DIAS Access to
Institutional Repository

Title	A Non-unitary Pairing of Two Polarizations of the Kepler Manifold
Creators	Rawnsley, J. H.
Date	1977
Citation	Rawnsley, J. H. (1977) A Non-unitary Pairing of Two Polarizations of the Kepler Manifold. (Preprint)
URL	https://dair.dias.ie/id/eprint/959/
DOI	DIAS-TP-77-07

A Non-unitary Pairing of

Two Polarizations of the Kepler Manifold
J. H. Rawnsley

Dublin Instutute for Advanced Studies
School of Theoretical Physics Dublin 4, Ireland.

March 1977.

Abstract

A real and a Kaehler polarization of the Kepler manifold are paired, giving a formal operator between the two spaces of polarized sections. The operator is shown to exist and give a non-unitary isomorphism of these spaces.

Introduction.

In [5] J.-M. Souriau showed that the regularized Kepler problem had a phase space which could be identified with $T_{0}^{*} S^{n}$, the complement of the zero section in the cotangent space of an n-sphere. He also pointed out the existence of a complex structure for this space which we observed in [2] was actually a positiva pclarization [1].

The tangents to the projection $T_{0}^{*} S^{n} \rightarrow S^{n}$ give a real polarization whose leaves are the cotangent spaces. We use the method described in [3] to calculate the Blattner-Kostant-Sternberg pairing [1] of these two polerizations.

In order to show that the pairing defines a bicontinuous isomorphism of the Hilbert spaces of polarized sections we use the reproducing kernels of the spaces of spherical harmonics on S^{n}. A sketch of the proof is given here. Details will be found in [4].

The length function on $T_{0}^{*} S^{n}$, taken as a Hamiltonian preserves the complex polarization, so we may quantize it there. This quantization is then transported to S^{n} by the pairing and shown to be

$$
\left[-\Delta+\frac{1}{4}(n-1)^{2}\right]^{1 / 2}
$$

on a suitable dense domain, where \triangle is the usual Laplacian. This operator has spectrum $k+\frac{1}{2}(n-1), k=0,1, \ldots$, which coincides with the semi-classical spectrum obtained by Weinstein [6], but with cirferent multiplicities.

For simplicity we only consider $n \geqslant 3$ since $T_{0}^{*} S^{n}$ is simplyconnected in this case.

The two quantizations.

If we identify S^{n} with the set of unit vectors in \mathbb{R}^{n+1} then we may further identify $T_{0}^{*} S^{n}$ with

$$
\left\{(e, x) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid e \cdot e=1, e \cdot x=0, x \neq 0\right\}
$$

where the fundamental 1 -form θ becomes

$$
\theta=x \cdot d e .
$$

$\omega=d \theta$ is the usual symplectic structure. The complex structure of $[2,5]$ is obtained by identifying (e, x) with $z \mathbb{C}^{n+1}$ where

$$
z=|x| e+i x, z z=0, z \neq 0
$$

Then

$$
\theta=i \partial|x|-i \bar{\partial}|x|, \quad \omega=2 i \bar{\partial} \partial|x|
$$

and hence the space F of tangents of type $(0,1)$ form a positive polarization.

The integral curves of the Hamiltonian h defined by

$$
h(e, x)=2 \pi|x|
$$

are

$$
z(t)=\sigma_{t}(z)=(\exp -2 \pi i t) z
$$

Clearly this flow preserves F.

$$
\begin{aligned}
& \text { Let } G \text { denote the tangent spaces to the projection } \\
& \pi: T_{0}^{*} S^{n} \longrightarrow S^{n},(e, x) \longrightarrow e,
\end{aligned}
$$

then G is a real polarization, and $F_{n} \bar{G}=0$. G is not invariant under the flow σ_{t}.

Let K^{F}, K^{G} denote the canonical bundles of F and G, see $[3]$. Then K^{G} is the pull-back to $T_{0}^{*} S^{n}$ of $\Lambda^{n}\left(S^{n}\right)$, and since S^{n} is orientable K^{G} (and hence K^{F}) is trivial. Thus the first Chern class of the symplectic structure vanishes and ($T_{0}^{*} S^{n}, \omega$) admits a metaplectic structure, unique for $n \geqslant 3$. Let $\left(Q^{F}, i^{F}\right),\left(Q^{G}, i^{G}\right)$ be the half-form bundles for this metaplectic structure.

$$
\begin{aligned}
& \text { Let } \rho \text { denote the Riemannian volume on } s^{n} \text {, then } \\
& \qquad \pi^{*} \rho=\sum_{j=0}^{n}(-1)^{j} e_{j} d e_{0} \wedge d e_{1} \wedge \ldots \wedge d e_{j} \wedge \ldots \wedge d e_{n}
\end{aligned}
$$

is a closed, nowhere-vanishing section of K^{G}. It follows, since $T_{0}^{\star} S^{n}$ is simply-connected, that there is a covariant constant, nowhere-vanishing section φ_{0} of Q^{G} with $i^{G}\left(\varphi_{0} \otimes Q_{0}\right)=\pi^{*} \rho$. We would like to construct such
No

$$
\text { where } \lambda \text { is the Liouville volume on } T_{0}^{*} S^{n} \text {. Thus, }
$$

$$
\left\langle\psi_{0}, \psi_{0}\right\rangle_{0}=2^{\pi / 2+1}|x|^{n / 2-1}
$$

$$
\begin{aligned}
& \text { The Hilbert space } h_{F} \text { corresponding with } F \text { can be identified } \\
& \text { with the holomorphic functions } f \text { on } T_{0}^{*} S^{n} \text { With norm } \\
& \text { and the Hilbert space } \|_{G}=\int_{T_{0}^{*} S^{n}}|f(2)|^{2} e^{-4 \pi|x|} 2^{n / 2+1}|x|^{n / 2}-1 \\
& F
\end{aligned}
$$

$$
S_{S^{n}}|g(e)|^{2} d \rho(e) .
$$

it con be trivialized by a covariant constant section.

 $e_{j} \neq 0$. Then $z_{j} \neq 0$ on U_{j} and one can compute $\beta_{0} \mid u_{j}=2(-1)^{j} z_{j}^{-1} d z_{0 \wedge}, \wedge \wedge \widehat{z}_{j \wedge} \cdots \wedge d z_{n}$ showing β_{0} does not vanish on U_{j} and is closed. Since the $U_{j}, j=$ $0, \ldots, n$ cover $T_{0}^{*} S^{n}$ this shows β_{0} is covariant constant and vanishes nowhere as required. Let ψ_{0}. be a section of Q^{F} with $i^{F}\left(\psi_{0} \otimes \psi_{0}\right)=\beta_{0}$
then Ψ_{0} is a nowhere vanishing covariant constant section of Q^{F}. Since ω is exact it is integral. Let $\pi: L \rightarrow T_{0}^{*} S^{n}$ be any Hermitian line bundle with connection α having curvature ω. Since $\omega=d \theta=d(2 i \partial|x|)$, there are sections s_{0}, t_{0} of L which vanish nowhere such that
$s_{0}^{*} \alpha=\theta, \quad t_{0}^{*} \alpha=2 i \partial|x|$.
But θ vanishes on G, and $2|z| x \mid$ on F so that s_{0} and t_{0} are G and $F-$ polarized respectively. Any F-covariant constant section of $L \otimes Q^{F}$ thus has the form $f t_{0} \otimes \psi_{0}$ with f holomorphic, and any G-covariant constant section of $L \otimes Q^{G}$ has the form $g S_{0} \otimes \varphi_{0}$ with g constant along the leaves of G. That is: g is a function on S^{n}. Now θ is real so $\left|s_{0}\right|^{2} \equiv 1$ whilst
$d \log \left|t_{0}\right|^{2}=2 \pi i(2 i \partial|x|+2 i \bar{\partial}|x|)$

or
Also
Further

$$
\langle\dot{\gamma}, g\rangle=\left\langle f t_{0} \otimes \psi_{0}, g S_{0} \otimes \varphi_{0}\right\rangle=\int_{T_{0}{ }^{*} S^{n}} f(z) \overline{g(e)} e^{-2 \pi|x|} 2^{t_{2}}|x|^{-1 / 2} \lambda .
$$

The parring thus cefines a map $T: h_{F} \longrightarrow h_{G}$ given formally by

$$
(T f)(e)=2^{1 / 2} \int_{x \cdot e=0} f(|x| e+i x) e^{-2 \pi|x|}|x|^{-1 / 2} d x .
$$

This expression has also been obtained by R. Blattner [private communication].

Pron of Existence.
Le $\quad 2 \psi_{k}$ dennte the space of polynomials in z_{0}, \ldots, z_{n} nmogeneous of degree k, regarded as functions on $T_{0}^{*} S^{n}$, and \oiint_{k} denote the space of spherical harmonics of derree k on s^{n}. Then $\dot{\phi}_{k} \subset \tilde{\sigma}_{F}$, $\delta_{k} \subset \bar{n}_{G}$ for each $k=0,1, \ldots$ and in $[4]$ we show T maps \not_{k} one-one onto $\& \rho_{k}$ for each k. There are real numbers $c_{k}>0$ with

$$
\|T f\|_{G}^{2}=c_{k}\|f\|_{F}^{2}
$$

for all $f \in \mathcal{H}_{k}$, so that T restricted to \mathcal{H}_{k} is a multiple or a unitary operator. We al.so show

$$
C_{k}^{2}=\quad \frac{\Gamma(k+(n-1) / 2) \Gamma(k+n-1 / 2)^{2}}{\Gamma(k+3 n / 4) \Gamma(k+3 n / 4-1 / 2) \Gamma(k+n-1)}
$$

Now

$$
C_{k} \cdot 1^{2} / C_{k}^{2}=1-\frac{\left(n^{2}+2 n-4\right) k+(n-1)\left(n^{2}+2 n-2\right)}{16(k+n-1)(k+3 n / 4)(k+3 n / 4-1 / 2)}
$$

is strictiy less than one, so that r_{k} is a monotone decreasing sequence. Herc.e $\|T\|=o_{0}, \| T^{-1} \mid=\lim _{k \rightarrow \infty} c_{k}^{-1}$. Tius: T is bounded, and for constants $a_{1}, \ldots, s_{N}, b_{1}, \ldots, b_{N^{\prime}}$

$$
\lim _{k \rightarrow \infty} \frac{\Gamma\left(k+a_{1}\right) \cdots \Gamma\left(k+a_{N}\right)}{\Gamma\left(k+b_{1}\right) \ldots \Gamma\left(k+b_{N}\right)}
$$

is $\infty, 1$ or 0 according as $\sum_{i=1}^{N} a_{i}$ is greater than, equal to or less than $\sum_{i=1}^{N^{\prime}} b_{i}$. In our case $a_{1}+a_{2}+a_{3}=5 n / 2-3 / 2=b_{1}+b_{2}+b_{3}$, so that

$$
\lim _{k \rightarrow \infty} c_{k}=1 \text { ardy. }
$$

Thus $\left\|T^{-1}\right\|=1$ so that T is a continuous isomorphism of h_{F} onto
\mathscr{C}_{G} with a continuous inverse, but is not unitary.
Finally we observe that for f in \mathcal{F}_{k},

$$
u_{t} f=e^{2 \pi i(k+(x-1) / 2) t} f
$$

since f is homogeneous of degree k. The spectrum of $-\Delta$ on $\not \mathcal{S}_{k}$ is $k(k+n-1)=(k+(n-1) / 2)^{2}-(n-1)^{2} / 4$, so that $T U_{t} T^{-1}$ has generator

$$
2 \pi\left[-\Delta+(n-1)^{2} / 4\right]^{1 / 2} .
$$

Acknowledgement.

The author wishes to thank R. Blattner and D. J. Simms for their help and interest in this work.

References.

1. Blattner,R. J. The metalinear geometry of non-real polarizations, in Differential Geometric Methads in Mathenatical Physics, Eonn July, 1975.
2. Rawnsley, J. H. Coherent states and Kaehler manifolds. Preprint Dublin, 1976. DIAS-TP-76-33.
3. Rawnsley, J. H. On the pairing of polarizations. Preprint, Dublin, 1977. DIAS-TP-75-34.
4. Rawnsley, J. H. Existence of the pairing of two polarizations of the Kepler manifold. Preprint, Dublin, 1977. dIAS-TP-77-0日.
5. Souriau, J.-M. Sur la variété de Kepler. Symposia Mathematica XIV, Academic Press, London, 1974.
6. Weinstein, A. Quasi-classical mechanics on spheres. Symposia Mathematica XIV, Academic Press, London, 1974.
