DIAS Access to
Institutional Repository

Title	A non-unitary S-K-S pairing of polarizations (Revised Version)
Creators	Rawnsley, J. H.
Date	1978
Citation	Rawnsley, J. H. (1978) A non-unitary S-K-S pairing of polarizations (Revised Version). (Preprint)
URL	https://dair.dias.ie/id/eprint/956/
DOI	DIAS-TP-78-01

A non-unitary $E-X-S$ pairing of polarizations

- (Revised version)
J. H. Rawnsley

School of Theoretical Physics
Dublin Institute for Advanced Studies
Dublin 4, Ireland

Abstract

The half-form pairing of two polarizations of the Kepler manifold is found and shown to define a bounded linear isomorphism of the two Hilbert spaces, but is not unitary.

1. Introduction

In [15] J.-M. Souriau showed that, when suitably completed, the phase space and flow of the kepler problem in n-dimensions could be identified with $T_{0}^{*} S^{n}$ (the cotangent bundle of the n-sphere minus its zero section), and its geodesic flow (for the standard metric). This extended a similar result of
J. Moser [7] concerning the energy surfaces. Souriau also observed that $T_{0}^{*} S^{n}$ had a complex structure invariant under the flow. In [10] I showed this complex structure was a positive polarization for the natural symplectic structure of the cotangent buncle and therefore determines a quantization of the flow $[6,13,14]$.
$T_{0}^{*} S^{n}$ has a real polarization, given by the cotangent fitres, but this is not invariant under the flow. By using the method of moving polarizations, J. Elhadad [3] quantized the flow using a limiting procedure, despite an obstruction to the formal pairing noticed by R. Elattner [2]. There is no obstruction to the pairing of the real and complex polarizations, so we cen use the transformation defined by the pairing $[2,5,6]$ to carry the quantization of the flow from the complex to the real polarization. The generator of the unitary group so ostained on $L^{2}\left(S^{n}\right)$ is $2 \pi\left[-\Delta+(n-1)^{2} / 4\right]^{1 / 2}$ which has spactrum $2 \pi(k+(n-1) / 2), k=0,1,2, \ldots$ This agrees with the semi-classical spectrum of A. Weinstein [16] but has different multiplicities.

The pairing of these two polarizations is of interest since it is not unitary. It requires some tedious computations to establish it as a bounded linear operator between the Hilbert spaces of the two polarizations. It is closely related to the Laplace representation of spherital harmonics [8].

This paper is divided up as follows: 52 sumarizes the theory of polarizations and half-form pairings and as an example I obtain Bargmann's transform [1] between the real and complex polarizations of $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$. The real and complex polarizations of $T_{0}^{*} S^{n}$ together with the formal expression for their palring are described in 53. The rigorous existence and non-unitary nature of the pairing is established in 54. An appendix contains the svaluation of some integrals required in 54.

I thank the referee for suggestions which have considerably improved the presentation of the original manuscript. Thanks are also due to R. Blattrier and D. Simms for their help and interest in this work.

2. Polarizations and the half-form pairing.

$$
\text { If }(X, \omega) \text { is a symplectic manifold, the space } C(X) \text { of complex }
$$

functions on X is a Lie algebra under Poisson bracket:

$$
\left.[\varphi, \psi]=\xi_{\varphi} \psi ; \quad \xi_{\varphi}\right\lrcorner \omega=d \varphi
$$

If ω determines an integral de Rham cohomology class, there is a Hermitian
line bundle L with connection ∇ over X having survature $2 \pi i \omega$. The space $r L$ of sections of L is a $C(X)$-module where, for $\varphi \in C(X), s \in \Gamma L$

$$
\varphi \cdot s=\nabla_{\xi_{\varphi}} s+2 \pi i \varphi s
$$

This representation of $C(X)$ is known as prequantization. See [4] for details.
A polarization of (X, ω) is a subbundle F of the complexified tangent bundle $T X^{\mathbb{C}}$ which is
(i) isotropic:
(ii) maximal with respect to (i);
(iii) integrable.

Condition (i) means ω vanishes identically when restricted to F. If $\operatorname{dim} X=2 n$, then by (ii) $\operatorname{dim} F_{x}=n$ for all $x \in X$. If $F^{0} \subset T^{*} X^{\mathbb{C}}$ denotes the bundle of covectors vanishing on F, then (i) and (ii) are equivalent to $\xi \longmapsto \xi\lrcorner \omega$ maps F isomorphically onto F^{0}. We shall take integreble to mean: $F \cap \bar{F}$ has constant dimension and $F, F+\bar{F}$ are closed under the lie bracket of vector fields. Thus the complex Frobenius theorem of Nirenberg [8] applies to F.

There are two main examples of polarizations. If $F=\bar{F}, F$ is called reai and is the tangent bundle of a Lagrangian foliation of (X, ω). The fibres of a cotangent bundle $X=T^{*} M$ is a typical example of this situation. At the other extreme we may have $F \cap \bar{F}=0$, in which case $T X^{\mathbb{C}}=F \oplus \bar{F}$ so that an almost complex structure J may be defined on X in such a way that F
consists of targents of type $(0,1)$. Since F is involutive, J is integrable and X becomes a complex manifold

$$
g(\xi, \eta)=\omega(J \xi, \eta) ; \xi, \eta \in \Gamma T X
$$

defines a non-singular.symmetric bilinear form on the tangent spaces to X which is Hermitian for the complex structure. The associated 2 -form is ω which is closed, so that g is a (pseudo-) Kaehler metric. Thus any Kaehler manifold is an example of a symplectic manifold with a polarization.

If F is a polarization of (X, ω) it is called positive if

$$
-i \omega(\xi, \bar{\xi}) \geqslant 0, \quad \forall \xi \in \Gamma F
$$

Real polarizations are always positive, whilst if $F \cap \bar{F}=0, F$ is positive if and only if g is positive definite.

Given a polarization F of (X, ω) we can define the structure sheaf G_{F} as the sheaf associated to the presheaf

$$
U \mapsto C_{F}(U)=\{\varphi \in C(U) \mid 3 \varphi=0, \forall \xi \in \Gamma F\}, \quad u \subset x
$$

See $[6,12]$ for some properties of this sheaf. When $F \cap \bar{F}=0, \emptyset_{F}$ is the sheaf of holomorphic functions on X.

Let L, ∇ be a prequantization of (X, ω) and F a polarization, then we set

$$
\Gamma_{F} L=\left\{s \in \Gamma L \mid \nabla_{3} s=0, \forall \xi \in \Gamma F\right\}
$$

$\Gamma_{F} L$ is not stable under all $Q \in C(X)$, but those functions φ which preserve $\Gamma_{F} L$ form a Lie subalgebra $C_{F}^{1}(X)$ which contains $C_{F}(X)$ as a maximal abelian ideal. The representation of $C_{F}^{1}(x)$ on $\Gamma_{F} L$ is called the quantization with respect to F.

If $U \subset X$ is open with $H^{1}\left(U, b_{F}\right)=0$ and $\quad w / U=d \theta$ with $\theta \mid F=0$ then there is a nowhere vanishing section s of L over U with $\nabla_{\xi} s=2 \pi i \theta(\xi) s \quad$ for all vector fields $\xi \cdot \Gamma_{F}(L \mid U)$ can be identified with $C_{F}(U)$ by $\varphi \longmapsto \varphi s, \varphi \in C_{F}(U)$ and if $\psi \in C_{F}^{\prime}(U)$

$$
\psi \cdot(\varphi s)=\left\{[\psi, \varphi]+2 \pi i\left(\theta\left(\xi_{\psi}\right)+\psi\right) \varphi\right\} s .
$$

In general it is difficult to make $\Gamma_{F} L \quad$ into a Hilbert space, which is desirable if this construction is going to be used to construct the quantum mechanical model corresponding with the classical system described by (X, ω). Even when this is possible there is no way of comparing $\Gamma_{F} L$ with $\Gamma_{G} L$ for different polarizations F and G. For these reasons B. Kostant introduced the notion of half-forms and their pairing in $[5,6]$, and this was further developed by R. Blattner [2]. There is no satisfoctory theory at present unless F and. G are both positive. The formalism we shall use is that of [11].

If F is a polarization of (X, ω), dim $X=2 n$, then $\Lambda^{n} F^{0}$ is a line bundle, the canonical bundle K^{F} of F. If $F \cap F=0, K^{F}$ is the canonical bundle of the complex structure. For F positive the chern class of K^{F} is determined by ω so that K^{F} and K^{G} are isomorphic as C^{∞} line bundles for any two positive polarizations F and G. In this case $K^{F} \otimes \overline{K^{G}}$ is trivial, and a pairing of K^{F} with K^{G} is a choice of a trivialization of this bundle.

When $F \cap \bar{G}=0$ exterior multiplication defines an isomorphism of $K^{F} \otimes \overline{K^{G}}$ with $\wedge^{2 n} T^{*} X^{\mathbb{C}}$ and the latter is trivialized by the Liouville volume $\lambda=(-1)^{n(n-1) / 2} \omega^{n} / n!$. Hence if $\alpha \in \Gamma^{F}, \beta \in \Gamma^{G} \quad$ we define $\langle\alpha, \beta\rangle$ by

$$
i^{n}\langle\alpha, \beta\rangle \lambda=\quad \alpha \wedge \bar{\beta} .
$$

If $F_{\cap} \bar{G}$ has constant rank then $F \cap \bar{G}=D^{\mathbb{C}}$ for a real integrable isotropic subbundle D of $T X$ (positivity of F and G is required here).

Let D^{\perp} denote all $\xi \in T X$ with $\omega(\xi, D)=0$, then $D \subset D^{\perp}$ and ω induces a non-singular skew form ω / D on D^{\perp} / D making D^{\perp} / D a symplectic vector bundle. Since $D \subset F$. $F \subset\left(D^{\perp}\right)^{\mathbb{C}}$ so projects to give a maximal isotropic subbundie F / D of $\left(D^{\perp} / D\right)^{\mathbb{C}}$. The same is true of G, and $F / D \cap \overline{G / D}=0$. Then $K^{F / D}$ and $K^{G / D}$ are paired by exterior multiplication as above. we 11 ft this pairing to K^{F} and K^{G} as follows:

Let $b=\left(e_{1}, \ldots, c_{k}\right)$ be a frame for D_{x}. Then it can be extended to a frame $\left(e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{n-k}\right)$ for F_{x} and if $\alpha \in K_{x}^{F}$,
$\left.\left.\alpha=a\left(e_{1}\right\lrcorner \omega\right)_{\wedge} \cdots_{\wedge}\left(e_{k} \perp \omega\right)_{\wedge}\left(f_{1} \perp \omega\right)_{\wedge} \cdots_{\wedge}\left(f_{n-k}\right\lrcorner \omega\right)$
for some $a \in \mathbb{C}$. Let \tilde{f}_{i} be the projection of $f_{i} \in\left(D_{x}^{L}\right)^{\mathbb{C}}$ into $\left(D^{L} / D\right)_{x}^{\mathbb{C}}$ so that $\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n-k}\right)$ is a frame for $(F / D)_{x}$. Put

$$
\left.\tilde{\alpha}_{b}=a\left(\tilde{f}_{1}\right\lrcorner \omega / D\right)_{\wedge} \cdots \wedge\left(\tilde{f}_{n-k} \perp \omega / D\right) \in K_{x}^{F / D} .
$$

Then $\tilde{\alpha}_{b}$ does not depend on the extension f_{1}, \ldots, f_{n-k} and if $g \in G L(k, \mathbb{R})$,

$$
\tilde{\alpha}_{b \cdot g}=\quad \operatorname{Det}\left[g^{-1}\right] \tilde{\alpha}_{b}
$$

We can project $\beta \in K_{x}^{G}$ in the same fashion. Put

$$
\langle\alpha, \beta\rangle(b)=\left\langle\tilde{\alpha}_{b}, \tilde{\beta}_{b}\right\rangle .
$$

Then $\langle\alpha, \beta\rangle$ is a density of order -2 on D and using the Liouville density on $T X$ defines a density of order 2 on $(T X) / D$.

Let us suppose the space X / D of leaves of the foliation D is smooth then $(T X) / D$ is the pull back to X of the tangent bundle $T(X / D)$. If $\langle\alpha, \beta\rangle$ is covariant constant along the leaves it will project down to a density of order 2 on X / D. If we could everywhere take a square root we should end
with a density of order 1 on X / D which would be a candidate for integrating over X / D to obtain a global pairing.

There are clearly many points at which this procedure can break down. First, K^{F} may not have a square root. It has one precisely when its Cher class is divisible by 2 (in which case $(X, \omega$) is called metaplectic). Assuming this is so, the symplectic frame bundle of (X, ω) has a double covering from which a square root Q^{F} of K^{F} can be canonically constructed for each positive polarization F. These square roots have the property that $Q^{F} \otimes \bar{Q}^{G}$ is trivial. which is necessary if a pairing is to exist. See [2] for the construction. Sections of Q^{F} are called half-forms normal to F.

There is a pairing $\langle\because\rangle$ of $Q^{F} \otimes \bar{Q}^{G}$ into the densities of order - 1 on D such that for $\mu \in \Gamma Q^{F}, v \in \Gamma Q^{G}$,

$$
\langle\mu, v\rangle^{2}=\langle\mu \otimes \mu, v \otimes v\rangle
$$

The procedure now is to replace L by $L \otimes Q^{F}$, and define $\Gamma_{F} L \otimes Q^{F}$ by introducing a covariant derivative in Q^{F}. It is fortunate that Q^{F} has a covariant derivative along F arising from Lie differentiation in K^{F}. If $\xi \in \Gamma F, \alpha \in \Gamma K^{F}$ then

$$
\left.\nabla_{\zeta} \alpha=\xi\right\lrcorner d \alpha
$$

defines ∇_{3} in ΓK^{F} and

$$
\nabla_{3}\left(\mu_{1} \otimes \mu_{2}\right)=\left(\nabla_{3}^{1 / 2} \mu_{1}\right) \otimes \mu_{2}+\left(\mu_{1} \otimes \nabla_{3}^{\nu_{2}} \mu_{2}\right)
$$

defines $\nabla_{3}^{1 / 2}$ uniquely in ΓQ^{F}. Then $\nabla_{\otimes 1}+1 \otimes \nabla^{1 / 2}$ defines a connection along F in $L \otimes Q^{F}$ and $\Gamma_{F} L \otimes Q^{F}$ is defined as before.
$\Gamma_{F} L \otimes Q Q^{F}$ is paired with $\Gamma_{G} L \otimes Q^{G}$ by pairing L with itself using the Hermitian structure and Q^{F} with Q^{G} using \langle,$\rangle . Lie differentiation defines$ a connection along D in the densities on $(T X) / D$, but Blattner found that, in
general. $\nabla_{\xi}\langle\rho, \sigma\rangle$ need not vanish for $\rho \in \Gamma_{F} L \otimes Q Q^{F}, \sigma \in \Gamma_{G}\left\langle\otimes Q^{G}\right.$. In all the cases we are interested in $\langle\rho, \sigma\rangle$ does project to a density on X / D so we shall not investigate this point further.

$$
\text { To obtain the inner product in } \Gamma_{F} L \otimes Q F \quad \text { one pairs } F \text { to itself. }
$$ Let G_{F} be the resulting Hilbert space (which may consist only of zero). If $F \cap \bar{F}=D^{\mathbb{C}}$. the inner product involves integrating over $X D$. If $F n \bar{F}=0$ this is integration over X.

$$
\text { As an example take } X=\mathbb{R}^{2 n}, \omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i} \text { where we take }
$$

$\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ as coordinates. Then F, spanned by $\partial / \partial p_{1}, \ldots, \partial \not \partial p_{n}$, is a real polarization and K^{F} is spanned by $d q_{1} \wedge \cdots \wedge d q_{n}$ so is trivial. Lat Q^{F} be spanned by $\left(d q_{i} \wedge \cdots \wedge d q_{n}\right)^{1 / 2}$ (defined up to a global sign). If $\theta=\sum_{i=1}^{m} p_{i} d q_{i}, \theta$ vanishes on F and $\omega=d \theta$. If L, ∇ is a prequantization of $(X, \omega), L$ has a nowhere vanishing section S_{0} with $\nabla_{\xi} s_{0}$ $=2 \pi i \theta(\xi) s_{0}$. Also $d q_{1} \wedge \ldots \wedge d q_{n}$ is closed, so $\nabla_{\xi}^{r_{2}}\left(d q_{1} \wedge \ldots \wedge d q_{n}\right)^{t_{s}}=0$ for all $\xi_{\in} \in \Gamma$. Thus $\Gamma_{F} L \otimes Q F$ has elements of the form $\varphi S_{0} \otimes\left(d q_{1} A \cdots \lambda q_{n}\right)^{\frac{1}{2}}$ with $\partial \varphi_{\partial p_{i}}=0, i=1, \ldots, n$. Thus φ is a function of q_{1}, \ldots, q_{n} only. Then
So can be normalized so that $\left|s_{0}\right|^{2}=1$, and $\left\langle\left(d q_{11} \ldots n d q_{n}\right)^{\frac{2}{2}},\left(d q_{1 n} \ldots n^{d} q_{n}\right)^{1}\right\rangle$ projects to the density $d q_{1} \cdots d q_{n}$ on \mathbb{R}^{n}. Thus

$$
\left\|\Phi s_{0} \otimes\left(d q_{1} \wedge \ldots \wedge d q_{n}\right)^{t_{2}}\right\|^{2}=\int_{\mathbb{R}^{n}}\left|\phi\left(q_{1}, \cdot, q_{n}\right)\right|^{2} d q_{1} \cdots d q_{n} .
$$

In this case then, $\sigma_{F}=L^{2}\left(\mathbb{R}^{n}\right)$.
A second polarization G arises from the identification $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. Put $z_{j}=q_{j}+i p_{j}, j=1, \ldots, n$ and let G be spanned by $\partial / \partial \bar{z}_{1}, \ldots, \partial / \partial \bar{z}_{n}$. Then K^{G} is sparined by $d z_{1} \wedge \cdots \wedge d z_{n}$ and Q^{G} by $\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{1 / 2}$. Let $\theta^{\prime}=$ $i / 2 \sum_{j=1}^{n} \bar{z}_{j} d z_{j}$ so that $\omega=d \theta^{\prime}$ and θ^{\prime} vanishes on G. We have a nowhere vanishing section t_{0} of L with $\nabla_{\xi} t_{0}=2 \pi i \theta^{\prime}(\xi) t_{0}$. Then $t_{0}=\varphi_{0} s_{0}$ for some nowhere vanishing function φ_{0}. According to [4], φ_{0} is given by

$$
d \log \varphi_{0}=2 \pi i\left(\theta^{\prime}-\theta\right)
$$

which may be solved to give

$$
\varphi_{0}=\exp \left\{-\pi|z|^{2} / 2-i \pi \sum_{j=1}^{n} q_{j} P_{j}\right\}
$$

Then $\left|t_{0}\right|^{2}=\left|\varphi_{0}\right|^{2}=\exp -\pi|z|^{2} \quad$. Any element $t \in \Gamma_{G} L \otimes Q^{G}$ has the form $t=\psi t_{0} \otimes\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{L_{2}}$ with ψ holomorphic, and since $\left(d z_{1} \wedge \cdots \wedge d z_{n}\right) \wedge \overline{\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)}=(2 i)^{n} \lambda$, we obtain $\left\langle\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{\frac{1}{2}}\right.$ $\left.\left(d z_{1}, \cdots n d z_{n}\right)^{1 / 4}\right\rangle=|\lambda|$ and so

$$
\|t\|^{2}=\int_{\mathbb{R}^{2 n}}\left|\psi\left(z_{1}, \ldots, z_{n}\right)\right|^{2} \exp -\pi|z|^{2}|\lambda|
$$

It follows \mathcal{G}_{G} may be identified with the holomorphic functions on \mathbb{C}^{m} square integrable for the Gaussian measure exp $-\pi|z|^{2}|\lambda|$.

$$
\text { These polarizations } F \text { and } G \text { on } \mathbb{R}^{2 n} \text { are easily paired since } F n \bar{G}=0
$$ and $\left(d q_{1} \wedge \cdots \wedge d q_{n}\right)_{\wedge} \overline{\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)}=(i)^{n} \lambda$ so that $\left\langle\left(d q_{1} \wedge \cdots \wedge q_{n}\right)^{y_{2}},\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{y_{2}}\right\rangle=1$. Hence

$\left\langle\phi s_{0} \otimes\left(d q_{1} \wedge \ldots \wedge d q_{n}\right)^{1 / 2}, \psi t_{0} \otimes\left(d z_{1} \wedge \cdots \wedge d z_{n}\right)^{p_{1}}\right\rangle=$

$$
\int_{\mathbb{R}^{2 n}} Q\left(q_{1}, \ldots, q_{n}\right) \psi\left(z_{1}, \ldots, z_{n}\right) \exp \left\{-\pi \mid z^{2} / 2+i \pi p \cdot q\right\}|\lambda| .
$$

As a map from \mathcal{K}_{G} to \mathcal{K}_{F} this is formally given by

$$
(T \psi)(q)=\int_{\mathbb{R}^{n}} \psi(q+i p) \exp \left\{-\pi\left(p^{2}+q^{2}\right) / 2-i \pi p \cdot q\right\} \delta^{n} p .
$$

If ψ is a polynomial, it is in Ω_{G} and $T \psi \in \Omega_{F}$. since polynomials are dense in Ω_{G}. T is densely defined. Proving T is unitary is messy using polynomials, so instead we use that \mathcal{K}_{G} has a reproducing kernel.

$$
\text { If } \left.\psi_{W}(z)=\exp \pi \bar{w} \cdot z \quad \psi_{W} \in \Omega_{G} \quad \text { for all } w \in \mathbb{C}^{n}\right)\left(\left\|\psi_{w}\right\|^{2}=\exp \pi \mid w^{2}\right),
$$

and for any $\psi \in \kappa_{G}$.

$$
\psi(w)=\left(\psi, \psi_{w}\right) .
$$

Then finite linear combinations $\sum_{\alpha} c_{\alpha} \psi_{W_{\alpha}}$ are dense in κ_{G} also, so we need only compute $T \psi_{w}$. This is a Gaussian integral and can be computed explicitly:

$$
\left(T \psi_{w}\right)(q)=2^{n / 2} \exp \left\{-\pi q^{2}-\pi \bar{w}^{2} / 2+2 \pi \bar{w} \cdot q\right\}
$$

Again $\left(T \Psi_{w}, T \Psi_{v}\right)$ is a Gaussian integral and may be svaluated as

$$
\left(T \psi_{w}, T \psi_{v}\right)=\exp \pi v \cdot \bar{w}=\left(\psi_{w}, \psi_{v}\right) .
$$

Thus T is an isometry on the dense domain above. If it has dense range it extends to a unitary map of \AA_{G} onto \AA_{F}. That the range is dense follows because $\left(T \psi_{w}\right)(q)$ is essentially the generating function for the Hermite functions whose linear combinations are dense in $L^{2}\left(\mathbb{R}^{n}\right)$.

Using the reproducing kernel,

$$
\begin{aligned}
(T \psi \times q) & =\int_{\mathbb{R}^{n}}\left(\psi, \psi q_{q+i p}\right) \exp \left\{-\pi\left(p^{2}+q^{2}\right) / 2-i \pi p \cdot q\right\} d^{n} p \\
& =\int_{\mathbb{R}^{2 n}} \psi(z) K(z, q) \exp -\pi|z|^{2}|\lambda|,
\end{aligned}
$$

with

$$
K(z, q)=\left(T \psi_{2}\right)(q)
$$

53. The real and complex polarizations of $T_{0}^{*} S^{n}$
$T_{0}^{*} S^{n}$ can be identified with $X=\left\{(e, x) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid e \cdot e=1, x \cdot e=0, x \neq 0\right\}$. The natural symplectic structure on $T_{0}^{*} S^{n}$ carries over to ω on X where. $\omega=d \theta, \theta=x \cdot d e$, regarding the components $e_{0}, \ldots, e_{n}, x_{0}, \ldots, x_{n}$ as functions on X. For $n \geqslant 3, X$ is simply-connected but $\pi_{1}(X)=\mathbb{Z}_{2}$ if $n=2$. To avoid technical complications arising from non-simple-connectedness we shall assume $n \geqslant 3$.
X fibres over $S^{n}=\left\{e \in \mathbb{R}^{n+1} \mid e \cdot e=1\right\}$ and the fibres are the cotangent spaces with the origin deleted. Put $\pi(e, x)=e$.

$$
\text { Let }|x|=(x \cdot x)^{1 / 2}, h(e, x)=2 \pi|x|, \text { then } h \in C(x) \text { and } 5_{h}
$$

generates a flow σ_{t} which may be found to be

$$
\sigma_{t}(e, x)=(\cos 2 \pi t e+\sin 2 \pi t x /|x|, \cos 2 \pi t x-\sin 2 \pi t|z| e)
$$

This may be more neatly expressed by introducing $z \in \mathbb{C}^{n+1}$ with

$$
\begin{equation*}
z=|x| e+i x \tag{1}
\end{equation*}
$$

and then

$$
\sigma_{t} z=\exp -2 \pi i t z
$$

$(e, x) \mapsto z \quad$ injects X into \mathbb{C}^{m+1} and the image is the non-singular cone

$$
\left\{z \in \mathbb{C}^{n+1} \mid z \cdot z=0, z \neq 0\right\}
$$

giving X a complex structure. Let $d=\partial+\bar{\partial}$ be the usual decomposition of
a the exterior derivative into components of type $(1,0)$ and $(0,1)$.

$$
\text { Of course } \bar{\partial} z_{i}=0, i=0, \ldots, n \text {. From (1) } z \cdot \bar{z}=2|x|^{2} \text { so }
$$

$4|x| \partial|x|=2 \partial|x|^{2}=\bar{z} \cdot d z=2|x| d|x|-2 i|x| x \cdot d e$.

Thus $\theta=i \partial|x|-i \bar{\partial}|x|$ and hence

$$
\omega=2 i \bar{\partial} \partial|x|
$$

This shows that ω is the Kaehler 2-form of a positive definite Hermitian metric and hence that the tangents of type $(0,1)$ form a positive polarization G with $G \cap \bar{G}=0$. Let $F=\operatorname{Ker} \pi_{*}$ be the tangent spaces to the fibering $\pi: X \rightarrow S$? Since $\sigma_{t} * G=G, h \in C_{G}^{1}$. However, $h \notin C_{F}^{1}$ (though $h^{2} \in C_{F}^{2}$). Let L, ∇ be a prequantization of (X, ω). Then $\omega=d \theta$ implies the existence of a nowhere vanishing section S_{F} with $\nabla_{\xi} S_{F}=2 \pi i \theta(\xi) S_{F}$ θ is real so $\left|s_{F}\right|^{2}$ is constant and S_{F} can be normalized so $\left|S_{F}\right|^{2}=1$

$$
\text { Similarly } \omega=d(2 i \partial|x|) \text { so we have } S_{G} \text { with } \nabla_{3} S_{G}=-4 \pi \partial|x|(\xi) S_{G^{\circ}}
$$

But $S_{G}=\Phi_{0} S_{F}$ for some nowhere vanishing function φ_{0} and

$$
d \log \varphi_{0}=2 \pi i(2 i \partial|x|-\theta)=-2 \pi d|x|
$$

so

$$
\varphi_{0}=\exp -2 \pi|z|
$$

apart from a constant which we can set equal to 1. Thus $\left|s_{G}\right|^{2}=\left|\varphi_{0}\right|^{2}=$ $\exp -4 \pi|x|$. This completes the analysis of the prequantization.

To discover whether half-forms exist, consider K^{F}. Let ρ be any n-form on S^{n} then $\pi^{*} \rho$ is an n-form vanishing on F so $\pi^{*} \rho \in K^{F}$. Since S^{n} is orientable we can choose ρ nowhere vanishing, and then $\pi^{*} \rho$ vanishes nowhere, showing K^{F} is trivial. Thus there is a square root Q^{F}, unique since X is simply-connected. The same conclusion could have been reached from [5] since it is known that when F is the tangent bundle to a projection $\pi: X \rightarrow Y$ the mod 2 reduction of the Chern class of F is the square of the first StiefelWhitney class of Y, pulled back to X. Then, if Y is orientable, the chern class must be even.

Observe also that since ρ is a form of maximum degree on $S^{n}, d \rho=0$ so that $d \pi^{*} \rho=0$ and hence $\nabla_{\xi} \pi^{*} \rho=0, \xi \in \Gamma F, \quad$. Fix ρ_{0} as the Riemannian volume on $S^{i n}$, which in terms of the functions e_{i} is

$$
\begin{equation*}
\rho_{0}=\sum_{j=0}^{n}(-1)^{j} e_{j} d e_{0 \wedge} \ldots \wedge \widehat{e_{j}} \ldots \wedge d e_{n} \tag{3}
\end{equation*}
$$

where $\widehat{d e_{j}}$ means that term is omitted. On the set where $e_{k} \neq 0$ we can take $e_{0}, \ldots, e_{k-1}, e_{k}, \ldots, e_{n}$
as coordinates and obtain

$$
\begin{equation*}
\rho_{0}=(-1)^{k} e_{k}^{-1} d e_{0} \wedge \ldots \wedge d \widehat{e_{k}} \wedge \ldots \wedge d e_{n} . \tag{4}
\end{equation*}
$$

Expression (3) makes sense on X and gives $\pi^{*} \rho_{0}$.
Let $Q^{F} \otimes Q^{F}=K^{F}$ and μ_{F} be a section of Q^{F} with $\mu_{F} \otimes \mu_{F}=\pi^{*} \rho_{0}$, which exists since X is simply-connected. Then also $\nabla_{3}^{\frac{1}{2}} \mu_{F}=0$ for all ξ in ΓF. K^{G} may be handied similarly. We look for a section σ which has an expression analogous to (3) in terms of the functions z_{i} instead of e_{i}. and in order that $d \sigma=0$ one finds

$$
\sigma=|x|^{-2} \sum_{j=0}^{n}(-1)^{j} \bar{z}_{j} d z_{0} \wedge \cdots \wedge \widehat{d z_{j} \wedge \cdots \wedge^{d} z_{n}} .
$$

If $u_{j} \subset X$ is the subset where $e_{j} \neq 0$, then $z_{j} \neq 0$ on U_{j} and

$$
\begin{equation*}
\sigma \mid u_{j}=2(-1)^{j} z_{j}^{-1} d z_{0 \wedge} \ldots \wedge d z_{j \wedge \cdots \wedge} d z_{n} \tag{5}
\end{equation*}
$$

Thus σ vanishes nowhere and $\nabla_{3} \sigma=0, \xi \in \Gamma G \quad$ Let $Q^{G} \otimes Q^{G}=K^{G}$ and μ_{G} be the section of Q^{G} with $\mu_{G} \otimes \mu_{G}=\sigma$, so that $\nabla_{\xi}{ }^{2} \mu_{G}=0$ for ξ in ΓG.

We have thus shown $\Gamma_{F} L \otimes Q^{F}$ consists of sections of the form
$\varphi_{0} \pi S_{F} \otimes \mu_{F}$ with $\varphi \in C^{\infty}\left(S^{n}\right)$, and $\Gamma_{G} L \otimes Q^{G}$ of the form $\psi S_{G} \otimes \mu_{G}$
$\left.\left|\nmid \|_{z_{1}}\right| x \tau_{\tau_{1}} \tau^{\prime}|x| H z-d x\right\rangle \not \phi^{X} \int=\left\langle\lambda_{1}^{\prime} \phi\right\rangle$
unitarity. Denote the pairing of $Q S_{F} \otimes \mu_{F}$ and $\psi S_{G} \otimes \mu_{G}$ by $\langle\varphi, \psi\rangle$, then
We shall drop the factor i^{n} since it makes no difference to the existence or
$\left\langle\mu_{F}, \mu_{G}\right\rangle=i^{n} 2^{r_{2}}|x|^{-r_{2}}$
$\pi^{*} \rho_{0} \wedge \sigma=2(-1)^{n}|x|^{-1} \lambda$.

Thus
One finds

$\langle\sigma, \sigma\rangle=2^{n+2}|x|^{n-2}$ and so $\left\langle\mu_{G}, \mu_{G}\right\rangle=2^{n / 2+1}|x|^{n / 2-1}$. Thus
so G_{F}, the completion of $T_{F} L \otimes Q$ coincides with $L^{2}\left(S, \rho_{0}\right)$
$\because l^{\circ} d,\left\|^{n S} S={ }_{2}^{f}\right\| d \|$
$\stackrel{\sum}{\stackrel{\Sigma}{J}}$
$\left\langle\mu_{F}, \mu_{F}\right\rangle=\pi^{*}\left|\rho_{0}\right|, \quad$ and
ψ holomorphic. The norms are easily computed as in $52 . F$ is real

$x_{u} p_{H_{1}|x|}|x| H z-d x a(x 1+2|x|) \lambda_{t}^{0=2 \cdot x} \int_{x_{1} t} t=(2)(\nmid \perp)$
As a formal map $T: \Omega_{G} \longrightarrow \AA_{F}$ the pairing can be written

 This is non-zero so A_{k} and B_{k} are invertible. $\frac{(1-u+\eta)\lrcorner(\tau / 1+u)+x)\lrcorner(\tau / u)\lrcorner(1-u+\gamma \varepsilon)}{2(1+y)\lrcorner(u)\lrcorner(1-\tau / u \varepsilon+\eta \zeta)}$
This integral is evaluated in the appendix to give

 integrate
inf a mulffle a_{k} of the identity. To find a_{k} we set $a=b$ and must be a multfple a_{k} of the identity. To find $a_{\text {. }} O(n+1)$, so $B_{k} \cdot A_{k}$
 $\left.g^{\prime} 0\right) \neq$

алвчм

manipulation.

isomorphically onto \mathscr{S}_{k} : this is the Laplace representation of elements of \mathcal{S}_{k}
 dimension could be derived from our analysis of the relationship between \mathcal{H}_{k} and
 polynornials homogeneous of degree k on X. Then $\operatorname{dim} \&_{k}=\operatorname{dim} P_{k}=$
 provide dense domains for T and T^{-1}. will be shown that the polynomials in z are dense in \AA_{G}. These will
 harmonic. For x fixed, as a function of $z,(x \cdot z)^{k}$ is holomorphic and polynomial and therefore its restriction to the unit sphere is a spherical from which it follows that if $z \in X,(x \cdot z)^{k}$ is a homogeneous harmonic

$$
\Delta_{x}(x \cdot z)^{k}=k(k-1) z \cdot z(x \cdot z)^{k-2}
$$

[^0] write down a kernel $K(z, e)$ analognus to that of $\mathbf{s 2}$. If $x \in \mathbb{R}^{n+1}, z \in \mathbb{C}^{n+1}$ Existence and non-unitary nature of the pairing.
The proof of the existence of the pairing is $\stackrel{m}{\infty}$
irreducibly on P_{k}, so $\bigoplus_{k=0}^{\infty} p_{k}$ is an orthogonal direct sum within \tilde{n}_{G}. But in Lemma 1 of [9] I showed an holomorphic function f on X had an expansion $f=\sum_{k=0}^{\infty} f_{k}$ with $f_{k} \in P_{k}$ so that $h_{G}=\bigoplus_{k=0}^{\infty} p_{k}$. Let $p=\prod_{k=0}^{\infty} p_{k}$
be the algebraic sum. This is thus a dense domain in Ω_{G}.
Let $\psi_{1}, \psi_{2} \in P_{k}$ then $A_{k}: \not \delta_{k} \longrightarrow P_{k}$ is onto so $\psi_{i}=A_{k} \varphi_{i}$
with $q_{1} \in \mathcal{O}_{k}, i=1,2$. Then
\[

$$
\begin{aligned}
\left(\psi_{1}, \psi_{2}\right)_{G} & =\int_{X}\left(A_{k} \varphi_{1}\right)(z) \overline{\left(A_{k} \varphi_{2} K z\right)} \operatorname{eap}-4 \pi|x| 2^{n_{2}+1}|x|^{m_{2}-1}|\lambda| \\
& =\int_{S^{n}} \int_{S^{n}} \varphi_{1}(a) \overline{\Phi_{2}(b)} F(a, b)\left|\rho_{0}\right|(d a)\left|\rho_{0}\right|(d b)
\end{aligned}
$$
\]

by a simple rearrangement. Thus

$$
\left(\psi_{1}, \psi_{2}\right)_{G}=a_{k}\left(\varphi_{1}, \varphi_{2}\right)_{F}
$$

Hence $a_{k}^{-1 / 2} A_{k}$ is unitary.

$$
\text { Now consider } T_{k}=T \mid p_{k} \text {, and }
$$

$$
\left(T_{k} \cdot A_{k} \varphi\right)(e)=2^{1 / 2} \int_{x \cdot e=0}\left(A_{k} \varphi\right)(|x| e+i x) \exp -2 \pi|x||x|^{-1 / 2} d^{n} x
$$

$$
=\int_{S_{n}} \varphi(a) G(a, e)\left|\rho_{0}\right|(d a)
$$

with

$$
G(a, b)=2^{1 / 2} \int_{x \cdot b=0}\{a \cdot(|x| b+i x)\}^{k} \exp -2 \pi|x||x|^{-1 / 2} d^{n} x \text {. }
$$

Again, $G(a, b)$ is $O(n+1)$-invariant and hence a multiple, b_{k}, of the identity. b_{k} is found, as before, by setting $a=b$ and integrating:

$$
b_{k}=2^{-k-n+2} \pi^{-k-n / 2+1 / 2 \Gamma(k+n-1 / 2) \Gamma(n) \Gamma(k+1)} \frac{(2 k+n-1) \Gamma(n / 2) \Gamma(k+n-1)}{} .
$$

Thus $T_{k}=b_{k} a_{k}^{-1} B_{k}$ and is $b_{k} a_{k}^{-1 / 2}$ times a unitary operator from p_{k} to $\&_{k}$. Also $\|T\|=\operatorname{xup}_{k} b_{k} a_{k}^{-1 / 2},\left\|T^{-1}\right\|=\operatorname{mup}_{k} b_{k}^{-1} a_{k}^{1 / 2}$, if these exist.

We calculate $b_{k}^{2} a_{k}^{-1}$ as

$$
\frac{2^{n / 2} \Gamma(k+n-1 / 2)^{2} \Gamma(k+(n-1) / 2)}{\operatorname{vod} S^{n} \Gamma(k+n-1) \Gamma(k+3 n / 4) \Gamma(k+3 n / 4-1 / 2)} \text {. }
$$

This is monotone decreasing so $\|T\|=b_{0} a_{0}^{-1 / 2}$ is finite, and $\left\|T^{-1}\right\|=\lim _{k \rightarrow \infty} b_{k}^{-1} a_{k}^{1 / 2}$. But

$$
\frac{\Gamma\left(k+\alpha_{1}\right) \cdots \Gamma\left(k+\alpha_{\tau}\right)}{\Gamma\left(k+\beta_{1}\right) \ldots \Gamma\left(k+\beta_{r}\right)}
$$

has the limit ∞, 1 or 0 as $k \rightarrow \infty$ according as $\sum_{i=1}^{T} \alpha_{i}$ is greater, equal to or less than $\sum_{i=1}^{T} \beta_{1}$. In our case $\alpha_{1}=\alpha_{2}=n-1_{2}, \alpha_{3}=\left(n-1 / 2, \beta_{1}=n-1\right.$. $\beta_{2}=3 n / 4, \beta_{3}=3 n / 4-1 / 2$ so $\alpha_{1}+\alpha_{2}+\alpha_{3}=5 n / 2-3 / 2=\beta_{1}+\beta_{2}+\beta_{3}$, so that $\left\|T^{-1}\right\|=\left(\operatorname{ral} S^{n}\right)^{1 / 2} 2^{-n / 4}$, which is finite. Thus T and T^{-1} are bounded and hence we have established the rigorous existence of the pairing.

Since $\left\|T_{k}\right\|$ is properly decreasing, T is not unitary, nor a multiple of a unitary operator.

The flow σ_{t} preserves G, so lifts into L and satisfies $\sigma_{t} \cdot S_{G}=S_{G}$. Also one finds from (5) that

$$
\sigma_{t}^{*} \sigma=\exp \{-(n-1) 2 \pi i t] \sigma
$$

and so

$$
\sigma_{t}^{*} \mu_{G}=\exp \{-(n-1) \pi i t\} \mu_{G}
$$

Thus σ_{t} quantizes on σ_{G} to give the unitary group u_{t} with

$$
\left(u_{t} \psi\right)(z)=\exp (n-1) \pi i t \psi(\exp 2 \pi i t z)
$$

For $\psi \in P_{k}$ we have

$$
u_{t} \psi=\exp \left\{(k+(n-1) / 2)_{2 \pi i t}\right\} \psi
$$

so that $T U_{t} T^{-1}=\exp \left\{2 \pi i t\left[-\Delta+(n-1)^{2} / 4\right]^{1 / 2}\right\}$, as the latter group has the same spectrum and eigenspaces.

Appendix.
To evaluate
where

$$
I_{k}=\int_{\substack{y \cdot e=0 \\ y \cdot y=e \cdot e=1}}\left(a \cdot e^{2}+a \cdot y^{2}\right)^{k} d v o l
$$

This is independent of a, so integrating over a gives

$$
I_{k} \operatorname{vol} S^{n}=\int_{S^{n}} \int_{\substack{y \cdot e=0 \\ e \cdot e=y \cdot y=1}}\left(a \cdot e^{2}+a \cdot y^{2}\right)^{k} d \text { vol }\left|\rho_{0}\right|(d a)
$$

$$
=\int_{\substack{y \cdot e=0 \\ e \cdot e=y \cdot y=1}} \int_{S^{n}}\left(a \cdot e^{2}+a \cdot y^{2}\right)^{k}\left(\rho_{0} \mid(d a) d\right. \text { vol. }
$$

$$
\text { But } O(n+1) \text { is transitive on the set of pairs }(e, y), e \cdot e=y \cdot y=1, e \cdot y=0 \text {, so }
$$

$$
\int_{S^{n}}\left(a \cdot e^{2}+a \cdot y^{2}\right)^{k} \rho_{\rho_{0}}(d \alpha)
$$

is independent of (e, y) - We can therefore evaluate it by setting $\quad e=\epsilon_{n+1}$. $y=\epsilon_{n} \quad$. Then

$$
I_{k} \operatorname{vol} S^{n}=\left.\operatorname{vol} S^{n} \operatorname{vol} S^{n-1} \int_{S_{n}}\left(e_{n+1}^{2}+e_{n}^{2}\right)^{k}\right|_{\rho_{0}} \mid(d a) .
$$

$$
\begin{aligned}
& C_{k}=\int_{X}\left|z_{n+1}\right|^{2} \exp -4 \pi|x| \quad|x|^{n / 2-1}|\lambda| \text {. } \\
& \text { write } x=r y \text { with } y: y=1, y \cdot e=0 \text { then } \\
& C_{k}=\int_{0}^{\infty} r^{2 k+3 n / 2} e s p-4 \pi r d r \int_{\substack{y-e=0 \\
y \cdot y=e \cdot e=1}}\left(e_{n+1}^{2}+y_{n+1}^{2}\right)^{k} d v d, \\
& =(4 \pi)^{-2 k-3 w / 2+1} \Gamma(2 k+3 w / 2-1) I_{k}
\end{aligned}
$$

Another integration by parts procedura shows that the last integral is
$1 / 2 \Gamma(k+1) \Gamma(n-1) / 2) / \Gamma(k+(n+1) / 2)$.
$\{(z /(1+u)+y) \perp(z / u) \perp\} /(1+y) \perp x+u^{1} \square={ }^{x} I$
$\stackrel{\stackrel{c}{\mathbf{D}}}{\stackrel{\text { r }}{⺊}}$

> This last integral we write in spherical polar coordinates :
> $I_{k}=\operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \int_{0}^{\pi} \int_{0}^{\pi}\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \varphi\right)^{k} \sin ^{n-1} \theta \sin ^{n-2} \varphi d \theta d \varphi$
> $=\operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \int_{0}^{\pi} \int_{0}^{\pi}\left(1-\operatorname{in}^{2} \theta \sin ^{2} \varphi\right)^{k} \sin ^{n-1} \theta \sin ^{n-2} \varphi d \theta d \varphi$
> $=\operatorname{vol} S^{n-1} \operatorname{vol} S^{n-1} \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} J_{2 r+n-1} J_{2 r+n-2}$
$J_{k}=-\left.\operatorname{in}^{k-1} \theta \cos \theta\right|_{0} ^{\pi}+(k-1) \int_{0}^{\pi} \sin ^{k-2} \theta \cos ^{2} \theta d \theta$
$=(k-1)\left(J_{k-2}-J_{k}\right)$
for $k \geqslant 2$. Multiplying both sides by J_{k-1}, we see $k J_{k} J_{k-1}$ is constant, so Thus $\begin{aligned} & k J_{k} J_{k-1}=J_{1} J_{0}=2 \pi \\ & I_{k}=\operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} \frac{2 \pi}{2 r+n-1} \\ &=2 \pi \operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \int_{0}^{1} x^{n-2}\left(1-x^{2}\right)^{k} d x\end{aligned}$. Thus $\begin{aligned} & k J_{k} J_{k-1}=J_{1} J_{0}=2 \pi \\ & I_{k}=\operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} \frac{2 \pi}{2 r+n-1} \\ &=2 \pi \operatorname{vol} S^{n-1} \operatorname{vol} S^{n-2} \int_{0}^{1} x^{n-2}\left(1-x^{2}\right)^{k} d x\end{aligned}$.
for $k \geqslant 2$. Thus
Now, integrating by parts,

References

1. V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 20 (1967) 1-101.
2. R. Blattner. The metalinear geometry of non-real polarizations. Lecture Notes in Mathematics 570 Springer-Verlag, Berlin-HeidelbergNew York, 1977.
3. J. Elhadad. Quantification du flot géodésique de la sphère S^{n} : CNRS, Marseille, June 1977.
4. B. Kostant. Quantization and unitary representations I. Lecture Notes in Mathematics 170. Springer-Verlag, Berlin-Heidelberg-New York, 1970.
5. B. Kostant. Symplectic spinors. Symposia Mathematica XIV. Academic Press, London, 1974.
6. B. Kostant. On the definition of quantization. Colloque symplectique, Aix-en-Provence. CNRS 1974.
7. F. J. Moser. Regularization of Kepler's problem and the averaging method on a manifold. Comm. Pure Appl. Math. 23 (1970) 609-636.
8. C. Muller. Spherical harmonics. Lecture Notes in Mathematics 17, SpringerVerlag, Berlin-Heidelberg-New York 1966.
9. L. Nirenberg. A complex Frobenius theorem. Seminars on analytic functions I. Princeton Univ. Press. Princeton, 1957, pp. 172-189.
10. J. Rawnsley. Coherent states and Kaehler manifolds. Quarteriy J. Math. (1977, to appear).
11. J. Rawnsley. On the pairing of polarizations. Comm. Math. Phys. (1978, to appear).
12. J. Rawnsley. On the cohomology groups of a polarization and diagonal quantization. Trans. Amer. Math. Soc. 230 (1977) 235-255.
13. D. Simms, N. Wgodhouse. Lectures on geometric quantization. Lecture Notes In Physics 53. Springer-Verlag, Berlin-Heidelberg-New York, 1976.
14. J.-M. Souriau. Structure des systèmes dynamiques. Dunod, Paris, 1970.
15. J.-M. Souriau. Sur la variété de Kepler. Symposia Mathematica XIV.

Academic Press, London, 1974.
instein
Quasi-classical mechanics on spheres. Symposia Mathematica XIV, Academic Press, London, 1974.

[^0]: and Δ_{x} denotes the Laplacian in the x-variables then

