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Abstract

Thz half-form pairing of two polarizations of the
Kepler manifold is found and shown to define a bounded
linear isomorphism of the two Hilbert spaces, but is

not unitary.
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1. : Introduction

In [1583 J.-M. Souriau showed that, when suitably completed, the phase
space and flow of the Kepler problem in n-dimensions could be identified with
T“J‘Sm[the cotangent bundle of the n-sphere minus its zero section), and its
gendesic flow (for the standard metric). This extended a similar result of
J. Moser [7] concerning the energy surfaces. Souriau also observed that T s
had a complex structure invariant under the flow. In [10] I showed this complex
structure was a positive polarization for the natural symplectic structure of the
cotangent bundle and therefore determines a quantization of the flow [6, 13, 141,

'To* S" has a real polarization, given by the cotangent fibres, but this
is not invariant under the flow. By using the method of moving polarizations,
J. Elhadad  [3] quantized tHe flow using a limiting procedure, despite an
obstruction to the formal pairing noticgd by R. Blattner [2]. There is no
obstruction to the pairing of the real and complex polarizations. so wo cen use
the transformation defined by the pairing [2, 5, 6] to carry the quantization of
the flow from the complex to the real polarization. Tha generator of the unitary
group so obtained on L% (5") is an[-A + (m-0) /4] 3 which has spactrum
AR (R+ (n- \)/1) JR=OL2 .0 This agrees with the semi-classical specirum
of A, Welnstein [16] but has different multiplicities.

The pairing of these two polarizations is of interest since 1t is not

unitary. It requires some tedious computations to establish it as a bounded

.linear operator between the Hilbert spaces of the two polarizations. It 1is

closely related to the Laplace representation of spherical harmonics [81.
This paper is divided up as follows: §2 summarizes the theory of polar-
izations and half-form pairings and as an example I obtain Bargrann's transform [1]

between the real and complex polarizations of ﬂZln = d:n. The real and complex

polarizations of —r:e 311 together with the formal expression for their pairing

are described in §3. The rigorous existence and non-unitary nature of the pairing
is established in §4. An appendix contains tha avaluation af some integrals

required in §4.
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2. Polarizations and the half-form pairing.

If (s('l.g) is a symplectic manifold, the space C(X) of complex

functions on X is a Lie algebra under Poisson bracket:
2, %] = T, % ; Todw = 49,

If ¢o determines an integrsl de Rham cohomology class, thers is a Hermitian
1ine bundle L with connection ¥ over X having curvature 2®i1 G2 . The

space I . _of sections of L. is a C(X)-moduls whera, for ?eC(X)' se L

P.s

I

Vz s + ani®s
®
This representation of C(X) is known as prequantization. See [#4] for details.

A polarization of (X, w) is a subbundle F of the complexified tangent
bundle TX® which is

(1) isotropics

(11) maximal with respect to (i):

(iii) integrable. .

Condition (i) means ¢O vanishes identically when restricted to F . If

dim X = 9m , then by (ii) dim F, =M for all e X. If F° o T*X®
denotes the bundle of covectors vanishing on F . then (1) and (11i) are eguivalent
to % Tl maps & 1isomorphically onto Fc. We shall take integrable to
msan: F;\E has constant dimension and F ., F+—F-’ are closed under ths Lie
bracket of vector fields. Thus the complex Frobenius theorem of Nirenberg [8]
applies to F.

There are two main examples of polarizations. - If F=F, F iscalled
real and is the tangent bundle of a Lagrangian foliation of (X,w). . The fibres
of a cotangent bundle K= T*M is a typical example of this situation. At the
other extren;‘e we may have Fn? = O, in which case TXC = FQE so that

an almost complex structurs T may be defined on X in such a way that =



T T T g

consists of tangents of type (0,1) .  Since F is involutive, J~ ‘1s intsgrable

and X ‘bscomes a complex manifold.

§¢3, 1) = ©w(JT,9) , 5.9 e TX

defines a non-singular symmetric bilinear form on the tangent spaces to X which
is Hermitian for the complex structure., The associated 2~form is ¢o which is
closed, 'so that 3 is a (pseudo-) Kaehler metric, Thus any Kaehler manifold is
an axample of a symplectic manifold with a polarization.

If ¥ 1s a polarization of (X, ) it 1is called positive if
~iw(3,¥) 20, V 1erF,

Real polarizations are always positive, whilst if F'n F = o, F o is positive
if and only if 3 is positive definite.
Given a polarization of (X,u) wa cen dafine ths structure sheaf ﬁ-’r_.

as the sheaf associated to the presheaf
U G U = {9e c(u)] 39= o, VEETFT,  Uc X open.

See [6, 121 for some properties of this sheaf. When Fa F =0 . @F—' is the
sheaf of holomorphic functions on X '
Let L,V bea prequantization of (X,w) and F a polarization, then

we set

L = {serp IVES=O,V§GFF}'

rp. L 1is not stable under all ¢ e C(X) , but those functions @ which
preserve r;:l.. form a Lie subalgebra C_::(X) which contains CFCX) as a
maximal abelian ideal. The representation of C'F (X) on ]"F L is called

the quantization with respect to F .

If I « X 1is open with H'(u,@F)=o and - wlu = 4G with
SlF =0 then there is a nowhere vaﬁishing section § of . over U with
V'Sg = 2wio(3)s for all vector fields 3. f‘F ( LIU) can be
. 3 {
identified with CF(u) by @ s s , @e cF(u) and if Yg CF(u.)

Wps) = f[lp,cpj-f;uri,(eﬁq)*-'l*’)?}s.

In general it is difficult to make FF‘ L into a Hilbert space, ‘which
is desirable if this construction is going to be used to construct the quantum
mechanical model corresponding with the classical system described by (X P) e
Even when this is possible thers 1s no way of comparing rF‘ L with r‘G L
for different polarizations F and G. For these reasons B. Kostant intro-
duced the notion of half-forms and their pairing in [5, 6], and this was further
developed by R. Blattner [21]. There is no satisfactory theory at present unless

F end G are both positive, The formalism we shall use is that of [11].

If F is a polarization of (X, o), dim X =2n., then A"F% i5 4
line bundle, the canonical bundle KF: of F ., If n E:O. KFis the
canonical bundle of the complex structure. For & positive the Chern class
of KF is dstermined by ¢ so that KF and KG are isomorphic as C® line
bundles for any two positive polarizations F . and G. In this case KFQTIE_G.
is trivial, and a pairing of KF with KG is a choice of a trivialization of
this bundle.

When F AG =0 exterior multiplication defines an isomorphism of

KFQ KG with A" T*Xc and the latter is trivialized by the Liouville volume

n = C_‘)n(wd/.zw%[ - Hence 1f g¢ r"KF' Be MK E  we define <-(|/5> by
i“((,p) A= O("F-’

If FaG has constant rank then Fag = Dc for a real integrable

isotropic subbundie D of TX lpositivity of F and G is required here}.
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Let D7 denote s11 € e T X with w(¥,DY=0 , then De D* ang @
induces a non-singular skew form /D on D‘L'/D making D’L/D a symplectic vector

. C
bundle. Since DeF , FC(DL) so projects to give a maximal isotropic

subbundle’ F/D of (DL/D)<£ . The same is true of G-, and F/Dn G/D =0,

Then KF/D and KG/D

are paired by exterior multiplication as above. We 1ift
. . G
this pairing to KF and K~ as follows:
Let b= (e, - s C) be a frame for D. . Then it can be extended ta

a frame (eq,...,e,,f -y Fuy) for F_ and 1f e Kz ,

L = a (e dw)y... o), (fdw)y o alhy, jdw)

-~ (A
for some ae €., Let $¢ be the projection of £, e (D’:_)‘r' into (D), so

that (;;':;,---, m—k) is a frame for (F/D),C . Put

3
I

~ ~ 4
a (5,-'(*’/0)1\"‘/\(5'44-(‘-} w/D) € Kxb.

Then g‘(b does not depend on the extension  § and 1f g€ 6Llk, Q),

41 1Tk

szb‘; = DQ;(-,[;-‘J ib .

We can project e Kf in the same fashion. Put

I

{e, ﬁ > (k) < :“b ) ﬁg)-

Then <, B> 15 a density of order - 2 on D and using the Liouville density

on T X defines a density of order 2 on G X/D - ;
Let us suppose the space X/D of leaves of the foliation [ 1s smooth

then OIXY'D 1is the pull back to X of the tangent bundle TO‘/D) . IF
(o(.,@) is covariant constant along the leaves it will project down to a density

of order 2 on )(/D . If we could everywhere take a square root we should end

with a density of order 1 on X/D which would be a candidate for integrating
over X/D to obtain a global pai;ring. :

There are clearly many points at which this procedure can break down.
First, KF ‘may not have a square root. It has one precisely when its Chern
class 1s divisible by 2 (in which case ()(, w) 1is called metaplectic). Assuming
this is so, the symplectic frame bundle of (X, «w) has a double covering from
which a square root QF of KF can be cénonically constructed for each positive
polarization F . Thase square roots have the property that QFQ G—i-G‘ is trivia{.
which is necessary if a pairing is to exist.  See [2] for the construction.
Sections of QF are called half-forms normal to © .

There is a pairing -7 of QF-@ é?into the densities of order - 1

on D such that for ME F‘QF, v e r—QG,
LV = uep, vEv),

14
The procedure now is to replace L by L. ® QF. and define r;, LOQ py

: = F
introducing a covariant derivative in @ . It is fortunate that Q has a

UF
covariant derivative along F arising from Lie differentiation in K ., It
TelF, e k" then

Vs AN T4 d S
defines V'S in rKF and

VS (/.A,@/‘;) = (V;#,)@/»H -+ Q‘(a@ V;‘/U.,)

defines V;‘ uniquely in '\’Qp . Then Vgl +1@ vk defines a connection

.‘along F in L® QF and (—F L® QF is defined as before.

rF L@Qp is paired with rGLQQG by pairing [. with itself using the

- Hermitien structure and Q‘: with QG using ¢ ,') . Lie differentiztion dafines

a connection along [ in the densities on (( X)/_D » but Blattner found that, in
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general, v3<f LTy need not vanish for fe F": Le QF, G'G—I_G.L@QG.
In 3811 the cases we are interested in (f,a~> does project to a density on X/D
so we shall not investigate this point further.

To obtain the inner product in l;_ L® QF one pairs F to itself.
Let G’F be the resulting Hilbert space (which may consist only of zsro). If
= nE-_— DG the inner product involves integrating over X . It FnE:O
this is integration over X .

As an example take ¥ = R"“ , 2:' dP‘Adq,, where we take

i=
(1,,,...,?,“,9,;---, P.) as coordinates. Then F, spanned by Yp, )PP, , is
a real polarization and KF is spanned by &¢,a --- Aadg., sois t;‘ivial. Lat
QF be spanned by (J«z,,\.--,\dgn)h’ (defined up to a global sign)., TIf
G = .{-—tpt"iii » © vanishes on F and w=d6. 1f L,V is apre-
i

quantization of (X, w) , - has a nowhere vanishing section S, with VE S
= awi 6(3)s, . Also dg a---adg, is closed, so V{"(ayl,\ ,\dg“)"'_o
forall S elF . Thus I_ LO®QF has elements of the form ?s.0(dg,a -adgn)*
with 3‘?/39,,—0 i=l,oum . Thus @ is a function of @3-+, %w only. Then
s, cen be normalized so that js,1*= 1 , and ¢ (d2inndg)® (dgae-adg %D

projects to the density Ag_,...diﬂ on FRM . Thus
e 5,0 g nadga) * = SRWICPCg‘,..,i“)\z&g‘...dg“.

In this case then, Rp = L2Re"),
A second polarization G arises from the identification e o™ .
Put z; J= ¢i+iPj,g=1,,m and let & be spanned by 5%, --,94%F, . Then
I< is sparned by dz,a... ~dz, and QG by (dz¢a---adzn)*, h Let &' =
/7 Z F¥ d'z.J 50 that w=d4© and ©' vanishes on G. We have a nowhere
vanishmg section t, of L with Vi t, = 2ri9%3) Eo v Then E,= P, So

for some nowhere vanishing function <P. - According to [u4], P, is given by

. 4 b} Te =  armi(9'-9)

which may be solved to giva

¢, exp {~ mzt/y —4 ndé 24 P,'} .

Then  le, I* = “?.ll% exp -Tlzl* .  Any element t e r@_ LO® Q€  has the

form t= t,@ (dz, A ..,‘.,\dzq)ﬁ’- with Y holomorphic, and since

(J“zl/\-“ Adzn) A (d.z.,\.--/\ dzy\)zcﬂt)“k » wa obtain ((l‘llA.--A&zn)%

(dzin- - n d2a)" Y = 1Al and so

hel* = ‘szn 1%z 20)V enp -z (2 .

. It follows ﬁG- may be identified with the holomorphic functicns on " square

integrable for the Gaussian measure exp -zl Af
These polarizations F and G on R*™ are easily paired since FnG =0
—_— .
and (di',\...,\dy’v‘),\ (dz“\...,\dzn) = (»\,)"‘A so that

<(d¢.|n.--kdi“)h yd2iacn 42,)%Y = 4 . Hence
<Q$. ] {.dil/\"'l\di“)y“ , 5% ba ® (dz“\.u,\dz“)%> =
jq’cin"')im) W2 ) 2n) eop{-Tizt/e 4 iTr P'?-} 1Al
mlv\

\
As a map from RGto R‘__. this is formally given by

(Tw )(?,) = S.‘Z“q/(i_-(-i,p) w{—-zr(;;uq})/z.—iwv-q,} p .

If ¥ is a polynomial, it is in ﬁG_ and - TVe RF Since polynomials are

dense in ﬁ'G- » T is densely defined. Proving T~ 1is unitary is messy using

4polynomials, so instead we use that F[G has a reproducing kernel.

If ?WCZ) =epwN-z Y eRg forall w e (i, = wmw(‘)’

t
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and for any We Rg -
'L{/(w) = (W ) Ww) °
Then finite linear combinations g‘_ Co sz,( are dense in ('T_G_also,

so we need only compute T“q»w . This is a Gaussian integral and can be computed

explicitly:

(Tzﬂ,)('if) = 1WLM/P[—W$‘-“W"/1,+;URW'$}.

Again (TU(‘N' T'l{)v) is a Gaussian integral and may be evaluated as
(Tww, T'b(v) = exp TVW = O'Vw' lvv)‘

Thus 1 it an isometry on the dense domain above. If it has dense range it
extends to a unitary map of R‘G onto RF . That the range is dense follows
because (T'LPW)(Q,) is essentially the generating function for the Hermit.s
functions whose linear éombinations are dense in * (R‘" .

Using the repraducing kernel,
(T¥X) = re u/m) eaptT (g )4-inpg ) dp

= Xa}yw K2 2) exp-tizt 12,

with

Kz, 7—) = (T 1?2_)(1,) .

Apart from normalization, K is Bargmann's transform [1] from G‘G- to ﬁ'F’ .

.

-11-

§3. The real and complex polarizations of T:Sﬂ

THS" can be identified with X = {ce,x)e R ¥R |eest, x.e=0x+0f
Tha natural symplectic structure on To* S“ carries over to w on ¥ whers.
w=048, © ==xde , regarding the components €,3-€n,Xe,--5,X,, . as functions
on X. For m23, X is simply-connected but T (X)= Z, 1f m=2.
To avoid technical complications arising from non-simple-connectedness we shall
assume "YlZ?) . . . .

X fibres over S™ = {ee R ] e.ex1 ] and the fibres are the
cotangent spaces with the origin deleted. Put (e, x) =€,

Let  Ixl| = (x-x]"’-, h¢e,x) = zmixi , then he C(X) and §h

generates a flow O which may be found to be

7 (e, x) = (crarbe +am 2Tt ffxl ) COIRE T =i ATE 1xie),

This may be more neatly expressed by introducing z e CD“" with

z2 = ixl e + 1 v (1)

and then
g,z = exp-axit z -,
mel
le,x)r—> zZ injects X into @© and the image 1s the non-singular cone

{zec™ | 22=0, z#O},

giving X a complex structure. Let d: 249 be the usual decomposition of
the exterior derivative into components of type (1,0) and (0,1).

Of course  92,=0, i=0,...,m .,  From (1) z.Z = aixl* so

412|312l = 2DIxi* = Z.dz = gxidix| —alixlx.de
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Thus 6 = 43ix|l — 13 (x| and -hence

& w= AL © Dlxl | (2)

This shows that & 1s the Kaehler 2-form of a positive definite Hermitian metric
and hence that the tangents of type (0,1) form a positive polarizétion G with
GnG =0. Let F= ‘Kax’ﬂ'* be the tangent spaces to the fibering m:X— ST
1 1 2 2
Since L x G =G . he CG’ . However, h¢ CF' (though We Cgl.
Let L ,V be a prequsntization of (X,wl . Then w=d© implies
the existence of a nowhere vanishing section SF—‘ with VSSF = avi (%) Se .
8 1is real so ISF-IL is constant and SF can be normalized sa ISFS‘—_—“ .
Similarly w = 4(2i20¢l) s0 we have Se
But SG = SF for some nowhsere vanishing function ‘P. and

with Vssga — 4w I () Sge

g, = 2riadel —8) = —axdixl

80

P, = esp ~ATiz|

apart from a constant which we can set equal to 1. Thus ISG > = (R lx:v_
uP-q.:.r(zl . 1his completes the analysis of the prequantization.

To discover whether half-forms exist, consider KF . Let p be any
n-form on S" then 'n"‘)': is an n-form vanishing on F so 1\'*5 I3 KF. Since

*f vanishes

Sn is orientable we can choose )o nowhere vanishing, and then T
nowhere, showing KF is trivial, Thus there is a square root QF » unique
since X ‘is simply~connected. The same conclusion could have been reached from
[5] since it is known that when F is the tangent bundle to a projection W:X—Jy
the mod 2 reduction o‘f the Chern class of F 1s the square of thas first Stiefel-
Whitney clasg of Y‘ pulled back to X . Then, if y is orientable, the Chern

class must be even,

_13_

Observe also that since f is a form of maximum degx;ee on Sﬂ . d)"= (]
so that d w¥p =0 and hence VSW*S’=O y e F -« Fix £ @s the Riemannian
°

volume on S‘ﬂ. which in terms of the functicns ei is

-n
; N\
F.o= 2 Ve deandesa.. ndem (3
° ; J 3
Jr<0
where &eJ' means that term is omitted. On the set where deso wa can take
as coordinates and obtain

€0y 1€ 4,C0 ) Emn

k- PO
fo = (“l) ek“ deal\-"l\de\c A..‘Aden v ‘ (4)

Expression (3) makes senss on X and gives W*g .

L]
F F F F «
lat Q@ QM=K and /JF be a section of ( with MO M =T,
v,
which exists since X is simply-connected. Then also ‘VS' ,up=o for all § infF.
G
kS may be handled similarly. Wa look for a section ¢ which has an
expression analogous to (3) in terms of the functions Z, instead of €¢ » and

in order that d6 =0 one finds

oom - A~
£ "JZ__ ('-l)jzj' &z‘,,\..,,\dz’-h RS 2
=0

o

If L(j c X is the subset where € # 0 , then 2;#0 on (,(1- and
5 ~
o | ULJ = 21 z; dz,,\...,\dz,- A adZn (5}

Thus 0" vanishes nowhers and VEO‘ =0, %5ellG . Let Qeg QG= KG
G ¥,
and be the secti ¥ h = YU =
Me e section of QF wit /"G@/"‘G 0, so that vgz“c‘o for §
‘in TG .
We have thus shown l';: Le QF consists of sections of the form

Doty Se®up fvith Qe C""CS“)' and T'G L® RF  of the form qst&/uG
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with .J\ holomorphic. The norms are easily computed as in §2. F  is real

so A.\tﬂ‘\c:,.vnu d.*_ﬂa,.. and

feug

il

,,,
w,ms nZ Cvo_ u
so ﬂﬂ , the completion of ﬂu L® Qﬂ coincides with —uphms‘:uu_v .

For G we have Ga& = O, s0 1"{aodA = 0Oa g gives
o, 0> = ™ | -3 and so A\;m ~\va = Nen: _N_S.; . Thus

Wil = § Wl ewprimi 27 PO TY
X
ﬂ.rnﬂ, is then all holomorphic functions W on X with =.c\_:m finite.  The
exponential convergence factor means ﬂ.m. contains all polynomials in Z,,.:-,2.,
so is not trivial.
To pair F and & we need to compute WX¢ A & . This is sasily
done on Cu. using formulas (4) and (5) and the following expression

- P A
\v; C,w NM m.\u P meo>...>zmu>.:>%m$>a»xn>...>qu.?.iﬁpns

One finds

Thus
e pg? = AT 2%

We shall drop the factor 4 since it makes no difference to the existence or

unitarity. Denote the pairing of Qs @\\:_u and ﬁ\wmﬁ\umq by £, %> , then

@w) = wxem exp-amixl 2 ™ 1Al

-15- , ~

As a formal map | : ﬂ..m —> (A the pairing can be written

(TwXxe) = 2" M. Ylixie+ ix) eap-amxl A"

x.€=0

-t
with d™ the normalized Lebesgue measure on the cotangent space TC ),
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54, Existence and non-unitary nature of the pairing.

The proof of the existence of the pairing is based on being able to
write down a kernel K(z,@) analogous to that of §2. If xeR™, zeC™

and bu denotes the Laplacian in the = -variables then

D.R?.Nur = fr,_vN.NAH.vi‘N ,

from which it follows that it ze X mH.er is a homogeneous harmonic
pelynomial and therefore its restriction to the unit sphere is a spherical
harmonic. For x fixed, as a function of z, AN.NUr is holomorphic and
polynomial and thus in mwa“ . The spherical harmonics are denss in ﬂﬂ and it
will be shown that the polynomials in z are dense in @ G * These will
provide dense domains for T  and Iﬂ,a.

Let h%ﬁ denote the spherical harmonics of order k on - S and \v_a. the
polynomials homogeneous of degree R on X . Then dim \&F = dim Aur =

(2k+m=-1) TCRam=-1) /{r(m) T(kel) )

dimension could be derived from our analysis of the relationship between m%ﬂ and

(this equality of

\ﬁr by working a little harder). Our first objective is to show |~ maps \vr

isomorphically onto & ¢ this is the Laplace representation of elements of &.m..

k
Define, for @ ¢ &F , >x£ c \v_» by

CPrﬁ (z) = mm.s Pca) Ca-2)® 19,1(da) |
and for %m\vr define Wﬁﬁ\mﬁmme& by
(Bew)@) = 27" @) ) sap-ammy w14l
X

The exponential convergence of tha w:nmmnm:a Justifies all the following

manipulation.

l\—NI

. o WAL, .
(B, Al = g Mm?wux,w.mnv?v?.ﬁxGLQES-\%E PANGETY]

x

= J e Feab) igids)
m.s 5

wherg

et ® k Vi1
Fa,b) = 2" ,p;?,mv (0-2) " exp-4mix| 12\™" |4
X
Fla, %) 1s a kernel defining a map of nwr to itself and clearly 1s O(m+1)
invariant. But &r is an irreducible reprasentation of OAS....V » SO Wr.\./r
must be a acﬁwnpm Dr. of the identity. To find & we sat a=b and

ke
integrate

. it
Q- dim oy, vol ™ = %" ,ﬂms Fla.a) ip,1cda),

But O(n+1) 1s transitive on ms so F(a;a) is constant. We can set

aA = g

n+{
M 9 the +i)th coordinate direction in ﬁ and then

. ' .
a, dwin &_p = 7 % 1Zps .»x@%wn»ﬂ_x_ oMY
X

This integral is evaluated in the appendix to give

- 4k-3n+5 -
A = A LB M hiana Ly M) Mt )

@R+-1) T(n72) I Cies m+1)/2) Tlean-1)

This is non-zero so >r and mﬁ are invertible.

ﬂ,lrm. is & unitary reprasentation of O(m+1) and by the above, OMm+i) acts
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gRmAT e (am- ) Cln) TR
(2kin-1) T(a) Mletn-1)

irreducibly on /ph , SO ‘?@:o’bk is an orthogonal direct sum within ﬁG— . But

in Lemma 1 of [9] I showed an holomorphic function S} on X had an expansion bh B

g::é::ogk with § e4p, sothat R_= © by - et """;ﬁs"’k

-1 ~h
be the algebraic sum. This is thus a dense domain in [ . Thus Th = by A, B | and is bqu
G

times a unitary operator from 17,(

- -V - -t Y2 1f these exist.
, tosd, . Also | TU = »ap byoy FT-0 = supby a)?,
Let W W e b, then A ,4&_..7 /PR is onto so 1, = A®i i k ‘ R 9 &

2 _ =1
with ¢, « éh ,i=1,9 + Then We calculate bk Ay, as

W 2
_ . 22 T (ktn-4)" T (R+ ;n-04)
v, %), = SK(A@.)&) APX=) erp-amizi 27" " 3 : vob S MCe+n-)Mlk+3n/) Mkt d4-/)

-V,
This is monotone decreasing so kTHW = b, a, * is finite, and

= SS“ J g RiE) TToT Fla,b) 15,101 15, 1C00) g vone deeres
! Tl = W bla, ™ Bt

by a simple rearrangement. Thus

Flkr+eot,) o0 Tkt o)
(W.,LV,_)G = Q, (q’!lcft);.‘ | r(k-'.-/s,\ R T Y

~
Hence a‘;"LAh is unitary. has the 1imit oo, 1 or 0 as R—» oo according as _Z‘“.;_ is greater, equal to or
=

‘ T
Now consider |, = Tlrpk,and ’ E less than ‘gl fio+ Inourcase of = oK, =N-N, K20 B =m-t o,
i

=3n/<+.,3=3v>/—}/1 SO o+ o tol3 = SNA-3/2 =g 4R+ R
_ h . S m ; fr 3 “ Eat ] Bt Pa 3
(T\“ Ak ?e) = 2 _er_(jkq’)(‘x‘e* tx) @xp -amhxl el T d e ;, so that W T'[| = (v-o{,S“)h Z’W“" which is finite. Thus T and V" are

bounded and hence we have established the rigorous existence of the pairing.

I

‘ Since |\ T, is properly decreasing, is not unitary, nor a multiple,of a
SQM 21 Glare) Ie, I(da) b Tee properly g. T y pley

>

unitary operator.

with The flow O"t preserves &, so lifts into L. and satisf‘ies &e-SG- SG-'

v Also one finds from (5) that
-l m

}kuqa —amixl el - d"x

G(_a.,b) = Q_V’" 5 '{q-((x(b-&-t‘,x)
=-b=e

X & =  axpf-m-varit] o

Again | Gla,b) 1is O(w+1) - invariant and hence a multiple , b, ,of the identity.

. and so
bh is -Found‘as before, by setting a = b and integrating:

? L et pg = expl-onmiE] Mg
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Thus ajé quantizes on G{G to give the unitary group Ub with

(ub'q/)(z) = expMn-)wit ’L)/(eoq?zn'i,t Z).

For 'lkc/])h we have

Uy 1{/‘ = Jax,p{(h+m—‘>/3,)ur‘i,b} v,

. ' 2 P
so that T WU, T™ = explarit A + -0 /"] :} as the latter
t >

group has the same spectrum and elgenspaces.

EEETRS Sm masmvme
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Appendix.

To evaluate

Ce= T 1zan!® ecpmsmix g™,
kT dy

write x_=rg with 5,3:'\ . n-c-:=o then

e L3
Ck = g TIK*EVJ‘QALP-MT\' dr S (e\\“l"'g‘»ﬂ:) J‘V’L:
Cx0
5.\?-2-5‘1

= (‘4_1:)-&—3“/"*‘ r(lk* 3Iva - 1) I\‘

whera

I = S } (cue".-& 0-3‘)“ Avel
ye=0 ’
3.&1-2-2-1

This is independent of @ ., so integrating over o glves

TewlS™ = § 0 ey ay™ ) dwl 15.1(4a)
s y-e=o
e.e=4y=14

= § R) (a-é‘+a.3‘)“ (fo1Cda) dvel | v
s» '

But O(\AH\ is transitive on the set of pairs (_e_,j) . e.é.a.j=4,c.y

is independent of (Q'U) . We can thersfore evaluate it by setting Ce€myy s

Lj =€ e Then

Tewl S™ = el SMyoL 5™ ¢ @nei+ €. 15 1da).
. sm .
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