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ABSTRACT

Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM),

control its turbulent multiphase structure and the launching of galactic outflows. Accurate

modelling of the blast wave evolution is therefore essential for ISM and galaxy formation

simulations. We present an efficient method to compute the input of momentum, thermal en-

ergy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of

0.1 ≥ n0 [cm−3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and

turbulent (Mach numbersM from 1to100) density distributions. Assuming solar metallicity

cooling, the blast wave evolution is followed to the beginning of the momentum conserving

snowplough phase. The model recovers previous results for uniform ambient media. The mo-

mentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency

of cooling, when the blast wave hits the wind shell. For power-law density distributions with

n(r) ∼ r−2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the back-

ground density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with

lognormal density distributions the momentum input can increase by a factor of 2 (compared to

the homogeneous case) for high Mach numbers. The average momentum boost can be approx-

imated as pturb/p0 = 23.07
(

n0,turb

1 cm−3

)−0.12 + 0.82(ln(1 + b2M2))1.49
(

n0,turb

1 cm−3

)−1.6
. The velocity

distributions are broad as gas can be accelerated to high velocities in low-density channels. The

model values agree with results from recent, computationally expensive, three-dimensional

simulations of SN explosions in turbulent media.

Key words: shock waves – turbulence – ISM: supernova remnants.

1 IN T RO D U C T I O N

Supernovae (SNe) play a fundamental role in setting the proper-

ties of the multiphase interstellar medium (ISM; e.g. Salpeter 1955;

de Avillez & Breitschwerdt 2004; Joung & Mac Low 2006; Kim,

Ostriker & Kim 2013; Walch et al. 2015). They not only enrich

the ISM with metals but also inject energy and momentum leading

to the dispersal of molecular clouds (MCs), the driving of turbu-

lent motions as well as galactic outflows (e.g. Mac Low & Klessen

2004; Dib, Bell & Burkert 2006; Gent et al. 2013; Girichidis et al.

2016). Therefore, SN explosions may locally (and globally) con-

trol star formation (Agertz et al. 2013; Hennebelle & Iffrig 2014;

Iffrig & Hennebelle 2015; Walch & Naab 2015). Spatially and

temporally correlated SNe can interact and drive the expansion of

coherent shells, often termed as ‘superbubbles’ (e.g. McCray &

⋆E-mail: haid@ph1.uni-koeln.de

Kafatos 1987; Mac Low & McCray 1988; Tenorio-Tagle & Bo-

denheimer 1988; Sharma et al. 2014). Large-scale supershells (e.g.

Carina Flare; Dawson et al. 2008; Palouš et al. 2009; Dawson et al.

2011) may sweep up enough mass to create new MCs, which in

turn could spawn new stars and star clusters (Elmegreen & Lada

1977; Wünsch et al. 2010; Ntormousi et al. 2011). On galactic

scales SNe might drive fountain flows or even galactic winds (e.g.

Larson 1974; Mac Low & Ferrara 1999; Ostriker, McKee & Leroy

2010; Dalla Vecchia & Schaye 2012; Hill et al. 2012; Creasey,

Theuns & Bower 2013; Girichidis et al. 2016). Therefore, SNe

might play an important role for regulating the efficiency of galaxy

formation and determine galaxy morphology (e.g. Dekel & Silk

1986; Goldbaum et al. 2011; Brook et al. 2012; Aumer et al. 2013;

Hopkins et al. 2014; Marinacci, Pakmor & Springel 2014; Übler

et al. 2014). All of the above conclusions about the impact of SN

explosions have been made on the basis of (at the time) computa-

tionally expensive numerical simulations with varying degrees of

accuracy.
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For a long time the evolution of blast waves has been in the

focus of theoretical studies (e.g. Sedov 1946; Taylor 1950 and their

importance for galactic astrophysics has been realized early on. A

key parameter (apart from the explosion energy) determining the

fate of an SN remnant (SNR) is the density of the ambient ISM. In

numerous analytical studies the evolution of blast waves – also in the

presence of cooling – was (mostly) investigated for homogeneous or

power-law density distributions (Cox 1972; Chevalier 1976; McKee

& Ostriker 1977; Cowie, McKee & Ostriker 1981; Cox & Franco

1981; Cioffi, McKee & Bertschinger 1988; Ostriker & McKee 1988;

Franco et al. 1994; Blondin et al. 1998).

For more realistic density distributions similar to the observed

ISM it is more challenging (or even impossible) to make accurate

analytical predictions. The ISM is structured and is subject to su-

personic turbulent motions, which lead to the observed lognormal

shape of the column density probability distribution function (PDF;

Kainulainen et al. 2009; Schneider et al. 2011). Numerical and

analytic work confirms a lognormal surface density (Mac Low &

Klessen 2004) as well as volume density PDF in isothermal super-

sonic flows (Vazquez-Semadeni, Passot & Pouquet 1993; Padoan,

Nordlund & Jones 1997a,b; Ostriker, Stone & Gammie 2001; Krit-

suk et al. 2006; Federrath, Klessen & Schmidt 2008; Walch et al.

2011; Shetty & Ostriker 2012; Ward, Wadsley & Sills 2014). In

addition, the structure of the ISM around massive stars is strongly

affected by the massive stars’ ionizing radiation (e.g. Kessel-Deynet

& Burkert 2003; Dale et al. 2005; Gritschneder et al. 2009; Walch

et al. 2012) and stellar winds (e.g. Weaver et al. 1977). These struc-

tural changes affect the impact of SN explosions (e.g. Rogers &

Pittard 2013; Geen et al. 2015; Walch & Naab 2015).

The efficiency with which energy and momentum from an SN

explosion is transferred to the ambient medium depends on the

mean ambient density n0 and its turbulent Mach numberM. Direct

numerical simulations indicate that in dense environments (n0,turb =
100 cm−3) and low-Mach-number regimes (M < 10) the input of

momentum is moderate in the presence of cooling (Kim & Ostriker

2015; Walch & Naab 2015) with a momentum transfer of ∼ 10 times

the initial SN momentum p0 (p0 ∼ 104 − 3 × 104 M⊙ km s−1, in

this work p0 = 14 181 M⊙ km s−1), while the momentum input

can be ∼ 2 times larger for densities n0,turb < 0.1 cm−3. For lower

densities, however, the energy and momentum transfer can be sig-

nificantly higher. Recent numerical simulations have shown that

varying assumptions for typical ambient densities of SN explosions

can result in very different evolutionary paths of the ISM. In the

most extreme case of SN mainly going off in the diffuse phase, the

SNRs can interact without significant cooling and the system can

go into thermal runaway or start driving a hot outflow (Gatto et al.

2015; Li et al. 2015; Girichidis et al. 2016).

In cosmological simulations of galaxy formation with typical res-

olution elements of several hundred parsecs, all the above details –

in particular the first phases of blast wave evolution – are unresolved

in dense environments, leading to discrepancies between the theo-

retical expectations and the simulated reality (see e.g. Schaye et al.

2015). In general, this long-known ‘overcooling problem’ appears

when the main momentum creating stages, the Sedov–Taylor (ST)

and the pressure driven snowplough (PDS) phase, stay unresolved

and become artificially short (Balogh et al. 2001; Stinson et al. 2006;

Creasey et al. 2011; Tomassetti et al. 2015). The thermal energy is

radiated away too quickly and the momentum input is unresolved as

too much mass is accelerated to too low velocities (Hu et al. 2016),

in particular if the time step is not reduced accordingly (Dalla Vec-

chia & Schaye 2012; Kim & Ostriker 2015). The properties of the

hot phase within the SNR are also predicted inaccurately and the

effect on the global filling factor of the ISM is then biased (McKee

& Ostriker 1977; Agertz et al. 2013; Keller, Wadsley & Couchman

2015). A plausible way to overcome these inaccuracies might be the

construction of subresolution feedback models with information ex-

tracted from small-scale resolved numerical simulations of SNRs.

However, this computationally expensive process has to cover all

the complexity of SNRs and their surroundings (Kim & Ostriker

2015; Martizzi, Faucher-Giguère & Quataert 2015; Walch & Naab

2015; Thompson & Krumholz 2016).

To better understand the evolution of blast waves in the com-

plex ISM, we present an efficient one-dimensional model, based on

the thin-shell approach (Ostriker & McKee 1988), to compute the

momentum input from SNe for uniform (see Section 4.1), radial

power-law (see Section 4.2), wind-blown bubble (see Section 5) or

turbulent environmental density distributions (see Section 6.1). In

addition to previous studies (e.g. Cioffi et al. 1988; Ostriker & Mc-

Kee 1988), we combine the computation of all blast wave phases and

their transitions in a single code using tabulated cooling functions.

This way we can cover a wide range of ambient medium parameters.

The model is easily customized to different SN scenarios as shown

in case of a pre-existing wind bubble or a turbulent environment. We

test the code results against recent, highly resolved numerical sim-

ulations (Kim & Ostriker 2015; Martizzi et al. 2015; Walch & Naab

2015; Thompson & Krumholz 2016) and show that we are able

to achieve comparable results at almost negligible computational

costs.

The paper is structured as follows. In Section 2, we discuss the

set of equations which govern the evolution of the SNR and the

momentum transfer to the ISM. Section 3 introduces the model

which forms the basis for this work. We discuss cases (i) and (ii) in

Section 4. In Section 5, we show the momentum input in a wind-

blown bubble. In Section 6, we extend our model to apply it to a

turbulent environment and conclude in Section 7.

2 T H E E VO L U T I O N O F SU P E R N OVA

R E M NA N T S

When a massive star explodes as a core-collapse SN, gas (typ-

ically ∼ 2–5 M⊙) is ejected with supersonic velocities (veject ∼
6000–7000 km s−1; Blondin et al. 1998; Janka et al. 2012), and

drives a blast wave into the ISM. The evolution of the blast wave

can be characterized by the time evolution t of the shock radius rS,

rS ∝ tη, (1)

where t is the time after the explosion and η is the expansion pa-

rameter (Klein, McKee & Colella 1994; Cohen, Piran & Sari 1998;

Kushnir & Waxman 2010). It can be separated into five different

phases (see Fig. 1; McKee & Ostriker 1977; Cioffi et al. 1988;

Ostriker & McKee 1988; Petruk 2006; Li et al. 2015).

(i) Pre-Sedov–Taylor (PST) phase. In this first phase after the

initial explosion radiative losses are insignificant for the dynam-

ics of the SNR. The supersonically expanding ejecta dominate the

evolution with an initial expansion parameter η = 1 (free expan-

sion phase). The shock of the blast wave proceeds into the ambient

medium. However the shocked material pushes on the ejecta. A

reverse shock emerges. It interacts with the freely expanding ejecta

causing a pressure gradient between the forward and reverse shock.

Part of the kinetic energy of the SN ejecta is converted into heat.

In this non-self-similar phase the expansion parameter decreases

continuously. When the swept-up mass is comparable to the ejecta

MNRAS 460, 2962–2978 (2016)
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2964 S. Haid et al.

Figure 1. Schematic time evolution (times and radius are not to scale) of an

SN blast wave radius in a homogeneous environment. p0 is the initial radial

momentum of the SN ejecta. The PST phase (red) terminates at t = tST with

the beginning of the energy conserving (non-radiative) ST phase (rS ∝ t2/5).

With radiative losses becoming more important (blue) the blast wave passes

through a transition phase (t = tTR) and approaches the fully radiative PDS

phase at (t = tPDS). The shock radius evolves as rS ∝ t2/7 until the MCS

phase is reached at (t = tMCS). The swept-up material can only gain radial

momentum until the end of the PDS phase.

mass Meject the expansion parameter is approximately the ST value

of 2/5 (Chevalier 1982; Truelove & McKee 1999; Vink 2012).

(ii) ST phase. At the end of the PST phase about 72 per cent of the

initial SN energy is converted into thermal energy and the energy

conserving ST phase starts at t = tST (Taylor 1950; Sedov 1958;

McKee & Ostriker 1977),

tST =

[

rS,ST

(

ξESN

ρ0

)−1/5
]5/2

(2)

with the factor ξ ∼ 2 and the shock radius rS,ST, which can be

computed as

rS,ST =
(

3

4

Meject

πρ0

)1/3

. (3)

During the energy conserving ST phase the shock evolves adia-

batically with rS ∝ t2/5 and the radial momentum of the swept-up

mass increases.

(iii) Transition (TR) phase. The energy conserving phase ends

when the rate of change in temperature due to adiabatic expansion

is comparable to radiative losses (Ostriker & McKee 1988; Petruk

2006). In this TR phase, starting at t = tTR, the post-shock cool-

ing time tcool becomes comparable to the age of the remnant (see

Section 2.1.2)

tTR ∼ tcool. (4)

The radial momentum can still significantly increase. As the shock

front decelerates, the faster post-shock gas compresses the shocked

material and forms a thin, dense shell at the end of the TR phase

(Cioffi et al. 1988; Ostriker & McKee 1988).

(iv) PDS phase. At the beginning of the PDS, at t = tPDS, a dense

shell has formed behind the radiative shock (Falle 1975). Typically

tPDS is a few times tTR (see Section 2.1.2). The further evolution

is dominated by radiation. The homogeneous pressure inside the

bubble drives the expansion into the low-pressure environment (Cox

1972; Gaffet 1983; Cioffi et al. 1988; Cohen et al. 1998). The shock

velocity and further momentum input to the ISM decrease.

(v) Momentum-conserving snowplough (MCS) phase. The MCS

phase starts at t = tMCS once the excess thermal energy is radiated

away. The momentum of the shell cannot increase any more. Mo-

mentum is conserved and inertia becomes the main driver of the

further expansion (Cioffi et al. 1988). We therefore stop and com-

pare our models at tMCS.

2.1 The ambient medium

The structure and the mean density of the ambient medium have a

significant influence on the evolution of a blast wave. Here, we con-

sider the general case of a radial power-law density profile (Ostriker

& McKee 1988)

ρ(r) = ρ0Br−ω, (5)

where ρ0 is the central density, ω is the power-law index and B can

be used to normalize the radius (Truelove & McKee 1999).

The mass density is related to the number density, n, by

ρ = nμmH, with mH being the proton mass and the mean molecular

weight μ (ionized gas with μi = 0.61; atomic gas with μa = 1.27).

The total mass of the SNR, M, is

M(r) = Meject +
4

3 − ω
πρ0Br3−ω

S for ω �= 3, (6)

where Meject is the mass of the SN ejecta. The second term corre-

sponds to the swept-up mass. As the PST phase is dominated by the

mass of the ejecta, we assume a constant density, ρ0 until tST. In the

following we describe in detail our numerical model considering

the different phases starting with the ST phase.

2.1.1 ST phase

At the beginning of the adiabatic ST phase a certain percentage of

the initial kinetic energy has thermalized (approximately 75 per cent

in a homogeneous medium). The fraction of kinetic to thermal

energy stays constant and the total energy is conserved (Chevalier

1976; Cioffi et al. 1988).

At rS,ST (equation 3) the adiabatic expansion begins with the radial

evolution of the shock, described by the Sedov solution (Sedov

1946; Newman 1980; Ostriker & McKee 1988; Klein et al. 1994;

Truelove & McKee 1999; Breitschwerdt et al. 2012),

rS(t) =
(

ξE

ρ0B

)
1

5−ω

t
2

5−ω (7)

with ξ = (5 − ω)(10 − 3ω)/8π and the expansion parameter

η = 2/(5 − ω).

The expansion speed can be derived by considering the time

derivatives of the shock radius rS in the ST stage (Cavaliere &

Messina 1976):

d

dt
(rS) = v =

2

5 − ω

rS

t
. (8)

Here v is the shock velocity. The post-shock velocity v′ is

v′ = 3/4v. (9)

2.1.2 TR phase

Between the ST and PDS phases, there is an intermediate period

of non-self-similar behaviour which, therefore, cannot be described

by a power-law solution as in equation (1). We treat the TR phase

independently, which allows a more realistic modelling of the SNR

(e.g. Cioffi et al. 1988; Petruk 2006). The description of the ST

phase as energy conserving is accurate as long as cooling plays a

minor role and the energy loss due to radiation is negligible.

MNRAS 460, 2962–2978 (2016)
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Following Blondin et al. (1998) tTR is defined as the time at which

the cooling time is comparable to the age of the remnant. We obtain

similar results when the rate of change in temperature of the SNR, T,

due to the adiabatic expansion becomes comparable to the radiative

losses (Petruk 2006):

d

dtTR

(T )exp ∼
d

dtTR

(T )cool . (10)

During the TR phase the post-shock gas velocity approaches the

shock speed (Cioffi et al. 1988),

v′ = K01ν1v, (11)

with the velocity moment, K01, and the fraction ν1 of the shock

velocity v (see equation 8).

The velocity moment, K01, is unity in self-similar blast waves

but changes whenever this condition is violated, thus at tTR,

K
01,TR

= 0.857 (Cioffi et al. 1988, but see also Ostriker & McKee

1988 for more details).

We follow Cioffi et al. (1988) and assume that the TR phase lasts

until

tTRc = tPDS, (12)

where c = (1 + η)/(ηη/(1 + η)) with η = (4(3 − ω) − 2ω)/(5 − ω).

We follow the approximation by Petruk (2006) and assume c =
1.83 for the homogeneous medium and c = 1 for ω = 2. During

this period, ν1 changes as

ν1 =
3

4
+ 0.25

⎛

⎜

⎝

(

t
tTR

)2.1

− 1

(

1
c

)2.1 − 1

⎞

⎟

⎠
. (13)

As radiative cooling becomes important, ν1 increases from the

ST value of 3/4 to a value of one at tPDS. A thin, dense, radiatively

cooling shell forms (Gaffet 1983; Cioffi et al. 1988; Ostriker &

McKee 1988; Petruk 2006).

The large thermal pressure gradient across the shock drives the

expansion under the influence of radiative cooling (Cioffi et al.

1988). We use a set of coupled ordinary differential equations for

the further evolution of the SNR starting at tTR, throughout the PDS

phase until tMCS. The time evolution of mean momentum and shock

radius then read (see Ostriker & McKee (1988), their equation (2.9)

and appendix D):

d

dt
(p̄) =

4(3 − ω)π

3
KpresP̄thr

2
S (14)

d

dt
(rS) =

3

4r3
Sπρ̄

1

K01ν1

(p̄), (15)

where Kpres is the pressure moment and P̄th is the mean thermal

pressure within the SNR,

P̄th =
Eth

2πr3
S

, (16)

which depends on the thermal energy Eth of the SNR changing as

d

dt
(Eth) = −V 	(T̄ )n̄2. (17)

	 is the cooling function (see Section 3) in a volume V with a

mean number density n̄ and a mean temperature T̄ . We consider

two volumes, namely that of the shock and the interior. Note that

equation (17) is used throughout the entire evolution of the SN blast

wave from tST until the end (Ostriker & McKee 1988; Bisnovatyi-

Kogan & Silich 1995). During the ST phase almost no thermal

energy is radiated away. Internal structures have minor influence

compared to the shock and are therefore neglected.

The pressure moment, Kpres, can be interpreted as the weighted

mean interior pressure of the SNR (see Ostriker & McKee 1988,

equation D10a for further details). At the beginning of the TR

phase in our SN-model Kpres,TR = 0.932 and approaches Kpres,PDS =
1 (Cioffi et al. 1988; Ostriker & McKee 1988; Bisnovatyi-Kogan &

Silich 1995).

2.1.3 PDS phase

The PDS is the first fully radiative phase. It starts with the formation

of a thin shocked shell, which contains most of the mass of the SNR

and encloses a roughly isobaric and hot cavity (Blondin et al. 1998).

Since we restrict ourselves to one dimension, we neglect instabilities

or deviations from spherical geometry (Franco et al. 1994).

The evolution during the PDS is also described by the equations

introduced in Section 2.1.2 with Kpres = K01 = ν1 = 1. With a

dense, uniform, thin shell we can model the flow using a self-similar

solution and equation (1) is valid. As we neglect the influence of

the inner parts, the expansion parameter η in this case is (Ostriker

& McKee 1988; Gaffet 1983),

η =
2

2 + 3γ − ω
, (18)

where γ = 5/3 is the adiabatic index of a mono-atomic gas.

During the PDS almost all thermal energy is radiated away. The

thermal pressure inside the cavity becomes equal to the ambient

thermal pressure at tMCS. At this point we stop the calculation of the

PDS phase and assume that afterwards the radial momentum stays

constant.

3 T H E N U M E R I C A L S E T U P

We study the evolution of a single SNR from the ST to the MCS

phase by solving the set of ordinary differential equations (ODEs;

equations 8, 14, and 15 together with equation 17), based on the

thin-shell approach (Cioffi et al. 1988; Ostriker & McKee 1988),

described in Section 2.1 via a fifth-order Runge–Kutta–Fehlberg

integration scheme (Butcher 1996) with adaptive step-sizing. This

spherically symmetric, one-dimensional SN model assumes no in-

stabilities in the shell, no shell perforation or internal structures. An

advantage of the presented SN model is, that we can easily and effi-

ciently calculate the evolution of SNe in a large number of different

ambient media.

We assume solar metallicity and we model radiative cooling for

104 K < T < 108 K using the cooling function by Sutherland, Bick-

nell & Dopita (1993). For T < 104 K a cooling function by Koyama

& Inutsuka (2000, 2002) is used with

	 = Ŵ

[

107exp

(

−1.184 × 105

T + 1000

)

+ 1.4 × 10−2
√

Texp

(

−92

T

)]

erg cm3 s−1 (19)

with a fixed heating rate Ŵ (Koyama & Inutsuka 2002; Walch &

Naab 2015),

Ŵ = 2 × 10−26 erg s−1. (20)

The SN is initialized at the beginning of the ST phase by

adding 1051 erg of total energy ESN (Ostriker & McKee 1988)

and 2 M⊙ (Draine 2011) of ejecta mass at the initial ST radius,

MNRAS 460, 2962–2978 (2016)
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Table 1. Top section: initial SN properties for all simulations. Bottom section: List of performed simulations. Column 1 gives the considered property, column

2 fixes the density structure of the ambient medium, and column 3 defines the density profile. In columns 4 and 5 we give the turbulent Mach number and

number of cones used to simulate the turbulent substructure of the ambient medium (see Section 6). The last column lists the corresponding figures in this

paper.

Initial SN properties

SN momentum p0 = 14 181 M⊙ km s−1 SN energy Meject = 1051 erg Ejecta mass Meject = 2 M⊙
Property Structure Density Turbulence Figures

Uniform media (μa, μi) Homogeneous n0,uni = 0.1–100 cm−3 – – 3

Media with density gradient Power law n0,power = 0.1–100 cm−3 – – 5

Different surrounding media Power law n0,power = 1 cm−3 – – 6

Different initial densities Wind-blown bubble n0,uni = 1–1000 cm−3 – – 7

Different initial temperatures Wind-blown bubble n0,uni = 1 cm−3 – – 8

Example (μa, μi) Turbulent n0,turb = 1 cm−3 M = 10 Ncones = 12 10

Density variation Turbulent n0,turb = 1 cm−3 M = 10 Ncones = 12–384 11 (top)

Momentum variation Turbulent n0,turb = 1 cm−3 M = 10 Ncones = 12–384 11 (bottom)

Momentum at tMCS Turbulent n0,turb = 0.1–100 cm−3 M = 0.1–100 Ncones = 192 12

Mass–velocity distribution Turbulent n0,turb = 1, 100 cm−3 M = 1, 10 Ncones = 384 13

equation (3), corresponding to an initial momentum input of p0 =
14 181 M⊙ km s−1.

We run simulations with different combinations of ambient

medium densities and density distributions (equation 5, see Ta-

ble 1). The initial number densities for a uniform distribution n0,uni

and the central density of the power-law distribution n0,power vary in

a range of 0.1–100 cm−3 (n0,uni = n0,power = 0.1, 0.3, 1, 3, 10, 30,

100 cm−3).

At radii smaller than RST we assume the density to be homo-

geneous as the mass of the ejecta dominates the first phase. At

larger radii we consider different density distributions (constant,

power-law, turbulent) in the ambient medium. For the power-law

distribution we assume a density floor, nfloor:

npower(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n0,power for r ≤ rST

n0,power

(

r
rST

)−ω

for r > rST

and npower(r) ≥ nfloor

nfloor for r > rST

and npower(r) < nfloor.

(21)

Without this lower limit the mean of the ambient density would

drop to non-physical values and the sound speed of the ambient

medium with a fixed pressure would increase to infinity (Cavaliere

& Messina 1976; Chevalier 1976; Greif et al. 2011; Hennebelle &

Falgarone 2012).

A self-consistent treatment of the chemical evolution is not in-

cluded and it is not possible to consider multiple ionization states

of the ambient medium. For simplicity, we choose a neutral envi-

ronment with solar abundances with μa = 1.27. Some studies (e.g.

Cioffi et al. 1988; Petruk 2006) consider the SN environment to be

ionized. To compare with these results, we rerun the simulations

in uniform media and for a turbulent example with μi = 0.61 (see

Section 4.1 and Section 6.1).

A simulation is terminated at the beginning of the MCS phase,

tMCS (see Section 2.1.3), after which the momentum is constant. For

all environments we assume an universal ambient pressure, because

P ∝ nT ∼ const (McKee & Ostriker 1977). All parameters of the

model and the performed simulations are summarized in Table 1.

The computational effort to run a single SN depends on the num-

ber of time steps. The initial step-size is chosen to be a fraction of

the ST time, which depends on the density of the ambient medium.

During the computation we use adaptive step-size control. We com-

pare the local, relative error of the radius and the thermal energy

obtained from the applied integration scheme with a global toler-

ance of 10−3 at densities of n0,uni ≤ 50 cm−3 and 10−4 for denser

environments. In case the local error exceeds the global tolerance

the time step is adjusted. On a single core (clock speed 3.40 GHz)

a simulations needs between 4 × 103 (n0,uni = 3 cm−3) and 1.3 ×
104 (n0,uni = 100 cm−3) time steps, which corresponds to a CPU

time of 1.5–6 s.

4 BLAST WAVE EVOLUTI ON IN IDEALI Z ED

E N V I RO N M E N T S

4.1 Homogeneous density distribution

We apply our model to follow the evolution of blast waves for a

single SN in homogeneous media with densities of nuni = 0.1–

100 cm−3, covering the more tenuous ISM up to average densities

of MCs. We assume both an ionized with μi and a neutral ambient

medium with μa.

The transition times tTR and tPDS (see Fig. 2) of SNe in homo-

geneous media, obtained in this work, can be fitted with a power

law which depend on the number density n0,uni and mean molecular

weight μ (see Section 4.1):

tTR,μa
= 4.15 (n0,uni/1 cm−3)−0.53 × 104 yr

tPDS,μa
= 7.80 (n0,uni/1 cm−3)−0.53 × 104 yr

tTR,μi
= 3.18 (n0,uni/1 cm−3)−0.54 × 104 yr

tPDS,μi
= 5.80 (n0,uni/1 cm−3)−0.54 × 104 yr.

The definitions for the respective TR times are not unique. Dif-

ferent numerical setups (e.g. Petruk 2006), cooling functions (e.g.

Cioffi et al. 1988) and assumptions for the ambient medium (mean

molecular weight in ionized, μi, or neutral, μa, media) can lead to

different results. Fig. 2 compares tTR and tPDS from previous works

(Cioffi et al. 1988; Franco et al. 1994; Blondin et al. 1998; Petruk

2006) to values obtained from this work (black triangles, black

MNRAS 460, 2962–2978 (2016)
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Supernova blast waves in ambient media 2967

Figure 2. Model predictions for the end of the ST phase tTR (black triangles)

and the beginning of the PDS phase tPDS (black circles) in ambient media

with different number densities n0,uni and different states of ionization of the

ambient gas. Full symbols show the case of a neutral ambient medium with

solar abundances (μa), and open symbols show the case of a fully ionized

ambient medium with μi. Our results are consistent with previous works by

Blondin et al. (1998, here BW98) and Petruk (2006, here P06) but differ

significantly from Cioffi et al. (1988, here CO88) and Franco et al. (1994,

here FM94) for several reasons (see details in the text).

circles) in uniform ambient media with number densities between

0.1 and 100 cm−3.

Our results are consistent with previous studies by Blondin et al.

(1998) and Petruk (2006) assuming the ambient medium to be ion-

ized (open symbols). The differences in low-density environments

are less than 10 per cent. Only at n0,uni = 100 cm−3 the values differ

by ∼40 per cent. In models with a neutral medium (full symbols),

tTR and tPDS are significantly shifted to later times. Cioffi et al.

(1988) and Franco et al. (1994) use different setups and show no

agreement with the findings of all other authors. For a detailed com-

parison of important times in the evolution of SNRs we refer to Kim

& Ostriker (2015) and Petruk (2006).

In Fig. 3, top-left panel, we show the evolution of the swept-up

mass of the SNR. Initially it is dominated by the ejecta mass. The

swept-up mass increases rapidly during the ST phase. The final

swept-up mass, Mtot, is ∼1290 [660] M⊙ in dense environments

increasing up to about 8870 [4590] M⊙ in an ambient medium with

n0,uni = 0.1 cm−3. This significant increase is a consequence of a

30 times longer evolution in lower density environments. It will be

discussed in more detail in Section 6.4.

In Fig. 3 (top-right panel), we show the evolution of the thermal

energy starting from the ST phase (71.7 per cent of the initial SN

energy) until the onset of the MCS phase (end of lines). Here and

in all following plots, the beginning of the TR phase is indicated by

triangles and the onset of the PDS phase by circles. Filled symbols

and thick solid lines show the results for a neutral ambient medium.

The open triangles, circles, and dashed lines correspond to the same

models assuming an ionized ambient medium. Hereafter, the values

for ionized ambient media are given within square brackets.

As expected, for the highest density (n0,uni = 100 cm−3, black

line) the ST phase terminates already after 3.6 [2.8] kyr, while for

the lowest density (n0,uni = 0.1 cm−3, dark yellow line) the ST lasts

until 150 [112] kyr.

As the density of the shell increases, the post-shock gas starts

to radiate. At tTR the thermal energy drops significantly at much

earlier times for n0,uni = 100 cm−3 than for n0,uni = 0.1 cm−3.

For all densities the PDS phase starts at about 1.8 tTR. For high

densities (n0,uni = 100 cm−3), the PDS phase of 1.9 [1.4] kyr is

short compared to 185 [159] kyr in an ambient density of n0,uni =
0.1 cm−3. The bubble stays overpressured and drives the evolution

throughout the PDS stage. Cooling becomes inefficient (the curves

flatten towards the end of the evolution) as the temperature of the

SNR drops below 104 K (Sutherland et al. 1993; Koyama & Inutsuka

2002, see equation 20).

The time evolution of the shell radius is shown in the bottom-

left panel of Fig. 3. For all densities the radius evolves as rS ∝ tη

with η = 2/5 in the ST phase. At t = tTR, η shifts towards 2/7

and the SNR enters the PDS stage. For the highest density the

shell expands to a radius of 3.4 [3.6] pc during the ST and to 4.2

[4.4] pc in the PDS phase. For the lowest density the TR radius is

about 59.5 [61.6] pc expanding to 73.5 [76.2] pc in the TR phase

and finally reaches 85.3 [90.0] pc at the end of the PDS. The final

expansion radius significantly decreases from low- to high-density

environments, because the cooling of the shell occurs earlier and

therefore the interior pressure drops more rapidly in denser media.

In the bottom-right panel of Fig. 3, we show the corresponding

evolution of the radial shell momentum. During the ST phase, the SN

momentum increases significantly from p0 ≈ 1.4 × 104 M⊙ km s−1

by a factor of ∼ 8 [6] for n0,uni = 100 cm−3 and up to a factor 20

[14] at n0,uni = 0.1 cm−3. The following TR phase further increases

the momentum by ∼40 per cent with respect to the ST values. At

the beginning of the MCS phase the shell momentum varies be-

tween 13.4 [9.3] p0 for the highest density and 30.9 [21.3] p0 for

an ambient density of 0.1 cm−3. However the momentum increase

during the PDS, is almost negligible because the pressure inside

the SNR is lowered to values similar to the ambient pressure (see

Section 3). Within a high-density environment (n0,uni = 100 cm−3)

the increase is only 0.9 p0. The final radial momentum converges as

the temperature inside the SNR drops. Shortly before the onset

of the MCS phase a final plateau forms. The temperature has

dropped below 104 K and the photoelectric heating starts to com-

pensate the radiative cooling (Koyama & Inutsuka 2002).

In Fig. 4, we compare the final momenta in a density range of n0,uni

= 0.1–100 cm−3 from our model with recent numerical simulations

(Kim & Ostriker 2015; Li et al. 2015; Martizzi et al. 2015) and with

previous works (Cioffi et al. 1988). We show the results for atomic

(full black squares) and ionized media (open black squares). The

SN model in an ionized medium with a density of n0,uni = 1 cm−3

has a radial momentum input of 2.3 × 105 M⊙ km s−1, which is

in good agreement with 2.17 × 105 M⊙ km s−1 found by Kim &

Ostriker (2015) with 2.66 × 105 M⊙ km s−1 by Li et al. (2015) and

the semi-analytic solution by Cioffi et al. (1988).

For neutral and ionized gas the final momentum input is

pμa
= 22.44 (n0,uni/1 cm−3)−0.12 p0

pμi
= 16.52 (n0,uni/1 cm−3)−0.12 p0,

respectively. Numerical simulations by Kim & Ostriker (2015) find

a lower factor of 19.75 and an exponent of −0.16.

4.2 Power-law density distribution

We now assume a power-law ambient medium density distribu-

tion following equation (21) with ω = 2. We vary n0,power = 0.1–

100 cm−3 (Weaver et al. 1977; Band & Liang 1988).

In the top-left panel of Fig. 5, we show the corresponding evolu-

tion of the swept-up mass. We find two distinct regimes for the mass

evolution. Where the ambient density distribution follows a power

MNRAS 460, 2962–2978 (2016)
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2968 S. Haid et al.

Figure 3. Time evolution of SNRs in homogeneous ambient media with densities in the range of 0.1–100 cm−3. Triangles indicate the beginning of the TR

phase (end of ST phase) at tTR, circles the onset of PDS. Open symbols and dashed lines show the corresponding simulation in ionized ambient media. Top-left

panel: time evolution of the swept-up mass. Top-right panel: evolution of the normalized thermal energy. The energy losses are highest and most rapid for the

densest environments. Bottom-left panel: evolution of the shell radius. The shock radius increases within low-density ambient media (up to 85 pc at n0,uni =
0.1 cm−3). Black, dashed lines indicate slopes of 2/5 during t < tTR and 2/7 during t > tPDS. Bottom-right panel: evolution of the momentum input normalized

to the initial SN momentum p0.

law with M ∝ t1.95. In this medium and a high density (n0,power =
100 cm−3) ∼ 155 M⊙ is swept-up compared to 6 M⊙ for n0,power

= 0.1 cm−3. Once the uniform density floor is reached, the swept-

up mass is quickly dominated by the surrounding uniform medium

with nfloor. Independent of n0,power the swept-up mass is ∼5000 M⊙
at tTR and 1.3 × 104 M⊙ at tMCS. Compared to the uniform am-

bient medium with n0,uni = 0.01 cm−3, the total swept-up mass in

the power-law distribution is ∼20 per cent smaller. The expansion

proceeds shorter in time and expansion in the latter case because

slightly less momentum is created during the evolution.

In Fig. 5 (top-right panel), we show the evolution of the ther-

mal energy normalized to the initial SN energy. The initial thermal

energy is 0.82 ESN (results from equation 7 and the momentum at

tST). Starting with energy conservation during the ST phase, thermal

energy is radiated away at the same tTR (triangles, tTR ∼ 510 kyr)

independent of the profile density. The thermal energy drops signif-

icantly during the PDS phase (circles, tPDS ∼ 1 Myr) to 0.26 ESN.

For all central densities the thermal energy is lost only within the

last ∼ 300 kyr of the simulation (tMCS ∼ 1.2 Myr). For comparison,

the thermal energy retained at tPDS in a uniform ambient medium

with n0,power = 0.01 cm−3 is 0.4 ESN.

The time evolution of the shell radius is shown in Fig. 5 (bottom-

left panel). For all densities, the radius evolves with an expansion

parameter η ∼ 2/(5 − ω) in the ST phase turning to η ∼ 2/7 as

it reaches the PDS phase within the homogeneous medium. For

the highest central density (n0,power = 100 cm−3) the shell expands

to 155 pc during the ST phase. At tPDS the radius is 204 pc and

finally the shell has expanded to 215 pc. These values are almost

independent of the central density and are more comparable to the

expansion radius of a homogeneous ambient medium with n0,power

= 0.01 cm−3, which expands to 230 pc.

The radial momentum (Fig. 5; bottom-right panel) depends,

among others, on the swept-up mass, which couples the thermal

energy to the ambient medium. In a power-law medium, where n(r)

decreases rapidly the mass of the SN ejecta dominates the initial

evolution (Fig. 5; bottom-right panel). The momentum increases be-

tween 2.4 p0 (n0,power = 0.1 cm−3) and 5.1 p0 (n0,power = 100 cm−3)

before n(r) = nfloor is reached. From this point onwards, the mo-

mentum increases more rapidly. At tTR all simulations converge to a

common value of ∼25.3 p0, increase to 36.3 p0 at tPDS and finally to

37.0 p0. For comparison, the momentum in a homogeneous medium

with n0,uni = 0.01 cm−3 at tTR is 26.6 p0 and 39.0 p0 at tMCS.

In Fig. 6, we illustrate the impact of different values of nfloor(nfloor

= 10−2, 10−4 cm−3) on the remnant evolution in power-law en-

vironments. For comparison, we show the case of a homoge-

neous ambient medium with n0,power = 1 cm−3 (black, solid line),

MNRAS 460, 2962–2978 (2016)
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Supernova blast waves in ambient media 2969

Figure 4. Final (at tMCS) radial momentum input puni in homogeneous medium with densities in the range of n0,uni = 0.1–100 cm−3. For comparison, we add

recent numerical simulations of SNe in homogeneous media (coloured symbols) from Kim & Ostriker (2015, here KO15, red squares), Martizzi et al. (2015,

here MF14, orange triangles), Cioffi et al. (1988, here CM88, blue squares), and Li et al. (2015, here LO15, green circles).

n0,power = 10−2 cm−3 (green, dashed line) and n0,power = 10−4 cm−3

(dark yellow, dashed line). We compare the case of an SNR expand-

ing into a warm ionized medium (WIM case; green lines) with nfloor

=10−2 cm−3, T = 7000 K, and P/kb = 70 cm−3 K; or into a hot ion-

ized medium (HIM case; dark yellow lines) with nfloor = 10−4 cm−3,

T = 3× 105 K, and P/kb = 30 cm−3 K, respectively (McKee 1995).

A plain power-law with no density floor (red lines) is also shown. We

terminate the latter simulation at 30 Myr. The density distributions

are shown in the top-left panel of Fig. 6.

In the top-right panel of Fig. 6 we show the interior pressure,

P/kb (full lines) and the counteracting ambient pressure (dotted

lines). Assuming an isothermal environment, the ambient pressure is

directly proportional to the density distribution. The homogeneous

ambient medium is isobaric, whereas in the WIM and HIM the

pressure decreases with increasing radius down to the isobaric floor.

The pressure in the ambient medium with a plain power-law would

decrease to zero at infinity. The pressure inside the bubble decreases

and drops significantly at tTR when radiation becomes important.

When the ambient pressure is equal to the interior pressure, the

simulation terminates at 98 kyr (homogeneous medium), 1.3 Myr

(WIM) and 26 Myr (HIM).

The expansion radius of the SNR (left-bottom panel) increases

with lower ambient densities. In a homogeneous medium the radius

is the smallest as the shock sweeps-up mass with a constant den-

sity. The power-law media with homogeneous surroundings show

similar behaviour but different final radii depending on the ambient

pressure. The final radius in the WIM is ∼200 pc (tMCS = 1.1 Myr)

and in the HIM ∼ 1020 pc (tMCS = 5.6 Myr). For the plain power-

law the density drops with the radius. The counteracting swept-up

mass is missing and the expansion terminates without forming a

dense shell (Ostriker & McKee 1988; Truelove & McKee 1999;

Petruk 2006).

The final radial momentum input (Fig. 6, bottom-right panel)

increases from 22.9 p0 in the homogeneous medium and almost

doubles to 39.0 p0 assuming a WIM. In the HIM the momentum

input is 68.3 p0. The momentum in the plain power-law environment

increases continuously.

To summarize, we find that the momentum injection in a power-

law environment is small compared to the uniform medium, because

the decreasing density suppresses the coupling of the momentum

to the gas. If the power-law environment is surrounded by a ho-

mogeneous density floor the final momentum can increase. How-

ever, the momentum input is always smaller or equal to the case

of a uniform ambient medium with n0,uni = nfloor, independent of

n0,power.

5 BLAST WAVE EVOLUTI ON IN

W I N D - D R I V E N BU B B L E S

During the lifetime of a massive star strong stellar winds interact

with the ambient medium and blow low-density bubbles (Weaver

et al. 1977). The subsequent SNe explode in these bubbles and

the evolution of the blast wave is modified. Here we discuss the

evolution of SN blast waves in wind-blown bubbles. We assume

a simple model for a constant wind expanding into an initially

cold (80 K) homogeneous medium with four different initial den-

sities (n0,uni = 1, 10, 100, 1000 cm−3). In these cold environments,

the wind-blown bubble expands supersonically and drives a strong

shock into the ambient ISM. The shock is radiative and cools down

to Ts,SH.

We assume a 20 M⊙ O-star with a constant wind velocity of vω =
2000 km s−1 and a constant mass-loss rate of Ṁω = 10−7 M⊙ yr−1

over a lifetime of tB = 10 Myr. The SN has an ejecta mass Meject =
2 M⊙ (Puls et al. 2009). The expansion radius rs,B of a wind-blown

MNRAS 460, 2962–2978 (2016)
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2970 S. Haid et al.

Figure 5. Time evolution of SNRs in ambient media with a power-law density distribution and central densities in the range of 0.1–100 cm−3 (lines with

different colours as indicated in the legend) and a density floor of 0.01 cm−3. Triangles indicate the beginning of the TR phase, tTR, circles the onset of the

PDS phase. The SN expansion into a homogeneous medium (grey, dashed line) with an ambient density equal to the floor density is shown. It is shifted to later

times by a factor of 100.2 ∼ 1.59, because it lies on top of the other lines. Top-left panel: mass increase during the evolution up to a collective mass of some

103.5 M⊙. Top-right panel: evolution of the normalized thermal energy. Bottom-left panel: evolution of the shell radius. Bottom-right panel: evolution of the

momentum input normalized to the initial SN momentum p0.

bubble from a constant stellar wind without heat transfer is given

by (Weaver et al. 1977; Pittard 2013)

rs,B(t) =
(

125

154π

)1/5 (

Lω

ρ0,uni

)1/5

t3/5, (22)

where ρ0,uni is the density of the initial homogeneous ambient

medium with μ = 1. Lω is the mechanical luminosity

Lω =
1

2
Ṁωv2

ω. (23)

The average density ρB within the bubble without mixing is

(Dyson 1973; Garcia-Segura & Mac Low 1995; Pittard 2013)

ρB(t) =
3Ṁωt

4πr3
s,B

. (24)

The density of the wind-shocked shell ρs,B can be estimated by

the isothermal shock jump condition (γ = 1),

ρs,B = ρ0,uni

v2
s,B

c2
0

, (25)

where c0 is the sound speed of the ambient medium with c0 =
(γP0/ρ0,uni)

1/2. The wind bubble expands supersonically with the

velocity vs,B

d

dt
(rs,B) = vs,B =

3

5

rs,B

t
. (26)

The shell thickness δrs,B is

δrs,B =
c2

0

3

rs,B

v2
s,B

. (27)

In Fig. 7, we show the evolution of an SN in each of the four

pre-existing wind-blown bubbles. The densities inside the bubble,

nB, are 3.7, 14.8, 59.1, and 235.1 × 10−4 cm−3 for ambient densities

of n0,uni = 1, 10, 100, 1000 cm−3 (top-left panel, dashed line). The

interior is separated from the ambient medium by a dense shell. The

density contrast of between the interior and the shell is constant with

1.5 × 10−5. The thickness of the shells are 0.7, 1.2, 1.8, and 2.9 pc.

The density of the SNR follows this evolution until the evolutions

stalls.

The SN evolution in the low-density interior is dominated by

the ST phase, which immediately ends when the blast wave hits

the dense shell (top-left panel). Within ∼ 2 kyr 80 per cent of the

initial thermal energy is radiated away, almost independently of the

shell density. The remaining thermal energy is related to the hot,

MNRAS 460, 2962–2978 (2016)
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Supernova blast waves in ambient media 2971

Figure 6. Time evolution of a SNR expanding into ambient media with four different density distributions: a homogeneous (black lines) environment with a

density of n0,power = 1 cm3, media with a power-law distribution ω = 2 and density floors similar to the WIM (green lines, 7000 K, nfloor = 10−2 cm−3, P/kb

= 70 cm−3 K) and the HIM (dark yellow lines, 3× 105 K, nfloor = 10−4 cm−3, P/kb = 30 cm−3 K) and a power-law distributed medium without a lower limit

(red lines). Dashed lines correspond to homogeneous ambient media with n0,power = nfloor (HIM, WIM). Triangles indicate the beginning of the TR phase,

circles the onset of the PDS phase. Top left panel: Evolution of the expansion radius. Top right panel: Evolution of the internal pressures (solid lines) and the

counteracting ambient pressure (dotted lines). Bottom left panel: Number density evolution at the shock front, showing the assumed density floors. Bottom

right panel: Evolution of the radial momentum input. The simulation without a density floor is terminated after ∼30 Myr.

low-density interior of the SNR. Previous works (e.g. Dwarkadas

2007) show a similar behaviour of rapid cooling at the shock bound-

ary. Recent numerical simulations (Fierlinger et al. 2016) point out

that 1.5 per cent of the SN energy is left after the SNR stalls at the

boundary.

Initially the radial evolution (bottom-left panel) is that within a

homogeneous medium. For the densest ambient medium (n0,uni =
1000 cm−3) the wall of the wind-blown cavity is reached after ∼ 4.9

kyr and 22.0 pc, while it takes ∼12.2 kyr and 87.6 pc for n0,uni = 10

cm−3. The final radius corresponds to the inner radius of the bubble.

The density distribution of the wind-bubble is assumed to be

static and the shell has no momentum. While in the ST phase,

the momentum input by the SN is small because of the low gas

density within the bubble. Once the remnant reaches the shell, which

is massive compared to the swept-up mass from the SN, it cools

quickly and cannot accelerate the shell. As a result the evolution of

the SNR stalls. The final momentum input (bottom-right panel) lies

between ∼2.4 and 2.9 p0.

The density difference between the interior and the shock as well

as the density of the wind-blown shell itself determine the final radial

momentum. Assuming isothermal behaviour, the ambient temper-

ature of the initial environment is linked to the shell temperature,

which again affects the thickness of the shell. Therefore, in Fig. 8

we show the influence of densities, nB, and the temperature of the

ambient ISM on the momentum input. We choose nB = 3.7 × 10−4

and 0.37 cm−3, where the first corresponds to an wind-blown bubble

with an initial density n0,uni = 1 cm−3 and the latter corresponds

to a bubble which is filled by ionized gas as would be the case

for an H II region. We increase the temperatures from 80 to 800 K

and to the temperature (3175 K), which corresponds to vs,B = c0.

The dashed lines show the momenta of SNe in uniform media with

nB = n0,uni.

For the low-density case (nB = 3.7 × 10−4 cm−3), we show

how the final momentum increases with temperature from 2.9 p0 at

80 K to 4.4 p0 at 800 K and up to 6.5 p0 at 3175 K. At a higher

interior density (nB = 0.37 cm−3), the momentum in the cold (80 K)

ambient medium is 19.3 p0 and is comparable to the corresponding

homogeneous medium. Recent numerical results of SNe exploding

into bubbles blown by a stellar wind and ionizing radiation give a

factor of ∼10 (Geen et al. 2015).

This shows that the ambient density and temperature are essen-

tial for the evolution of an SNR in a wind-blown bubble. Higher

temperatures broaden the wind-blown shell and reduce the den-

sity contrast. This results in a lower cooling and an increase of

MNRAS 460, 2962–2978 (2016)
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2972 S. Haid et al.

Figure 7. Time evolution of an SNR (Meject = 2 M⊙) in a pre-existing bubble from a constant wind expanding into an initially homogeneous medium with

densities of n0,uni, = 1, 10, 100, 1000 cm−3, an initial temperature of 80 K and P0/kb = 80 − 8 × 104 cm−3 K. The density in the interior is assumed to be

constant (top-left panel) and in a constant density environment. Top-left panel: radial density distribution of the pre-existing wind-blown bubble (dashed lines)

and the mean density of the SNR (full lines). Top-right panel: time evolution of the normalized thermal energy. Bottom-left panel: evolution of the time over

the SN shock radius. Bottom-right panel: time evolution of the radial, normalized momentum input.

radial momentum (e.g. Walch & Naab 2015). The influence of the

wind-blown bubble on the evolution of the SNR diminishes as the

swept-up mass increases compared to the mass of the shell. SNR

with a high density inside the bubble and a small difference between

the swept-up mass and the mass of the wind-blown shell show a

behaviour that is comparable to a uniform medium with that bubble

density.

6 B L A S T WAV E E VO L U T I O N IN T U R BU L E N T

E N V I RO N M E N T S

We study the evolution of an SNR expanding in a more realistic am-

bient medium, which is subject to isothermal, supersonic turbulence

(Klessen, Burkert & Bate 1998; Klessen, Heitsch & Mac Low 2000;

Kainulainen et al. 2009; Schneider et al. 2011; Federrath 2013). Nu-

merical simulations suggest that the volume-weighted density PDF

of gas shaped by isothermal turbulent motions can be described by

a lognormal distribution (Vazquez-Semadeni et al. 1993; Nordlund

et al. 1997; Padoan et al. 1997b; Federrath et al. 2008),

q(z) =
1

√

2πσ 2
ln ρ

exp

[

−
(z − z̄)2

2σ 2
ln ρ

]

, (28)

where z = ln(ρ/ρ0,turb) with a mean density of the gas ρ0,turb. The

median is z̄ = −σ 2
ln ρ/2 (Vazquez-Semadeni 1994; Thompson &

Krumholz 2016). The dispersion of the density distribution σ 2
ln ρ can

be related to the Mach numberM of turbulent motions (Federrath

et al. 2008; Thompson & Krumholz 2016),

σ 2
ln ρ ∼ ln(1 + b2

M
2). (29)

The turbulent driving factor b is assumed to be 0.5 with a thermal

mix of divergence free (solenoidal) and curl free (compressive)

turbulence (Federrath et al. 2008; Brunt 2010; Krumholz 2014).

The volume density PDF can also be related to the surface density

PDF σ ln � (Brunt 2010; Brunt, Federrath & Price 2010a,b). In this

case, the dispersion reads

σ 2
ln � = ln(1 + Qb2

M
2) (30)

with the conversion factor

Q = σ 2
ln �/σ 2

ln ρ . (31)

6.1 Approximating the turbulent structures of the ambient

medium

We adopt our model to compute the SNR evolution in turbulent

ambient media, where the density structure is described by the

lognormal PDF in equation (28). Since the blast wave evolution is

primarily determined by the mean density of the swept-up material

MNRAS 460, 2962–2978 (2016)
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Supernova blast waves in ambient media 2973

Figure 8. Radial momentum of SNR in wind-blown bubbles in different initial media in comparison to uniform media (dashed lines). The densities are nB =
nuni = 3.7 × 10−4 cm−3 and 0.37 cm−3. The initial temperatures of the ambient medium, which hosts the wind-blowing star are 80, 800, and 3175 K. At the

latter temperature the shock speed is equal to the sound speed of the medium.

(Ostriker & McKee 1988; Padoan et al. 1997b), we assume that

small-scale density fluctuations along the radial direction of the

SNR have a negligible effect on the evolution. We assume that in

different directions, the blast wave will encounter gas with different

mean densities.

In this simplified model, we abstain from following winding

shock fronts between structures with a large density gradient (e.g.

Martizzi et al. 2015) or interaction between different radial direc-

tions. The first constraint arises from the simple set of equations

used in our model. It is not designed to follow the dynamical evo-

lution but gives a statistical expectation of SNR in turbulent media.

For the latter we assume no physical interactions between the differ-

ent cones and assume that during the ST and TR phase the radially

outwards directed velocities of the SNR are large and the interaction

has minor effects. At later phases the extent of the different radial

directions is sufficient to neglect an interacting boundary.

To model the mean densities in different radial directions, the

ambient medium in our model is discretized (see Fig. 9, bottom

panel) into Ncones cones. The cones are defined by equal solid an-

gles and have equal surface areas and volumes. For each cone,

we randomly draw a mean density, ni, from the lognormal den-

sity distribution and run the one-dimensional model of the evo-

lution of an SNR for an uniform medium (see Section 2). The

total momentum pturb injected by an SN in this pseudo three-

dimensional turbulent medium is derived from the sum over all cone

momenta pi,

Ncones
∑

i

pi = pturb. (32)

Each cone is initialized with the same fraction of the total SN energy,

i.e. ESN/Ncones. As the expansion radius in each cone is different,

the symmetry of the SN bubble is broken (Walch & Naab 2015).

In Fig. 10 we show results using 12 cones, which is the minimum

number needed to divide the unit sphere into equal surface area

pixels (see Górski et al. 2005). With Ncones = 12 the lognormal

PDF is not well sampled (see Section 6.2 for a further discussion).

The turbulent Mach number is 10 and the mean number density of

the ambient medium, is n0,turb = 1 cm−3. The sampled densities

ni have values between 3 × 10−3 cm−3 and 4.5 cm−3 according to

a PDF with a width of σ ln ρ = 1.8 for M = 10. Fig. 10 shows

the equal initial momenta (upside down triangles) as well as the

individual momenta pi at the end of the individual ST (triangles),

TR (circles) and PDS (squares) phase for a neutral (μa, black) and

ionized (μi, red) medium for all mean cone densities ni (green line

and corresponding y-axis on the right-hand side).

The mean momentum per cone, 〈pi〉,

〈pi〉 =
pturb

Ncones

, (33)

in a neutral [ionized] medium at tTR is 1.7 [1.2] p0, which increases

up to 2.4 [1.7] p0 at tPDS (p0 = 14 181 M⊙ km s−1). At tMCS the mean

momentum per cone is 2.6 [1.9] p0, as indicated by the black hori-

zontal line (red line for ionized ambient medium). This corresponds

to a total momentum of 31.2 [22.8] p0 (2.16 × 105 M⊙ km s−1).

Note that tTR, tPDS, and tMCS are different for cones with different

densities. However, since the momentum stays constant after tMCS,

p(tMCS) is considered as the final momentum.

The blast wave simulation in a homogeneous medium with n0,uni

= 1 cm−3 injects 22.3 [16.4] p0 of momentum. Therefore, the

increase in momentum is a direct consequence of turbulence. For

higherM, the PDF becomes broader. The blast wave encounters

more low-density regions, which are subject to less radiative cooling

and allow for a higher momentum injection.

MNRAS 460, 2962–2978 (2016)
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2974 S. Haid et al.

Figure 9. Schematic representation of the model for the blast wave evo-

lution into a turbulent medium. Top panel: sampling of densities from a

lognormal PDF, which represents turbulent density structures. The number

of sampling points corresponds to the number of cones with equal-surface

areas. Bottom panel: homogeneously assigning the densities to the cones.

The blast wave evolution is then completed for each cone separately. The

total momentum input is the sum of the individual solutions.

6.2 Accuracy of the model

The fidelity of the SN model depends on the number of sampled

densities, i.e. Ncones. We need a sufficient number in order to accu-

rately represent the underlying density distribution.

We compute the evolution of 50 individual SN explosions in

turbulent media, each with an increasing number of equal-volume

cones (sampling points of the PDF) from 12 to 384. For each of

the 50 runs, we use a different random seed to sample the number

densities in each cone from the lognormal density PDF with n0,turb

= 1 cm−3 andM = 10.

Fig. 11 presents all six sets (Ncones = 12, 24, 48, 96, 192, 384;

different symbols) with 50 SN simulations each. In the top panel

the sampled mean densities of the individual simulations, 〈n〉 =
∑Ncones

i ni/Ncones are shown. Independent of the numbers of cones

the mean ambient density (n0,turb = 1 cm−3; blue dashed line) is

well sampled by the overall mean of the individual simulations

(red bars). The variance decreases from 1.2 to 0.9 with increasing

number of cones from 12 to 384.

Figure 10. Example for the SN momentum injection in a turbulent medium

sampled with 12 cones. The number densities are randomly drawn from a

lognormal PDF with a mean number density n0,turb = 1 cm−3 and a turbulent

Mach numberM = 10. We show the values at tST (upside down triangles),

tTR (triangles), tPDS (circles), and tMCS (squares) within a ionized ambient

medium (μi, red symbols) and an atomic (μa, black symbols). The individual

radial momentum for each cone pi is shown as a function of the sampled

density n. At tPDS the mean momentum per cone is 2.6 [1.9] p0 (black [red]

horizontal line). The underlying lognormal PDF is indicated with a green

line.

The bottom panel shows the final momentum pturb (normalized to

the initial momentum) of the same simulations. The overall mean

converges to 29.4 p0 at the highest numbers of cones (blue dashed

line). The variance is similar in all runs at about 4 p0.

To summarize, we show that the combination of high-M-

turbulence and small Ncones may not accurately represent the turbu-

lent PDF structure. Individual realizations might over/underpredict

the mean densities but larger samples and a higher number of cones

reduced the variance in the mean density and the momentum input.

6.3 Momentum distribution in turbulent media

We perform simulations of SNRs in turbulent media with mean

densities of n0,turb = 0.1–100 cm−3, and Mach numbers,M = 1–

100. Based on the previous section, we decided to use sets of 20

realizations for each turbulent setup with Ncones = 192 and evaluate

the total radial momenta up to tMCS of the cone with the lowest

density cone (Fig. 12).

The mean shell momenta lie between 13.0 p0 (n0,turb = 100 cm−3,

M= 1) and 30.6 p0 (n0,turb = 0.1 cm−3,M= 1). Higher supersonic

turbulence (M= 100) boosts the momentum by 60 per cent (n0,turb

= 100 cm−3) up to 88 per cent (n0,turb = 0.1 cm−3) compared to the

low-M-turbulence value.

The radial momentum input of a single SN in a turbulent medium

can be quantified in terms of the mean density and the width (Mach

number) of the underlying density PDF:

pturb/p0 = 23.07 (n0,turb/1 cm−3)−0.12

+ 0.82(ln(1 + b2
M

2))1.49(n0,turb/1 cm−3)−0.17. (34)

The first term corresponds to the momentum transfer from a sin-

gle SN into a homogeneous medium. The second term depends on

a combination of the turbulent Mach number (width of the PDF)

and the mean density. The factor in the first term is higher com-

pared to the value (22.44) obtained for the uniform medium. The

difference results from the additional turbulent term. The fit was

generated over all data points by a Bees algorithm coupled with

MNRAS 460, 2962–2978 (2016)
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Supernova blast waves in ambient media 2975

Levenberg–Marquardt provided by the fitting tool MAGIX (χ2 ∼ 8;

Bernst et al. 2011; Möller et al. 2013).

In Fig. 12 we compare our results to direct, three-dimensional

(magneto-) hydrodynamical simulations from different authors,

namely, Iffrig & Hennebelle (2015), Martizzi et al. (2015), Kim

& Ostriker (2015), Li et al. (2015), and Walch & Naab (2015,

coloured symbols). We compare at times similar to our tMCS. As

the methodology for setting up the ISM conditions varies from

author to author, we explain each set of simulations in more

detail.

Iffrig & Hennebelle (2015, dark blue diamonds) simulate SNR in

highly-resolved (maximum grid resolution 0.05 pc) turbulent MCs

with magnetic fields, self-gravity and a cooling function similar to

equation (19). The initial conditions for the SN explosion evolve

from a spherical cloud with a density gradient ∝ r−2 embedded in

a low-density environment. The assumed velocity field in the MC

represents a Kolmogorov spectrum with a random component. The

authors conclude that the influence of magnetic fields is small, rather

the position and, therefore, the ambient density of the SN in the MC

is determining the final momentum. It is well approximated by the

solution of three-dimensional SNR simulations in homogeneous

medium with 18 p0 for n0 = 1 cm−3.

Kim & Ostriker (2015, red squares) pre-evolve the ambient

medium from a thermally unstable state with small density pertur-

bations. The SN explodes into a two-phase environment in pressure

balance. The fitted final momentum input is comparable to SNe

in homogeneous media. The difference to our final momentum in

low-M-turbulent environments is smaller than 15 per cent.

Walch & Naab (2015, dark yellow circles) use an smoothed

particle hydrodynamics (SPH) particle code to perform highly

resolved (maximum resolution 0.1 M⊙) hydrodynamic simu-

lations with interpolating cooling tables by Plewa (1995, for

T ≥ 104 K) and the cooling function from Koyama & Inutsuka

(2002, for T < 104 K). The ambient medium is initialized with

fractal substructures, which represent a lognormal density PDF.

The resulting variance is translated to a turbulent Mach number,

M = 4.4 (Walch et al. 2011). The normalized final momentum

p = 25.6 p0 is ∼9 per cent higher compared to values obtained from

our SN model (n0,turb = 1 cm−3,M = 4.4).

Martizzi et al. (2015, orange triangles) perform hydrodynamic

simulations in an ambient medium with a lognormal density field

but only cooling by Sutherland et al. (1993) at temperatures above

104 K. The variance of the distribution uses a parametrization by

Lemaster & Stone (2009). The spatial correlations are parametrized

by a Burgers power spectrum. The initial velocity field is set to zero.

Within these structures (maximum grid resolution 0.05 pc), the SNR

evolves along the path of least resistance but cools significantly

(down to 104 K) when dense structures are hit and merge with

the shock. This results in a final momentum input of 7.3 p0 in a

supersonic environment (M = 30, n0,turb = 100 cm−3), which is

lower than the performed fiducial simulation in a homogeneous

medium. The final value is ∼2.6 lower than a similar simulation

with our model.

Li et al. (2015, green circles) creates an (artificial) environment

with randomly distributed cold clouds and hot intercloud medium

with an SN in the centre. The results show no distinctive phases

and an expansion between the cold and dense regions on a path of

least resistance. Initially the radial momentum input is lower, than

the homogeneous comparison and shows an increasing power-law

behaviour with radius. As the shock expands further it interacts with

the medium in non-radial directions. At the end the momentum is

almost constant and similar to values from uniform media. The

Figure 11. Effect of the number of cones Ncones on the accuracy of the

turbulent SN model for the mean density (top panel) and momentum input

(bottom panel). The number densities are randomly sampled from a log-

normal PDF with a fixed mean density n0,turb = 1 cm−3 and Mach number

M= 10. Each of the six data sets consists of 50 SN simulations. Mean val-

ues and the standard deviation are shown in red. The mean ambient density

(blue line; top panel) is well sampled and the momentum injection converges

to 29.4 p0 (blue line; bottom panel).

momentum of the homogeneous runs (18.8 p0) compares with the

input from structured media at later phases of 17.7 p0 (n0,turb =
1 cm−3).

To summarize, we find that momentum input from low-M-

turbulent structures is comparable to SNR in homogeneous media.

We find similar values compared to different three-dimensional nu-

merical simulations, under the assumption of an atomic medium.

We show that high-M-turbulent structures boost the radial momen-

tum input. We conclude that turbulence could be important for the

momentum input. However, more three-dimensional models with

very high resolution will be required to address the impact of a

highly turbulent substructure.

6.4 Velocity–mass distribution in turbulent media

The SN model assumes that the swept-up ambient material is con-

densed into a small volume at the shock front (Klein et al. 1994).

The density profile inside the SNR can be neglected as the mass is

only a small fraction of the total mass. We show the distribution of

the shock velocity and the swept-up mass to mean densities n0,turb

of 1 cm−3 (Fig. 13, top panel) and 100 cm−3 (Fig. 13, bottom panel)

with turbulent Mach numbers of 1 and 10 both with Ncones = 384.

MNRAS 460, 2962–2978 (2016)
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2976 S. Haid et al.

Figure 12. Final (at tMCS) radial momentum input pturb to turbulent media with mean densities in the range of n0,turb = 0.1–100 cm−3 and Mach numbers

increasing fromM = 1–100 (different grey squares). The environment of each SN is separated into 195 cones. Each data point corresponds to the mean of 20

realizations and a standard deviation (grey shaded areas). We add recent numerical simulations from Iffrig & Hennebelle (2015, here IH14, blue pentagons),

Kim & Ostriker (2015, here KO15, red squares), Martizzi et al. (2015, here MF14, orange triangles), Walch & Naab (2015, here WN15, dark yellow circles),

and Li et al. (2015, here LO15, green circles). For better visibility these symbols are shifted to the right of the corresponding number density.

The distributions are evaluated at fixed times between t = 102.5 and

104.5 yr. In dense environments (n0,turb = 100 cm−3) the simula-

tions terminate earlier, explaining why in Fig. 13 (bottom panel) the

distributions at t = 104.5 yr are missing.

As expected, the swept-up mass continuously increases during

the decelerating expansion of the SNR. At 102.5 yr the swept-up

mass in a low-density and low-M-turbulence environment (M = 1,

n0,turb = 1 cm−3) is 6.5 M⊙. For the case of n0,turb = 100 cm−3

the swept-up mass is 29.8 M⊙. In general higher-M−turbulence

results in lower swept-up masses, by 12 per cent in low-density and

24 per cent in high-density environments. At 104 yr the swept-up

masses have increased to 280 M⊙ and 1279 M⊙ in the low- and

high-density ambient medium. At this time the SNR evolution in

the latter case has almost reached the end of the PDS, whereas in

the first medium the PDS lasts longer, until ∼105 yr.

The mean velocity at t = 102.5 yr is 2569 km s−1 in the low-

density environment. High-M-turbulence increases the value to

3096 km s−1. The SNR slows down by ∼50 per cent in high-density

structures with n0,turb = 100 cm−3. Typically, at each plotted time

the mean velocity decreases by ∼50 per cent compared with the pre-

vious time. At t = 104, the velocities have dropped to 323 km s−1 in

low-density structures with n0,turb = 1 cm−3 and trans-sonic turbu-

lence. In high-density environment the mean velocity is 151 km s−1.

At the end of the simulations, the distributions within an envi-

ronment with trans-sonic turbulence cover a small velocity range.

High-M-turbulence broadens the mass-(shock-) velocity distribu-

tion and therefore, a small fraction of the swept-up mass remains at

high velocities.

Similar behaviour is found in numerical simulations by Walch

& Naab (2015). At 0.2 Myr the velocity distribution in a dense

(n0,turb = 100 cm−3) fractal environment shows that about 2 per cent

of a cloud mass of 105 M⊙ are accelerated to velocities larger

than ∼20 km s−1.

7 SU M M A RY A N D D I S C U S S I O N

We present a fast model to follow the evolution of SN blast waves in

their momentum generating phases (ST, TR, and PDS phase). We

test the model for homogeneous and power-law density distribu-

tions and extend it to the evolution of SNR in wind-blown bubbles

and a turbulent ISM. Previous analytic work is combined in our

SN model and extended by the inclusion of a cooling function, a

detailed treatment of the thermal energy, and a TR phase between

the adiabatic and radiative phase.

The main results are summarized as follows.

(i) We recover recent numerical results (e.g. Kim & Ostriker

2015; Li et al. 2015; Martizzi et al. 2015) of a single SN in a

homogeneous medium as well as the analytic ST solution. The final

momentum for a density range between 1and 100 cm−3 is ∼13–31

p0 (p0 = 14 181 M⊙ km s−1). We obtain reliable values for the radial

momentum, the expansion radius and the thermal energy with small

computational effort of a few seconds. The results depend solely on

the ambient density.

(ii) In ambient media with a power-law density distribution and a

surrounding density floor, the final momentum clearly exceeds the

homogeneous results by at most a factor of 2. This is independent

of the central density and is controlled by the density of the density

floor. The inner power-law part has minor effect.

(iii) The momentum input of SNR in wind-blown bubbles depend

on the initial ambient medium. Low initial temperatures result in

dense shells, where the incoming SN shock cools efficiently. The

momentum input is only ∼3 p0. Higher temperatures of the initial

ambient medium delay the radiative cooling in the wind-blown

shell. The momentum input increases by a factor up to 10. A high

density inside the bubble and a small difference between the swept-

up mass and the mass of the wind-blown shell show a behaviour

that is comparable to a uniform medium with that bubble density.
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Figure 13. Evolution of the mass–velocity distribution at times between

102.5 and 104.5 yr with different turbulent Mach numbers ofM = 1 (solid

lines) andM = 100 (dashed lines). Top panel: low-density environment

with a mean ambient density n0,turb = 1 cm−3. Bottom panel: ambient

medium with a density n0,turb = 100 cm−3.

(iv) We use the SN model to approximate the lower limit of mo-

mentum input in turbulent ambient media. To do this, we randomly

sample densities from a lognormal density distribution with a given

dispersion which is related to the Mach number in the turbulent gas.

For low turbulent Mach numbers (M ∼ 1) the momentum input

is very similar to homogeneous media (∼13 − 31 p0). We obtain

the largest momentum input in turbulent media with M ∼ 100

by as much as a factor of 2 in a low-density environment (n0,turb =
0.1 cm−3). We have parametrized the momentum input as a function

of Mach number and average environmental density as follows:

pturb/p0 = 23.07 (n0,turb/1 cm−3)−0.12

+ 0.82(ln(1 + b2
M

2))1.49(n0,turb/1 cm−3)−0.17. (35)

Under the assumption of a neutral ambient medium we find values

comparable to recent numerical simulations (e.g. Kim & Ostriker

2015; Martizzi et al. 2015; Walch & Naab 2015).

(v) The model is computationally cheap and can be used for a

variety of parameters. This model is an accurate alternative to recent

SN subgrid models.
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Wünsch R., Dale J. E., Palouš J., Whitworth A. P., 2010, MNRAS, 407,

1963

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 460, 2962–2978 (2016)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

6
0
/3

/2
9
6
2
/2

6
0
9
3
9
8
 b

y
 g

u
e
s
t o

n
 0

4
 F

e
b
ru

a
ry

 2
0
1
9

http://arxiv.org/abs/astro-ph/0604057
http://arxiv.org/abs/1109.3478

