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Fermi algebra methods are applied to the two-dimensional Ising model on an infinite lattice. The way in which

the phase transition manifests itself is discussed.

The two-dimensional Ising model in zero field has

been treated algebraically by many authors, notably

[1—3, 6,7, 12, 15]. They consider an array of spins

on a finite lattice, compute correlations using either

the Clifford algebra [1,2,6,7] or the Fermi algebra

[2, 15] and then pass to the thermodynamic limit.

The beauty of the algebraic formalism becomes more

apparent if we use from the outset the Clifford or

Fermi algebras on an inifinite lattice. This can be done

using the C*algebraic methods developed in [4, 14].

A full account of this is contained in [16]. We give here

the main results; the proofs will appear elsewhere.

For each inverse temperature 13 we have a Fock repre

sentation of the Canonical Anticommutation Relations

[b<(p), b(p’)] = 6 (p —p’) with vacuum vector

It is convenient to make use of the smoothed operators

defined by bp) fs(p)b’(p) dp/2’ir, L( ‘is, is)

and to introduce operators J and A onL2(sr, is) de

fined by (J)(p) ip(p), (Acp)(p) p(—p). Every such

representation is related to the infinite temperature re

presentation [a*(p), a(p’)]÷ = 6(p —p’) with vacuum

vector fZ, by a Bogoliubov transformation

=exp (if O(P){a*(P)a*(P)+a)a(p)}),

so that

b)a*()ca*(cose) +a(sin9JA),

f2 =c&2,where (e13p)(p) = o(p)p(p),2e(p) =

ö’(p) + p — is, 6 *(p) the usual Onsager angle as given

in [1]. The Jordan—Wigner transformation [5] con

nects even products of the spin variables 11rnn with

even products of the a’s and a Calculation of

correlations involves evaluating the expectation value

of these products in the vacuum state l2. Consequently

it is convenient to use Pcp) a*(p) + a(cp))/2 so that

F(p)cS1 P(Sp) where S exp (JAO) and the

state on the algebra Qt generated by the P(p) given

by w13X) = (f2, X Qt. This vanishes on the

odd monomials and is given on the even monomials

by the Wick formula

2 n

and so is determined by the two-point function

(3)

= s(, i) + is(Ap, ), = SJS,

(Sis the adjoint of with respect to the inner pro

duct s(p, ‘ji) = Re fp(p)(p)dp/2ir).

From the mathematical point of view the phase

transition at 3 13c shows itself in the following way:

the operatorA determines a Fredhoim operatort D

whose index, md D, is given by

1 13<13c
indD

013>13c
(5)

Physical manifestation of the phase transition is shown

(1) in the calculated values of the correlations and these all

‘2”
depend on this jump in the index. Even correlations

‘i can be calculated directly in this formalism using the

shift operator W onL2(—ir, ‘is), (Wp)(p) exp (ip)p(p),

which corresponds to translation orthogonal to the

transfer direction and the OnsagerianP (see [10])

* A Fredholm operator T on a Hubert space is one such that

the null spaces of T and its adjoint T5 are both finite-dimen

sional and md (T) = dim (null space T) dim (null space T*).
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Which corresponds to translation along the transfer

direction. (The Onsagerian can be thought of as the

infinite volume limit of the transfer matrix normalised

by dividing out the largest eigenvalue).

We have

Pexp

so that

Pbo)P° = b(v°cp). =

(000crl0)= w(—iP(Je0)P(We0)),

Ku00 u70) = Ku00u0a20)

(u00a10u20u30) (8)

Ku00a10u0,a1)

iF(Je0)F(We0))p(iF(Je0)P(We0))P),

e0(p)ml, pe[—,r]

In this formulation the treatment of translations in
the two basic lattice directions appears to be asymme
tric, in contrast to the Pfaffian approach [11]. This
connection is seen as follows: Sz-Nagy’s theorem [17]
states that if T is a contraction (I) TII 1) on a Hilbert
space CK

, then CK can be embedded in a larger Hubert
space ( on which there is a unitary operator U in such
a way that, on X, T’1 rrU n >0, where ir is the pro
jection of (on CK. The operator v is a strict contrac
tion onL2(—rr, ir) for

.

We can apply Sz-Nagy’s
theorem and show that ( in this case can be taken to
beL2([—ir,ir]X [— r];pi)di dQ/2rr)with

(UF)(,O)=exp(iQ)F() (rrF)(p)fF(p,)
X dO/2ir and p (i) tanh ‘y(i). With this construction

dO

cosh7(p)-cos

(6) A comparison of [2] and [11] yields the connection.
We emphasise that the states are determined by

the even correlations and hence are independent of

boundary conditions [9]. For a pure state the clustering
(7) propeity holds [8] so that for such a state the odd cor

relations can be computed from the even, Every trans
lationally invariant Gibbs state is a mixture of the two
pure states [9].

It is a pleasure to acknowledge many stimulating
discussions with Dr. D.B. Abraham.
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it

(W°v’12p)
= I exp (inp) exp (imO)

—it

(9)

where (vp) (p) = exp { -y(p)} (p)} (p). For example

= w((—iP(Je0)[‘(We0)) (— iF(JWe0)F(W2e0))),

= w0 ((— iF(Je0)F(We0)) (—iF(JW2e0)F(W3e0))),
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