagrangian foliation of (X,c..). The fibres

of a cotangent bundle X=T*frl is a typical example of this situation. At the

other extreme we may have FriF” = C . in which case T’X.= FF so that

an almost complex structure ‘‘ may be defined on )< in such a way that F’
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consists of tangents a-F type (o,’) Since F is involutive, T is integrable
and X becomes a complex manifold.

,?76FTX

defines a non—singular.symmetric bilinear form on the tangent spaces to X which
is Hermitian for the complex structure. The associated 2—form is 3 which isclosed, so that is a (pseudo-) Keehier metric. Thus any Keehier manifold isen example of a symplectic manifold with a polarization.

If F is a polarization of (X,c.3) it is called positive if

\/€rF,

Real polarizations are always positive, whilst if F,, F = 0 , F is positiveif and only if 3 is positive definite.

Given a polarization F of CX,c..) we can define the structure sheafFas the sheaf associated to the presheaf

u,CFCu)=CcA)=0,V!ErF (AcX open.

See [6, 12] for some properties of this sheaf. When F,, F , is the
sheaf of holomorphic functions on X

Let L,V be a prequantization of (X,c.) and F a polarization, then
we set

= rL I o,VF3

L is not stable under all cp C(X.) , but those functions ‘ which
preserve form a Lie subalgebra C(X) which contains CFCX) as a
maximal abelian ideal. The representation of CFCX) on r. L is called
the quantization with respect to F

If )( is open with -11(U,F) =0 and L1U t& with
(F =0 then there is a nowhere vanishing section of L. over ‘.A with
Vs ir.&() for all vector fields

. LU) can be
identified with CF(U) by cp q’s , q€.C((.A) and if l4 C(l.&)

In general it is difficult to make L. into a Hubert space, which
is desirable if this construction is going to be used to construct the quantum
mechanical model corresponding with the classical system described by (X • c..>)
Even when this is possible there is no way of comparing rF L with L
for different polarizations F and G . For these reasons B. Kostant intro
duced the notion of half-forms and their p4iring in [5, 6], and this was further
developed by R. Blattner [2]. There is no satisfactory theory at present unlessF end, are both positive. The formalism we shall use is that of [ii].

If F is a polarization of (X,c...,) , dim X =n , then is a
line bundle, the canonical bundle 1c of F • If Fr F=0 , is the
canonical bundle of the complex structure. For F positive the Chern class
of is determined by so that and are isomorphic as C.°° line
bundles for any two positive polarizations F and G . In this case I*cF® G
is trivial, and a pairing of with is a choice of a trivialization of
this bundle.

When F r G = 0 exterior multiplication defines an isomorphism of
with and the latter is trivialized by the Liouville volume

—

. Hence i-f o rkF,
, —<G we define by

t’<Icf3> 2. = o•iJ.

If FnE has constant rank then bC for a real integreble
isotropic subbund1 D of TX (positivity of F and & is required here).
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Let denote all € TX with &,(, D) = , then D c and c.j

induces a non-singular skew form ci/D on D/D making a symplectic vector

bundle. Since DcE , so projects to give a maximal isotropic

subbundle F/D of (O/t) . The same is true of and F/D r 0.
F/p

Then < and 1< are paired by exterior multiplication as above. We lift

this pairing to end r. as follows:

Let b Ce1 •-• , L) be a frame for . Then it can be extended to

a frame for and if oL.

— .

= a .. (tJ /) K.

Then does not depend on the extension h,... and if g GL.Ck,R),

= D$[ä’i Z1,

We can project €. K in the same fashion. Put

<ocr, 3 > (i,) — ,

Then (c*,i3> is a density of order — 2 on D and using the Liouville density

on TX defines a density of order 2 on

Let us suppose the space )</, of leaves of the foliation D is smooth

then V%.)/D is the pull back to >( of the tangent bundle T()</) . If

X,f3> is covenant constant along the leaves it will project down to a density

of order 2 on . If we could everywhere take a square root we should end

with a density of order I on X/D which would be a candidate for integrating

over to obtain a global pairing.

There are clearly many points at which this procedure can break down.

First, may not have a square root. It has one precisely when its Chern

class is divisible by 2 (in which case (X, ) is called metaplectic). Assuming

this is so, the symplectic frame bundle of (X, c...) has a double covering from

which a square root
QF

of can be canonically constructed for each positive

polarization F . These square roots have the property that
Qc0 QG j trivisi,

which is necessary if a pairing is to exist. See [2] for the construction.

Sections of are called half-forms normal to F

There is a pairing of
QF0 Q& into the densities of order - 1

on D such that for &4 e

1A@/4i VØ)>

The procedure now is to replace L by L
Qc

and define 1 L®Q1by

introducing a covariant derivative in
QF•

It is fortunate that
QF

has a

covariant derivative along F arising from Lie differentiation in <F. If

‘6F, oL€Tk then

defines V., in TKF and

= (VkJ1A.124 .øV,uL)

defines uniquely in . Then V1 + 1ØV defines a connection

along F in L® QW
and rF Lø is defined as before.

FFLQQ is paired with rLøc by pairing L with itself using the

Hermitien structure and with using . . Lie differentiation defines

a connection along D in the densities on , but Blattner found that, in

for some C C.

that(f)...,k)

Let be the projection of i,6 (Dty into (D/b) so

is a frame for • Put



—8-
—9—

general. V<’ cr> need not vanish for f . T L c, aL€Q

In all the cases we are interested in does project to a density on X/D
so we shall not investigate this point further.

To obtain the inner product in 1. Lø one pairs F to itself.

Let be the resulting Hubert space (which may consist only of zero). If

F F the inner product involves integrating over • If FnF 0
this is integration over

As an example take )<.=. c., where we take

as coordinates. Then F, spanned by’7p,,...,’4p,,1
, is

F.a real polarization and K is spanned by 94 -“ iq., so is trivial. Let

be spanned by (defined up to a global sign). If

,
vanishes on F’ and )=(e. If L,V is a pre

quantization of (X, c...,) , L has a nowhere vanishing section with

= -zct. ec) s0 • Also is closed, so

for all tF . Thus f LØQF has elements of the form

with . Thus is a function of
, .. only. then

S0 can be normalized so that I , and ( (Jd.t.,>
projects to the density 4q,,.. on fl . Thus

IL <p S. ® 1L 5C)

aIn tnis case then, = LCQ

‘b ‘V
A second polarization G arises from the identification

Put and let 6 be spanned by 3/i .. .
,‘d/3 . Then

is sparned by dz,A... and by (S .
.. Let ‘

so that < — 0 and vanishes on G . We have a nowhere

vanishing section t’, of L with r.9’) b0 . Then i’, o

for some nowhere vanishing function P0 . According to is given by

4C7Y0 =

which may be solved to give

=

Then lt.la M.t e-irlzL . Any element t £ F L® has the

form ‘tp &j (z1 ..,. with If’ holomorphic, and since

cLz,A... Adzk) A (dZ.A. .. ,‘. • we obtain

(chA. and

IL b W $, e4Lf’ -1tL’L11 I2L

It follows may be identified with the holomorphic functions on C’ square

integrable for the Gaussian measure ep —irizi’ i2.i

These polarizations 1 end G on are easily paired since F’r O

end (d AA4 ),(121A...,.dzvl) (Y”?, so that

Jz,,)”’> • Hence

<cp
, —

SL-(z1,.z.) -1ffL.47(Pj 13J.

As a map from LGto R this is formally given by

&‘p

If if’ is a polynomial, it is in and

dense in
‘G -r is densely defined.

polynomials, so instead we use that

If

‘‘

T11’. Since polynomials are

Proving T’ is unitary is messy using

has a reproducing kernel.

for all W
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§3. The real end complex polarizations of TS
and for any ‘4’. .

TS” can be identified with X = . 1.er1,x.eO,xOJ

The natural symplectic structure on carries over to cA) on X where.

I = xde. , regarding the components as functions

Then finite linear combinations E Z-’.,, are dense in 13also,
on X. For ‘n.-3 X is simply-connected but -iv,(X).= Z if n=2.

so we need only compute TW’., . This is a Gaussian integral and can be computed
To avoid technical complications arising from non-simple-connectedness we shall

explicitly:
assume ‘v .

__

X fibres over =
,

e,€R..1H e.e= ‘I 3 and the fibres are the
—

cotangent spaces with the origin deleted. Put .

Let I,cL (z.tc)’ , kxe,z) — then h€ C(’) and

Again (Ft T4) is a Gaussian integral and may be evaluated as
generates a flow which may be found to be

(T4ç,r1-k’,) = (1ç,W).
S — (C +42WtX,4Xt ,cKt —Litt fZLe)

Thus is an isometry on the dense domain above. If it has dense range it
This may be more neatly expressed by introducing . .

with

extends to a unitary map of onto . That the range is dense follows

z = iIe + i.x.
because is essentially the generating function for the Hal-mite

functions whoss linear combinations are dense in (w.’)
and then

Using the reproducing kernel.

S -
= p-’xr.t

(TX) w ) ap ,4. I

z injects X into £ and the image is the non—singular cone

= 5Cz) KC,) i1
z.z-o

M+I

with giving )< a complex structure. Let L{ ‘?+ be the usual decomposition of

the exterior derivative into components of type (1,0) and (0,1).
=

Of course z(,=O, . From (1) z.. so

Apart from normalization, K is Sargmann’s transform [1] from to
.4Ix.j’LZj l,c12 .ixld(xI_L1ZI,C.df-.
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(2)

This shows that ‘) is th Kaehler 2-form of a positive definite Hermitian metric

and hence that the tangents of type (0,1) form a positive polarization G with

G r G = 0 . Let F = ‘r&.rWç be the tangent spaces to the fibering wX— S”
Since cJ G= G , C . However, h C. (though Ie C).

Let L , 7 be a prequantization of (X,c) . Then c cL 9 implies

the existence of a nowhere vanishing section with = .iri. () SF.

0 is real so
II

is constant and
F can be normalized so ISp I I

Similarly 42 = dC.?I’cI) so we have with Vs=_4xLCS)3G.
But c s, for some nowhere vanishing function P and

— e) . — IzI

P

apart from a constant which we can set equal to 1. Thus ISG(i

2p_TrIzI This completes the analysis of the prequantization.

To discover whether half-forms exist,, consider . Let f be any

n-form on then is an n-form vanishing on F so ir5 eK Since

S is orentable we can choose nowhere vanishing, and then
‘

vanishes

nowhere, showing is trivial. Thus there is a square root QF’
, unique

since X is simply-connected. The same conclusion could have been reached from

[5] since it is known that when F is the tangent bundle to a projection itX—*Y
the mod 2 reduction of the Chern class of F’ is the square of the first Stiefel—

Whitney class of y’1 pulled back to )C . Then, if ‘‘ is orientable, the Cherri

class must be even.

a

f = c—I)

Expression (3) makes sense on ‘)< and gives

Let Q Q KF’ end be a

which exists since X is simply-connected.

may be handled similarly. We

expression analogous to (3) in terms of the

in order that dcr=0 one finds

-2.
W =. Ix.1,

o

If cX is the subset where e3 & , then on and

crlU

Thus cy’ vanishes nowhere and = 0 , ‘, €

and be the section of QG
with

in F’G

Thus 0 = ‘t’aC,cl — ‘ IZI and hence
Observe also that since r is a form of maximum degree on S”

,
0

so that ait’yo and hence
€ EF Fix as the Riemannian

volume on which in terms of the functions e% is

= (-I€3 deo...Aae...ASe (3)

where means that term is omitted. On the set where ek.o we can take

as coordinates and obtain

(4)

so

section of
QF

with /r®i1F ñ’
Then also ‘V pa for all in F.

look for a section o’ which has an

functions Z, instead of e( . arid

(5)

We have thus shown L& QF

.ir with
. C°(S’), and

Let
QG-Qe= &

so that 7j.=o forç

consists of sections of the form

V L QG
of the form
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irreducibly on , so is an orthogonal direct sum

in Lemma 1 of [0] I showed an holomorphic function on K

ç = with so that

be the algebraic sum. This is thus a dense domain in .

Let 14 ,WE - then is onto so ‘l.4•4•.

with • Then

SA) (AkPjx) .Qf-4rzI ii

Hence is unitary.

Now consider T =_1Dq,,and

= 1’ $ (Ak?)(1x1e.4LX)€,zp.ivIx) lxl

,- e a

..k’VL+Z
it

(2n-’) rC) F(k÷-()

and is Q’ times a unitary operator from

-p 1T1 = if these exist.

We calculate j, as

£ r+---) rC+-yl_.
v-o-s FC÷-)r(k43’f4) rck4 44.)

This is monotone decreasing so LT = b0 is finite, and

AW1 ba
a

But

rk+c) . . •

V(k r)

has the limit r , I or 0 as co according as is greater. equal to or

1’
LI

less than . In our case o = o /9 ‘Yl—1

50 O,+ +03_ ‘1f.3f.

so that iVtj
= (-D&S’Y 2”’, which is finite. Thus

bounded and hence we have established the rigorous existence of

Since IT is properly decreasing. ] is not unitary, nor a

unitary operator.

The flow preserves G, so lifts into L and satisfies OtSG

Also one finds from (5) that

Again1 G-(0.1c0) is O(v+-i”) —invariant and hence a multiple ,b,of the identity.

is found,as before,by setting o. b and integrating:

within . But

had an expansion

Let

Ito
Thus =

k
• Also rti

C)C) (,b) jSaC4)

by a simple rearrangement. Thus

(z1 4fl

with

• S ‘Co.) GCa,e) I’.LCao.)

k . ,.

GCo.,k’) = 5 (ictb4L)”j c--1tlX txl dx

T and are

the pairing.

multip)eof a

and so
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Thus quantizes on to give the unitary group with

To evaluate

Appendix.

-t
(2d

= cp-e)ivLt ‘qwb )
—For we have

write with
, 0 then=

— S Sso that YUT1 — .ax-’ + as the latter
group has the same spectrum and eigenspaces.

—k—Yr4I
(41 (a-i) I•

where

This is independent of & so integrating over o. gives

k “- — S S (&.€4 kó
S”

=1

S S (cLe.’+
.e=o s

But Oi-i ió transitive on the set of pairs (e) ,

.5

is independent of (e,) * We can therefore evaluate it by setting

• Then

= ‘j-.S--S’
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